Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 989
Filter
Add more filters

Publication year range
1.
EMBO Rep ; 25(4): 1987-2014, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38454158

ABSTRACT

α-Melanocyte-stimulating hormone (α-MSH) regulates diverse physiological functions by activating melanocortin receptors (MC-R). However, the role of α-MSH and its possible target receptors in the heart remain completely unknown. Here we investigate whether α-MSH could be involved in pathological cardiac remodeling. We found that α-MSH was highly expressed in the mouse heart with reduced ventricular levels after transverse aortic constriction (TAC). Administration of a stable α-MSH analog protected mice against TAC-induced cardiac hypertrophy and systolic dysfunction. In vitro experiments revealed that MC5-R in cardiomyocytes mediates the anti-hypertrophic signaling of α-MSH. Silencing of MC5-R in cardiomyocytes induced hypertrophy and fibrosis markers in vitro and aggravated TAC-induced cardiac hypertrophy and fibrosis in vivo. Conversely, pharmacological activation of MC5-R improved systolic function and reduced cardiac fibrosis in TAC-operated mice. In conclusion, α-MSH is expressed in the heart and protects against pathological cardiac remodeling by activating MC5-R in cardiomyocytes. These results suggest that analogs of naturally occurring α-MSH, that have been recently approved for clinical use and have agonistic activity at MC5-R, may be of benefit in treating heart failure.


Subject(s)
Ventricular Remodeling , alpha-MSH , Mice , Animals , alpha-MSH/pharmacology , Receptors, Corticotropin , Receptors, Melanocortin , Cardiomegaly/genetics , Fibrosis
2.
Semin Immunol ; 59: 101603, 2022 01.
Article in English | MEDLINE | ID: mdl-35341670

ABSTRACT

Melanocortin receptors have emerged as important targets with a very unusual versatility, as their widespread distribution on multiple tissues (e.g. skin, adrenal glands, brain, immune cells, exocrine glands) together with the variety of physiological processes they control (pigmentation, cortisol release, satiety mechanism, inflammation, secretions), place this family of receptors as genuine therapeutic targets for many disorders. This review focuses in the journey of the development of melanocortin receptors as therapeutic targets from the discovery of their existence in the early 1990 s to the approval of the first few drugs of this class. Two major areas of development characterise the current state of melanocortin drug development: their role in obesity, recently culminated with the approval of setmelanotide, and their potential for the treatment of chronic inflammatory and autoimmune diseases like rheumatoid arthritis, multiple sclerosis or fibrosis. The pro-resolving nature of these drugs offers the advantage of acting by mimicking the way our body naturally resolves inflammation, expecting fewer side effects and a more balanced (i.e. non-immunosuppressive) response from them. Here we also review the approaches followed for the design and development of novel compounds, the importance of the GPCR nature of these receptors in the process of drug development, therapeutic value, current challenges and successes, and the potential for the implementation of precision medicine approaches through the incorporation of genetics advances.


Subject(s)
Arthritis, Rheumatoid , Melanocortins , Humans , Carrier Proteins , Inflammation/drug therapy , Inflammation/metabolism , Melanocortins/metabolism , Receptors, Melanocortin/genetics , Receptors, Melanocortin/metabolism
3.
Acta Pharmacol Sin ; 44(8): 1576-1588, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37012493

ABSTRACT

Emerging evidence demonstrates the vital role of synaptic transmission and structural remodeling in major depressive disorder. Activation of melanocortin receptors facilitates stress-induced emotional behavior. Prolylcarboxypeptidase (PRCP) is a serine protease, which splits the C-terminal amino acid of α-MSH and inactivates it. In this study, we asked whether PRCP, the endogenous enzyme of melanocortin system, might play a role in stress susceptibility via regulating synaptic adaptations. Mice were subjected to chronic social defeat stress (CSDS) or subthreshold social defeat stress (SSDS). Depressive-like behavior was assessed in SIT, SPT, TST and FST. Based on to behavioral assessments, mice were divided into the susceptible (SUS) and resilient (RES) groups. After social defeat stress, drug infusion or viral expression and behavioral tests, morphological and electrophysiological analysis were conducted in PFX-fixed and fresh brain slices containing the nucleus accumbens shell (NAcsh). We showed that PRCP was downregulated in NAcsh of susceptible mice. Administration of fluoxetine (20 mg·kg-1·d-1, i.p., for 2 weeks) ameliorated the depressive-like behavior, and restored the expression levels of PRCP in NAcsh of susceptible mice. Pharmacological or genetic inhibition of PRCP in NAcsh by microinjection of N-benzyloxycarbonyl-L-prolyl-L-prolinal (ZPP) or LV-shPRCP enhanced the excitatory synaptic transmission in NAcsh, facilitating stress susceptibility via central melanocortin receptors. On the contrary, overexpression of PRCP in NAcsh by microinjection of AAV-PRCP alleviated the depressive-like behavior and reversed the enhanced excitatory synaptic transmission, abnormal dendritogenesis and spinogenesis in NAcsh induced by chronic stress. Furthermore, chronic stress increased the level of CaMKIIα, a kinase closely related to synaptic plasticity, in NAcsh. The elevated level of CaMKIIα was reversed by overexpression of PRCP in NAcsh. Pharmacological inhibition of CaMKIIα in NAcsh alleviated stress susceptibility induced by PRCP knockdown. This study has revealed the essential role of PRCP in relieving stress susceptibility through melanocortin signaling-mediated synaptic plasticity in NAcsh.


