Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 400
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 594(7864): 589-593, 2021 06.
Article in English | MEDLINE | ID: mdl-34135509

ABSTRACT

The metabotropic glutamate receptors (mGlus) are involved in the modulation of synaptic transmission and neuronal excitability in the central nervous system1. These receptors probably exist as both homo- and heterodimers that have unique pharmacological and functional properties2-4. Here we report four cryo-electron microscopy structures of the human mGlu subtypes mGlu2 and mGlu7, including inactive mGlu2 and mGlu7 homodimers; mGlu2 homodimer bound to an agonist and a positive allosteric modulator; and inactive mGlu2-mGlu7 heterodimer. We observed a subtype-dependent dimerization mode for these mGlus, as a unique dimer interface that is mediated by helix IV (and that is important for limiting receptor activity) exists only in the inactive mGlu2 structure. The structures provide molecular details of the inter- and intra-subunit conformational changes that are required for receptor activation, which distinguish class C G-protein-coupled receptors from those in classes A and B. Furthermore, our structure and functional studies of the mGlu2-mGlu7 heterodimer suggest that the mGlu7 subunit has a dominant role in controlling dimeric association and G-protein activation in the heterodimer. These insights into mGlu homo- and heterodimers highlight the complex landscape of mGlu dimerization and activation.


Subject(s)
Receptors, Metabotropic Glutamate/chemistry , Cryoelectron Microscopy , Humans , Protein Multimerization , Protein Structure, Tertiary
2.
Nature ; 594(7864): 583-588, 2021 06.
Article in English | MEDLINE | ID: mdl-34135510

ABSTRACT

The metabotropic glutamate receptors (mGlus) have key roles in modulating cell excitability and synaptic transmission in response to glutamate (the main excitatory neurotransmitter in the central nervous system)1. It has previously been suggested that only one receptor subunit within an mGlu homodimer is responsible for coupling to G protein during receptor activation2. However, the molecular mechanism that underlies the asymmetric signalling of mGlus remains unknown. Here we report two cryo-electron microscopy structures of human mGlu2 and mGlu4 bound to heterotrimeric Gi protein. The structures reveal a G-protein-binding site formed by three intracellular loops and helices III and IV that is distinct from the corresponding binding site in all of the other G-protein-coupled receptor (GPCR) structures. Furthermore, we observed an asymmetric dimer interface of the transmembrane domain of the receptor in the two mGlu-Gi structures. We confirmed that the asymmetric dimerization is crucial for receptor activation, which was supported by functional data; this dimerization may provide a molecular basis for the asymmetric signal transduction of mGlus. These findings offer insights into receptor signalling of class C GPCRs.


Subject(s)
GTP-Binding Proteins/chemistry , Receptors, Metabotropic Glutamate/chemistry , Binding Sites , Cryoelectron Microscopy , Humans , Protein Multimerization , Protein Structure, Tertiary , Signal Transduction
3.
Nature ; 595(7867): 450-454, 2021 07.
Article in English | MEDLINE | ID: mdl-34194039

ABSTRACT

Family C G-protein-coupled receptors (GPCRs) operate as obligate dimers with extracellular domains that recognize small ligands, leading to G-protein activation on the transmembrane (TM) domains of these receptors by an unknown mechanism1. Here we show structures of homodimers of the family C metabotropic glutamate receptor 2 (mGlu2) in distinct functional states and in complex with heterotrimeric Gi. Upon activation of the extracellular domain, the two transmembrane domains undergo extensive rearrangement in relative orientation to establish an asymmetric TM6-TM6 interface that promotes conformational changes in the cytoplasmic domain of one protomer. Nucleotide-bound Gi can be observed pre-coupled to inactive mGlu2, but its transition to the nucleotide-free form seems to depend on establishing the active-state TM6-TM6 interface. In contrast to family A and B GPCRs, G-protein coupling does not involve the cytoplasmic opening of TM6 but is facilitated through the coordination of intracellular loops 2 and 3, as well as a critical contribution from the C terminus of the receptor. The findings highlight the synergy of global and local conformational transitions to facilitate a new mode of G-protein activation.


Subject(s)
Heterotrimeric GTP-Binding Proteins/metabolism , Receptors, Metabotropic Glutamate/metabolism , Cell Membrane/chemistry , Cell Membrane/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/chemistry , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Heterotrimeric GTP-Binding Proteins/chemistry , Humans , Models, Molecular , Protein Multimerization , Receptors, Metabotropic Glutamate/chemistry
4.
Proc Natl Acad Sci U S A ; 121(21): e2401079121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38739800

ABSTRACT

Homomeric dimerization of metabotropic glutamate receptors (mGlus) is essential for the modulation of their functions and represents a promising avenue for the development of novel therapeutic approaches to address central nervous system diseases. Yet, the scarcity of detailed molecular and energetic data on mGlu2 impedes our in-depth comprehension of their activation process. Here, we employ computational simulation methods to elucidate the activation process and key events associated with the mGlu2, including a detailed analysis of its conformational transitions, the binding of agonists, Gi protein coupling, and the guanosine diphosphate (GDP) release. Our results demonstrate that the activation of mGlu2 is a stepwise process and several energy barriers need to be overcome. Moreover, we also identify the rate-determining step of the mGlu2's transition from the agonist-bound state to its active state. From the perspective of free-energy analysis, we find that the conformational dynamics of mGlu2's subunit follow coupled rather than discrete, independent actions. Asymmetric dimerization is critical for receptor activation. Our calculation results are consistent with the observation of cross-linking and fluorescent-labeled blot experiments, thus illustrating the reliability of our calculations. Besides, we also identify potential key residues in the Gi protein binding position on mGlu2, mGlu2 dimer's TM6-TM6 interface, and Gi α5 helix by the change of energy barriers after mutation. The implications of our findings could lead to a more comprehensive grasp of class C G protein-coupled receptor activation.