Subject(s)
Depressive Disorder, Major , Nucleus Accumbens , Mice , Animals , Nucleus Accumbens/metabolism , alpha-MSH/metabolism , Neuronal Plasticity/physiology , Receptors, Melanocortin/metabolism , Stress, Psychological
4.
Gen Comp Endocrinol ; 343: 114356, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37562700

ABSTRACT

Recent studies from our group on melanocortin 2 receptors (Mc2r) from basal families of actinopterygians have served to resolve that Mrap1 dependence and ACTH selectivity are features of even the most basal ray-finned fishes. However, there have been no studies on Mc2r function of the basal sarcopterygians, the lobe-finned fishes, represented by the extant members coelacanths and lungfishes. Here, we offer the first molecular and functional characterization of an Mc2r from a lobe-finned fish, the West African lungfish (Protopterus annectens). Plasmids containing cDNA constructs of lungfish (lf) Mc2r and Mrap1 were expressed in mammalian and zebrafish cell lines. Cells were then stimulated by human ACTH(1-24) and melanocyte stimulating hormone (α-MSH), as well as alanine-substituted analogs of hACTH(1-24) targeting residues within the H6F7R8W9 and K15K16R17R18P19 motifs. Activation of lfMc2r was assessed using a cAMP-responsive luciferase reporter gene assay. In these assays, lfMc2r required co-expression with lfMrap1, was selective for ACTH over α-MSH at physiological concentrations of the ligands, and was completely inhibited by multiple-alanine substitutions of the HFRW (A6-9) and KKRRP (A15-19) motifs. Single- and partial-alanine substitutions of the HFRW and KKRRP motifs varied in their impacts on receptor-ligand affinity from having no effect to completely inhibiting lfMc2r activation. This characterization of the Mc2r of a lobe-finned fish fulfills the last major extant vertebrate group for which Mc2r function had yet to be characterized. In doing so, we resolve that all basal bony vertebrate groups exhibit Mc2r function that substantially differs from that of the cartilaginous fishes, indicating that rapid and dramatic shift in Mc2r function occurred between the radiation of cartilaginous fishes and the emergence of bony fishes. We support this interpretation with a molecular clock analysis of the melanocortin receptors, which demonstrates the uniquely high rate of sequence divergence in Mc2r. Much remains to be understood regarding the molecular evolution of Mc2r during the early radiation of vertebrates that resulted in the derived functional characteristics of Mrap1 dependence and exclusive selectivity for ACTH.


Subject(s)
Receptor, Melanocortin, Type 2 , alpha-MSH , Animals , Humans , Adrenocorticotropic Hormone/pharmacology , Alanine/genetics , Evolution, Molecular , Mammals/metabolism , Receptor, Melanocortin, Type 2/genetics , Receptor, Melanocortin, Type 2/metabolism , Receptors, Melanocortin/genetics , Receptors, Melanocortin/metabolism , Zebrafish/genetics , Zebrafish/metabolism
5.
Gen Comp Endocrinol ; 332: 114180, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36455644

ABSTRACT

The mammalian melanocortin-5 receptors (MC5Rs) are involved in various functions, including exocrine gland secretion, glucose uptake, adipocyte lipolysis, and immunity. However, the physiological role of fish Mc5r is rarely studied. Melanocortin-2 receptor accessory protein 2 (MRAP2) modulates pharmacological properties of melanocortin receptors. Herein, to lay the foundation for future physiological studies, we cloned the orange-spotted grouper (Epinephelus coioides) mc5r, with a 1008 bp open reading frame and a predicted protein of 334 amino acids. Grouper mc5r had abundant expression in the brain, skin, and kidney. Four ligands could bind to grouper Mc5r and dose-dependently increase intracellular cAMP levels. Grouper Mrap2 did not affect binding affinity or potency of Mc5r; however, grouper Mrap2 decreased cell surface expression and maximal binding of Mc5r. Mrap2 also significantly decreased the maximal response to a superpotent agonist but not the endogenous agonist. This study provided new data on fish Mc5r pharmacology and its regulation by Mrap2.


Subject(s)
Bass , Fish Diseases , Animals , Bass/genetics , Gene Expression Regulation , Amino Acid Sequence , Receptors, Melanocortin/metabolism , Fish Proteins/metabolism , Phylogeny , Cloning, Molecular , Mammals/metabolism
6.
Gen Comp Endocrinol ; 338: 114278, 2023 07 01.
Article in English | MEDLINE | ID: mdl-36996927

ABSTRACT

To understand the mechanism for activation of the melanocortin-2 receptor (Mc2r) of the elasmobranch, Rhincodon typus (whale shark; ws), wsmc2r was co-expressed with wsmrap1 in CHO cells, and the transfected cells were stimulated with alanine-substituted analogs of ACTH(1-24) at the "message" motif (H6F7R8W9) and the "address" motif (K15K16R17R18P19). Complete alanine substitution of the H6F7R8W9 motif blocked activation, whereas single alanine substitution at this motif indicated the following hierarchy of position importance for activation: W9 > R8, and substitution at F7 and H6 had no effect on activation. The same analysis was done on a representative bony vertebrate Mc2r ortholog (Amia calva; bowfin; bf) and the order of position importance for activation was W9 > R8 = F7, (alanine substitution at H6 was negligible). Complete alanine substitution at the K15K16R17R18P19 motif resulted in distinct outcomes for wsMc2r and bfMc2r. For bfMc2r, this analog blocked activation-an outcome typical for bony vertebrate Mc2r orthologs. For wsMc2r, this analog resulted in a shift in sensitivity to stimulation of the analog as compared to ACTH(1-24) by two orders of magnitude, but the dose response curve did reach saturation. To evaluate whether the EC2 domain of wsMc2r plays a role in activation, a chimeric wsMc2r was made in which the EC2 domain was replaced with the EC2 domain from a melanocortin receptor that does not interact with Mrap1 (i.e., Xenopus tropicalis Mc1r). This substitution did not negatively impact the activation of the chimeric receptor. In addition, alanine substitution at a putative activation motif in the N-terminal of wsMrap1 did not affect the sensitivity of wsMc2r to stimulation by ACTH(1-24). Collectively, these observations suggest that wsMc2r may only have a HFRW binding site for melanocortin-related ligand which would explain how wsMc2r could be activated by either ACTH or MSH-sized ligands.


Subject(s)
Oncorhynchus mykiss , Sharks , Cricetinae , Animals , Receptor, Melanocortin, Type 2/genetics , Receptor, Melanocortin, Type 2/metabolism , Cricetulus , Receptors, Melanocortin/metabolism , Sharks/genetics , Sharks/metabolism , Ligands , Oncorhynchus mykiss/metabolism , Adrenocorticotropic Hormone/pharmacology , Adrenocorticotropic Hormone/metabolism , Alanine/metabolism
7.
Int J Mol Sci ; 24(12)2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37373293

ABSTRACT

The melanocortin receptors are involved in numerous physiological pathways, including appetite, skin and hair pigmentation, and steroidogenesis. In particular, the melanocortin-3 receptor (MC3R) is involved in fat storage, food intake, and energy homeostasis. Small-molecule ligands developed for the MC3R may serve as therapeutic lead compounds for treating disease states of energy disequilibrium. Herein, three previously reported pyrrolidine bis-cyclic guanidine compounds with five sites for molecular diversity (R1-R5) were subjected to parallel structure-activity relationship studies to identify the common pharmacophore of this scaffold series required for full agonism at the MC3R. The R2, R3, and R5 positions were required for full MC3R efficacy, while truncation of either the R1 or R4 positions in all three compounds resulted in full MC3R agonists. Two additional fragments, featuring molecular weights below 300 Da, were also identified that possessed full agonist efficacy and micromolar potencies at the mMC5R. These SAR experiments may be useful in generating new small-molecule ligands and chemical probes for the melanocortin receptors to help elucidate their roles in vivo and as therapeutic lead compounds.


Subject(s)
Pharmacophore , Receptor, Melanocortin, Type 3 , Receptor, Melanocortin, Type 3/agonists , Receptor, Melanocortin, Type 3/metabolism , Guanidine/pharmacology , Ligands , Receptors, Melanocortin/metabolism , Guanidines , Structure-Activity Relationship
8.
Fish Physiol Biochem ; 49(1): 61-74, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36525144

ABSTRACT

Melanocortin 3 and 4 receptors are two important neural G protein-coupled receptors that regulate energy homeostasis in vertebrates. Melanocortin receptor accessory protein 2 (MRAP2) is also involved in the regulation of food intake and body weight as a variable regulator of melanocortin receptors. Rainbow trout (Oncorhynchus mykiss) is a valuable cold-water fish cultured worldwide. In the rainbow trout model, we cloned and identified mrap2a, a paralog of mrap2. Rainbow trout mrap2a consisted of a 690 bp ORF and was expected to encode a putative protein of 229 amino acids. The qPCR results showed that rainbow trout mrap2a was expressed at high levels in brain tissue similar to mc3r and mc4r. In addition, co-immunoprecipitation verified that MRAP2a interacts with MC3R and MC4R in vitro and that MRAP2a is involved in and regulates the constitutive activity and signaling of MC3R and MC4R. MRAP2a reduced constitutive and agonist-stimulated cAMP levels of MC3R; furthermore, MRAP2a increased constitutive ERK1/2 activation but reduced ligand-induced stimulation at high levels of expression. For MC4R, MRAP2a showed decreased cAMP basal activity but increased agonist-stimulated cAMP signaling and increased ACTH ligand sensitivity. However, MRAP2a failed to affect MC4R constitutive activity and agonist-induced ERK1/2 signaling. Undoubtedly, our study will have great significance for revealing the conserved role of MC4R and MC3R signaling in teleost fish, especially in cold-water fish growth and energy homeostasis.