Subject(s)
Receptors, Metabotropic Glutamate , Receptors, Metabotropic Glutamate/metabolism , Receptors, Metabotropic Glutamate/chemistry , Humans , Protein Multimerization , Molecular Dynamics Simulation , Protein Conformation , Protein Binding
5.
Pharmacol Rev ; 74(3): 630-661, 2022 07.
Article in English | MEDLINE | ID: mdl-35710132

ABSTRACT

Metabotropic glutamate (mGlu) receptors, a family of G-protein-coupled receptors, have been identified as novel therapeutic targets based on extensive research supporting their diverse contributions to cell signaling and physiology throughout the nervous system and important roles in regulating complex behaviors, such as cognition, reward, and movement. Thus, targeting mGlu receptors may be a promising strategy for the treatment of several brain disorders. Ongoing advances in the discovery of subtype-selective allosteric modulators for mGlu receptors has provided an unprecedented opportunity for highly specific modulation of signaling by individual mGlu receptor subtypes in the brain by targeting sites distinct from orthosteric or endogenous ligand binding sites on mGlu receptors. These pharmacological agents provide the unparalleled opportunity to selectively regulate neuronal excitability, synaptic transmission, and subsequent behavioral output pertinent to many brain disorders. Here, we review preclinical and clinical evidence supporting the utility of mGlu receptor allosteric modulators as novel therapeutic approaches to treat neuropsychiatric diseases, such as schizophrenia, substance use disorders, and stress-related disorders. SIGNIFICANCE STATEMENT: Allosteric modulation of metabotropic glutamate (mGlu) receptors represents a promising therapeutic strategy to normalize dysregulated cellular physiology associated with neuropsychiatric disease. This review summarizes preclinical and clinical studies using mGlu receptor allosteric modulators as experimental tools and potential therapeutic approaches for the treatment of neuropsychiatric diseases, including schizophrenia, stress, and substance use disorders.


Subject(s)
Brain Diseases , Receptors, Metabotropic Glutamate , Allosteric Regulation/physiology , Binding Sites , Glutamic Acid , Humans , Receptors, Metabotropic Glutamate/chemistry , Receptors, Metabotropic Glutamate/metabolism
6.
Trends Biochem Sci ; 45(12): 1049-1064, 2020 12.
Article in English | MEDLINE | ID: mdl-32861513

ABSTRACT

Groundbreaking structural and spectroscopic studies of class A G protein-coupled receptors (GPCRs), such as rhodopsin and the ß2 adrenergic receptor, have provided a picture of how structural rearrangements between transmembrane helices control ligand binding, receptor activation, and effector coupling. However, the activation mechanism of other GPCR classes remains more elusive, in large part due to complexity in their domain assembly and quaternary structure. In this review, we focus on the class C GPCRs, which include metabotropic glutamate receptors (mGluRs) and gamma-aminobutyric acid B (GABAB) receptors (GABABRs) most prominently. We discuss the unique biophysical questions raised by the presence of large extracellular ligand-binding domains (LBDs) and constitutive homo/heterodimerization. Furthermore, we discuss how recent studies have begun to unravel how these fundamental class C GPCR features impact the processes of ligand binding, receptor activation, signal transduction, regulation by accessory proteins, and crosstalk with other GPCRs.


Subject(s)
Biophysical Phenomena , Receptors, Metabotropic Glutamate , Ligands , Protein Domains , Protein Structure, Secondary , Receptors, Metabotropic Glutamate/chemistry , Receptors, Metabotropic Glutamate/metabolism , Signal Transduction/physiology
7.
Am J Physiol Cell Physiol ; 325(1): C79-C89, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37184233

ABSTRACT

G protein-coupled receptors (GPCRs) represent the largest family of membrane proteins and are important drug targets. GPCRs are allosteric machines that transduce an extracellular signal to the cell by activating heterotrimeric G proteins. Herein, we summarize the recent advancements in the molecular activation mechanism of the γ-aminobutyric acid type B (GABAB) and metabotropic glutamate (mGlu) receptors, the most important class C GPCRs that modulate synaptic transmission in the brain. Both are mandatory dimers, this quaternary structure being needed for their function The structures of these receptors in different conformations and in complexes with G proteins have revealed their asymmetric activation. This asymmetry is further highlighted by the recent discovery of mGlu heterodimers, where the eight mGlu subunits can form specific and functional heterodimers. Finally, the development of allosteric modulators has revealed new possibilities for regulating the function of these receptors by targeting the transmembrane dimer interface. This family of receptors never ceases to astonish and