Subject(s)
Oncorhynchus mykiss , Animals , Oncorhynchus mykiss/genetics , Ligands , Receptors, Melanocortin , Signal Transduction , Body Weight
9.
J Cell Mol Med ; 26(15): 4125-4136, 2022 08.
Article in English | MEDLINE | ID: mdl-35818295

ABSTRACT

The MC4R, a GPCR, has long been a major target for obesity treatment. As the most well-studied melanocortin receptor subtype, the evolutionary knowledge pushes the drug development and structure-activity relationship (SAR) moving forward. The past decades have witnessed the evolution of scientists' view on GPCRs gradually from the control of a single canonical signalling pathway via a bilateral 'active-inactive' model to a multi-state alternative model where the ligands' binding affects the selection of the downstream signalling. This evolution brings the concept of biased signalling and the beginning of the next generation of peptide drug development, with the aim of turning from receptor subtype specificity to signalling pathway selectivity. The determination of the value structures of the MC4R revealed insights into the working mechanism of MC4R activation upon binding of agonists. However, new challenge has risen as we seek to unravel the mystery of MC4R signalling selection. Thus, more biased agonists and ligands with representative biological functions are needed to solve the rest of the puzzle.


Subject(s)
Receptor, Melanocortin, Type 4 , Signal Transduction , Ligands , Peptides , Receptor, Melanocortin, Type 4/genetics , Receptor, Melanocortin, Type 4/metabolism , Receptors, Melanocortin
10.
Dev Genes Evol ; 232(2-4): 81-87, 2022 08.
Article in English | MEDLINE | ID: mdl-35648215

ABSTRACT

Melanocortin 5 receptor (MC5R), which is expressed in the terminally differentiated sebaceous gland, is a G protein-coupled receptor (GPCR). MC5R exists mostly in mammals but is completely lost in whales; only the relic of MC5R can be detected in manatees, and phenotypically, they have lost sebaceous glands. Interestingly, whales and manatees are both aquatic mammals but have no immediate common ancestors. The loss of MC5R and sebaceous glands in whales and manatees is likely to be a result of convergent evolution. Here, we find that MC5R in whales and manatees are lost by two different mechanisms. Homologous recombination of MC5R in manatees and the insertion of reverse transcriptase in whales lead to the gene loss, respectively. On one hand, in manatees, there are two "TTATC" sequences flanking MC5R, and homologous recombination of the segments between the two "TTATC" sequences resulted in the partial loss of the sequence of MC5R. On the other hand, in whales, reverse transcriptase inserts between MC2R and RNMT on the chromosome led to the loss of MC5R. Based on these two different mechanisms for gene loss in whales and manatees, we finally concluded that MC5R loss might be the result of convergent evolution to the marine environment, and we explored the impact on biological function that is significant to environmental adaptation.


Subject(s)
Trichechus , Whales , Animals , Mammals , Phylogeny , RNA-Directed DNA Polymerase/genetics , Receptors, Melanocortin , Whales/genetics
11.
Exp Eye Res ; 218: 108986, 2022 05.
Article in English | MEDLINE | ID: mdl-35196505

ABSTRACT

The melanocortin system plays an essential role in the regulation of immune activity. The anti-inflammatory microenvironment of the eye is dependent on the expression of the melanocortin-neuropeptide alpha-melanocyte stimulating hormone (α-MSH). In addition, the melanocortin system may have a role in retinal development and retinal cell survival under conditions of retinal degeneration. We have found that treating experimental autoimmune uveitis (EAU) with α-MSH suppresses retinal inflammation. Also, this augmentation of the melanocortin system promotes immune tolerance and protection of the retinal structure. The benefit of α-MSH-therapy appears to be dependent on different melanocortin receptors. Therefore, we treated EAU mice with α-MSH-analogs with different melanocortin-receptor targets. This approach demonstrated which melanocortin-receptors suppress inflammation, preserve retinal structure, and induce immune tolerance in uveitis. At the chronic stage of EAU the mice were injected twice 1 day apart with 50 µg of α-MSH or an α-MSH-analog. The α-MSH-analogs were a pan-agonist PL8331, PL8177 (potent MC1r-only agonist), PL5000 (a pan-agonist with no MC5r functional activity), MT-II (same as PL5000) and PG901 (MC5r agonist, but also an antagonist to MC3r, and MC4r). Clinical EAU scores were measured until resolution in the α-MSH-treated mice, when the eyes were collected for histology, and spleen cells collected for retinal-antigen-stimulated cytokine production. Significant suppression of EAU was seen with α-MSH or PL8331 treatment. This was accompanied with significant preservation of retinal structure. A similar effect was seen in EAU-mice that were treated with PL8177, except the suppression of EAU was temporary. In EAU mice treated with PL5000, MTII, or PG901, there was no suppression of EAU with a significant loss in whole retina and outer-nuclear layer thickness. There was significant suppression of IL-17 with induction of IL-10 by retinal-antigen stimulated spleen T cells from EAU mice treated with α-MSH, PL8331, PL8177, or PL5000, but not from EAU mice treated with MT-II, or PG901. Our previous studies show the melanocortin system's importance in maintaining ocular immune privilege and that α-MSH-treatment accelerates recovery and induces retinal-antigen-specific regulatory immunity in EAU. Our current results show that this activity is centered around MC1r and MC5r. In addition, the results suggest that a therapeutic potential to target MC1r and MC5r together to suppress uveitis induces regulatory immunity with potentially maintaining a normal retinal structure.


Subject(s)
Uveitis , alpha-MSH , Animals , Inflammation/metabolism , Mice , Receptors, Melanocortin/metabolism , Retina/metabolism , Uveitis/metabolism , alpha-MSH/pharmacology , alpha-MSH/therapeutic use
12.
Fish Shellfish Immunol ; 130: 591-601, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36150411

ABSTRACT

The agouti-signaling protein (ASIP) acts as both a competitive antagonist and inverse agonist of melanocortin receptors which regulate dorsal-ventral pigmentation patterns in fish. However, the potential role of ASIP in the regulation of additional physiological pathways in the skin is unknown. The skin plays a crucial role in the immune function, acting as a physical limitation against infestation and also as a chemical barrier due to its ability to synthesize and secrete mucus and many immune effector proteins. In this study, the putative role of ASIP in regulating the immune system of skin has been explored using a transgenic zebrafish model overexpressing the asip1 gene (ASIPzf). Initially, the structural changes in skin induced by asip1 overexpression were studied, revealing that the ventral skin of ASIPzf was thinner than that of wild type (WT) animals. A moderate hypertrophy of mucous cells was also found in ASIPzf. Histochemical studies showed that transgenic animals appear to compensate for the lower number of cell layers by modifying the mucus composition and increasing lectin affinity and mucin content in order to maintain or improve protection against microorganism adhesion. ASIPzf also exhibit higher protein concentration under crowding conditions suggesting an increased mucus production under stressful conditions. Exposure to bacterial lipopolysaccharide (LPS) showed that ASIPzf exhibit a faster pro-inflammatory response and increased mucin expression yet severe skin injures and a slight increase in mortality was observed. Electrophysiological measurements show that the ASIP1 genotype exhibits reduced epithelial resistance, an indicator of reduced tissue integrity and barrier function. Overall, not only are ASIP1 animals more prone to infiltration and subsequent infections due to reduced skin epithelial integrity, but also display an increased inflammatory response that can lead to increased skin sensitivity to external infections.


Subject(s)
Melanocortins , Zebrafish , Animals , Lectins/metabolism , Lipopolysaccharides/metabolism , Melanocortins/metabolism , Mucins/metabolism , Receptors, Melanocortin/metabolism , Skin Physiological Phenomena/genetics , Zebrafish/genetics , Zebrafish/metabolism
13.
Gen Comp Endocrinol ; 328: 114105, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35973587

ABSTRACT

In bony vertebrates, melanocortin 2 receptor (Mc2r) specifically binds adrenocorticotropic hormone (ACTH) and is responsible for mediating anterior pituitary signaling that stimulates corticosteroid production in the adrenal gland/interrenal cells. In bony fishes Mc2r requires the chaperoning of an accessory protein (Mrap1) to traffic to the membrane surface and bind ACTH. Here, we evaluated the structure and pharmacological properties of Mc2r from the Senegal bichir (Polypterus senegalus), which represents the most basal bony fish from which an Mc2r has been pharmacologically studied to date. In our experiments, cDNA constructs of the Mc2r from the Senegal bichir (sbMc2r) and various vertebrate Mrap1s were heterologously co-expressed in Chinese hamster ovary (CHO) cells, stimulated by ACTH or melanocyte-stimulating hormone (α-MSH) ligands, and assessed using a luciferase reporter gene assay. When expressed without an Mrap1, sbMc2r was not activated by ACTH. When co-expressed with Mrap1 from either chicken (Gallus gallus) or bowfin (Amia calva), sbMc2r could be activated in a dose-dependent manner by ACTH, but not α-MSH. Co-expression of sbMrap2 with sbMc2r resulted in no detectable activation of the receptor. Collectively, these results demonstrate that sbMc2r has pharmacological properties similar to those of Mc2rs of later-evolved bony fishes, such as Mrap1 dependence and ACTH selectivity, indicating that these qualities of Mc2r function are ancestral to all bony fish Mc2rs.


Subject(s)
Receptor, Melanocortin, Type 2 , Receptors, Melanocortin , Adrenocorticotropic Hormone/pharmacology , Animals , CHO Cells , Chickens/metabolism , Cricetinae , Cricetulus , DNA, Complementary/metabolism , Fishes/genetics , Melanocyte-Stimulating Hormones/metabolism , Receptor, Melanocortin, Type 2/genetics , Receptor, Melanocortin, Type 2/metabolism , Receptors, Melanocortin/metabolism , Senegal , alpha-MSH/metabolism
14.
Int J Mol Sci ; 23(15)2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35955857

ABSTRACT

As the most recent melanocortin receptor (MCR) identified, melanocortin-5 receptor (MC5R) has unique tissue expression patterns, pharmacological properties, and physiological functions. Different from the other four MCR subtypes, MC5R is widely distributed in both the central nervous system and peripheral tissues and is associated with multiple functions. MC5R in sebaceous and preputial glands regulates lipid production and sexual behavior, respectively. MC5R expressed in immune cells is involved in immunomodulation. Among the five MCRs, MC5R is the predominant subtype expressed in skeletal muscle and white adipose tissue, tissues critical for energy metabolism. Activated MC5R triggers lipid mobilization in adipocytes and glucose uptake in skeletal muscle. Therefore, MC5R is a potential target for treating patients with obesity and diabetes mellitus. Melanocortin-2 receptor accessory proteins can modulate the cell surface expression, dimerization, and pharmacology of MC5R. This minireview summarizes the molecular and pharmacological properties of MC5R and highlights the progress made on MC5R in energy metabolism. We poInt. out knowledge gaps that need to be explored in the future.


Subject(s)
Energy Metabolism , Receptors, Melanocortin , Adipocytes/metabolism , Adipose Tissue, White/metabolism , Humans , Receptors, Melanocortin/metabolism
15.
Int J Mol Sci ; 23(15)2022 Jul 28.
Article in English | MEDLINE | ID: mdl-35955479

ABSTRACT

The melanocortin receptors are G-protein-coupled receptors, which are essential components of the hypothalamic-pituitary-adrenal axis, and they mediate the actions of melanocortins (melanocyte-stimulating hormones: α-MSH, ß-MSH, and γ-MSH) as well as the adrenocorticotropin hormone (ACTH) in skin pigmentation, adrenal steroidogenesis, and stress response. Three melanocortin receptor genes (MC1R, MC2R, and MC5R) contribute to the risk of major depressive disorder (MDD), and one melanocortin receptor gene (MC4R) contributes to the risk of type 2 diabetes (T2D). MDD increases T2D risk in drug-naïve patients; thus, MDD and T2D commonly coexist. The five melanocortin receptor genes might confer risk for both disorders. However, they have never been investigated jointly to evaluate their potential contributing roles in the MDD-T2D comorbidity, specifically within families. In 212 Italian families with T2D and MDD, we tested 11 single nucleotide polymorphisms (SNPs) in the MC1R gene, 9 SNPs in MC2R, 3 SNPs in MC3R, 4 SNPs in MC4R, and 2 SNPs in MC5R. The testing used 2-point parametric linkage and linkage disequilibrium (LD) (i.e., association) analysis with four models (dominant with complete penetrance (D1), dominant with incomplete penetrance (D2), recessive with complete penetrance (R1), and recessive with incomplete penetrance (R2)). We detected significant (p ≤ 0.05) linkage and/or LD (i.e., association) to/with MDD for one SNP in MC2R (rs111734014) and one SNP in MC5R (rs2236700), and to/with T2D for three SNPs in MC1R (rs1805007 and rs201192930, and rs2228479), one SNP in MC2R (rs104894660), two SNPs in MC3R (rs3746619 and rs3827103), and one SNP in MC4R genes (Chr18-60372302). The linkage/LD/association was significant across different linkage patterns and different modes of inheritance. All reported variants are novel in MDD and T2D. This is the first study to report risk variants in MC1R, MC2R, and MC3R genes in T2D. MC2R and MC5R genes are replicated in MDD, with one novel variant each. Within our dataset, only the MC2R gene appears to confer risk for both MDD and T2D, albeit with different risk variants. To further clarity the role of the melanocortin receptor genes in MDD-T2D, these findings should be sought among other ethnicities as well.


Subject(s)
Depressive Disorder, Major , Diabetes Mellitus, Type 2 , Comorbidity , Depression , Diabetes Mellitus, Type 2/genetics , Humans , Hypothalamo-Hypophyseal System/metabolism , Melanocortins/genetics , Melanocortins/metabolism , Pituitary-Adrenal System/metabolism , Receptors, Melanocortin/genetics , Receptors, Melanocortin/metabolism
16.
J Cell Physiol ; 236(9): 6344-6361, 2021 09.
Article in English | MEDLINE | ID: mdl-33521982

ABSTRACT

Melanocortin-3 receptor (MC3R) and melanocortin-4 receptor (MC4R), two neural G protein-coupled receptors are known to be functionally critical for energy balance in vertebrates. As allosteric regulators of melanocortin receptors, melanocortin accessory proteins (MRAPs) are also involved in energy homeostasis. The interaction of MRAPs and melanocortin signaling was previously shown in mammals and zebrafish, but nothing had been reported in amphibians. As the basal class of tetrapods, amphibians occupy a phylogenetic transition between teleosts and terrestrial animals. Here we examined the evolutionary conservation of MC3R, MC4R, and MRAPs between diploid Xenopus tropicalis (xt-) and other chordates and investigated the pharmacological regulatory properties of MRAPs on the neural MC3R and MC4R signaling. Our results showed that xtMRAP and xtMRAP2 both exerted robust potentiation effect on agonist (α-MSH and adrenocorticotropin [ACTH]) induced activation and modulated the basal activity and cell surface translocation of xtMC3R and xtMC4R. In addition, the presence of two accessory proteins could convert xtMC3R and xtMC4R into ACTH-preferred receptors. These findings suggest that the presence of MRAPs exhibits fine control over the pharmacological activities of the neuronal MC3R and MC4R signaling in the Xenopus tropicalis, which is physiologically relevant with the complicated transition of feeding behaviors during their life history.


Subject(s)
Melanocortins/metabolism , Neurons/metabolism , Signal Transduction , Xenopus Proteins/metabolism , Xenopus/metabolism , Adrenocorticotropic Hormone/pharmacology , Amino Acid Sequence , Animals , Cell Membrane/drug effects , Cell Membrane/metabolism , Chromosomes/genetics , Gene Expression Regulation , HEK293 Cells , Humans , Phylogeny , Protein Binding/drug effects , Receptors, Melanocortin/chemistry , Receptors, Melanocortin/metabolism , Synteny/genetics , Tissue Distribution , Xenopus/genetics , Xenopus Proteins/chemistry , alpha-MSH/pharmacology
17.
J Cell Physiol ; 236(8): 5980-5993, 2021 08.
Article in English | MEDLINE | ID: mdl-33501674

ABSTRACT

Physiological modulation of melanocortin-4 receptor (MC4R) signaling by MRAP2 proteins plays an indispensable role in appetite control and energy homeostasis in the central nervous system. Great interspecies differences of the interaction and regulation of melanocortin receptors by MRAP protein family have been reported in several diploid vertebrates but never been investigated in the tetrapod amphibian Xenopus laevis. Here, we performed phylogenetic and synteny-based analyses to explore the evolutionary aspects of dual copies of X. laevis MC4R (xlMC4R) and MRAP2 (xlMRAP2) proteins. Our data showed that xlMRAPs directly interacted with xlMC4Rs on the cell surface as a functional antiparallel dimeric topology and pharmacological studies suggested a homology specific regulatory pattern of the melanocortin system in X. laevis.


Subject(s)
Melanocortins/metabolism , Receptor, Melanocortin, Type 4/metabolism , Receptors, Melanocortin/metabolism , Xenopus laevis/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Appetite Regulation/physiology , Carrier Proteins/metabolism , Cell Membrane/metabolism , Homeostasis/physiology , Receptor, Melanocortin, Type 4/genetics , Signal Transduction/physiology
18.
J Recept Signal Transduct Res ; 41(5): 425-433, 2021 Oct.
Article in English | MEDLINE | ID: mdl-32938265

ABSTRACT

PURPOSE: To compare the binding and agonistic activity of Acthar® Gel and synthetic melanocortin receptor (MCR) agonists and examine how the activity of select agonists affects the in vivo production of corticosterone. MATERIALS AND METHODS: In vitro binding was determined using concentration-dependent displacement of the ligand [125I]Nle4, D-Phe7-α-melanocyte-stimulating hormone (α-MSH) on cells expressing MC1R, MC3R, MC4R, or MC5R. Functional activity was determined using a time-resolved fluorescence cyclic adenosine monophosphate (cAMP) assay in cells expressing MC1R, MC2R, MC3R, MC4R, or MC5R. In vivo corticosterone analyses were performed by measuring plasma corticosterone levels in Sprague Dawley rats. RESULTS: Acthar Gel and synthetic MCR agonists exhibited the highest binding at MC1R, lowest binding at MC5R, and moderate binding at MC3R and MC4R. Acthar Gel stimulated the production of cAMP in all 5 MCR-expressing cell lines, with MC2R displaying the lowest level of full agonist activity, 3-, 6.6-, and 10-fold lower than MC1R, MC3R, and MC4R, respectively. Acthar Gel was a partial agonist at MC5R. The synthetic MCR agonists induced full activity at all 5 MCRs, with the exception of α-MSH having no activity at MC2R. Acthar Gel treatment had less of an impact on in vivo production of corticosterone compared with synthetic ACTH1-24 depot. CONCLUSIONS: Acthar Gel bound to and activated each MCR tested in this study, with partial agonist activity at MC5R and the lowest level of full agonist activity at MC2R, which distinguished it from synthetic MCR agonists. The minimal activity of Acthar Gel at MC2R corresponded to lower endogenous corticosteroid production.


Subject(s)
Adrenocorticotropic Hormone/metabolism , Corticosterone/metabolism , Receptors, Melanocortin/metabolism , alpha-MSH/metabolism , Animals , Ligands , Male , Rats , Rats, Sprague-Dawley , Receptors, Melanocortin/agonists , Receptors, Melanocortin/classification
19.
PLoS Biol ; 16(4): e2004399, 2018 04.
Article in English | MEDLINE | ID: mdl-29689050

ABSTRACT

Proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARC) respond to numerous hormonal and neural signals, resulting in changes in food intake. Here, we demonstrate that ARC POMC neurons express capsaicin-sensitive transient receptor potential vanilloid 1 receptor (TRPV1)-like receptors. To show expression of TRPV1-like receptors in ARC POMC neurons, we use single-cell reverse transcription-polymerase chain reaction (RT-PCR), immunohistochemistry, electrophysiology, TRPV1 knock-out (KO), and TRPV1-Cre knock-in mice. A small elevation of temperature in the physiological range is enough to depolarize ARC POMC neurons. This depolarization is blocked by the TRPV1 receptor antagonist and by Trpv1 gene knockdown. Capsaicin-induced activation reduces food intake that is abolished by a melanocortin receptor antagonist. To selectively stimulate TRPV1-like receptor-expressing ARC POMC neurons in the ARC, we generate an adeno-associated virus serotype 5 (AAV5) carrying a Cre-dependent channelrhodopsin-2 (ChR2)-enhanced yellow fluorescent protein (eYFP) expression cassette under the control of the two neuronal POMC enhancers (nPEs). Optogenetic stimulation of TRPV1-like receptor-expressing POMC neurons decreases food intake. Hypothalamic temperature is rapidly elevated and reaches to approximately 39 °C during treadmill running. This elevation is associated with a reduction in food intake. Knockdown of the Trpv1 gene exclusively in ARC POMC neurons blocks the feeding inhibition produced by increased hypothalamic temperature. Taken together, our findings identify a melanocortinergic circuit that links acute elevations in hypothalamic temperature with acute reductions in food intake.


Subject(s)
Arcuate Nucleus of Hypothalamus/metabolism , Eating/genetics , Neurons/metabolism , Pro-Opiomelanocortin/genetics , TRPV Cation Channels/genetics , Animals , Arcuate Nucleus of Hypothalamus/cytology , Arcuate Nucleus of Hypothalamus/drug effects , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Capsaicin/pharmacology , Channelrhodopsins/genetics , Channelrhodopsins/metabolism , Eating/drug effects , Enhancer Elements, Genetic , Female , Gene Expression Regulation , Gene Knock-In Techniques , Gene Knockout Techniques , Genes, Reporter , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Male , Mice , Mice, Transgenic , Neurons/cytology , Neurons/drug effects , Optogenetics , Physical Conditioning, Animal , Pro-Opiomelanocortin/metabolism , Receptors, Melanocortin/genetics , Receptors, Melanocortin/metabolism , Signal Transduction , Single-Cell Analysis , TRPV Cation Channels/agonists , TRPV Cation Channels/deficiency , Temperature
20.
Gen Comp Endocrinol ; 314: 113928, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34653433

ABSTRACT

The melanocortin-5 receptor (MC5R) has been implicated in the regulation of exocrine gland secretion, immune regulation, and muscle fatty acid oxidation in mammals. Melanocortin-2 receptor accessory protein 2 (MRAP2) can modulate trafficking, ligand binding, and signaling of melanocortin receptors. To explore potential interaction between ricefield eel (Monopterus albus) MC5R and MRAP2s (maMC5R, maMRAP2X1, and maMRAP2X2), herein we studied the pharmacological characteristics of maMC5R and its modulation by maMRAP2s expressed in the human embryonic kidney cells. Three agonists, α-melanocyte-stimulating hormone (α-MSH), ACTH (1-24), and [Nle4, D-Phe7]-α-MSH, could bind to maMC5R and induce intracellular cAMP production dose-dependently. Compared with human MC5R (hMC5R), maMC5R displayed decreased maximal binding but higher binding affinity to α-MSH or ACTH (1-24). When stimulated with α-MSH or ACTH (1-24), maMC5R showed significantly lower EC50 and maximal response than hMC5R. Two maMRAP2s had no effect on cell surface expression of maMC5R, whereas they significantly increased maximal binding. Only maMRAP2X2 significantly decreased the binding affinity of ACTH (1-24). Both maMRAP2X1 and maMRAP2X2 significantly reduced maMC5R efficacy but did not affect ligand sensitivity. The availability of maMC5R pharmacological characteristics and modulation by maMRAP2s will assist the investigation of its roles in regulating diverse physiological processes in ricefield eel.


Subject(s)
Adaptor Proteins, Signal Transducing , Eels , Receptors, Melanocortin , alpha-MSH , Adaptor Proteins, Signal Transducing/metabolism , Animals , Eels/metabolism , HEK293 Cells , Humans , Protein Isoforms/metabolism , Receptors, Melanocortin/metabolism , alpha-MSH/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL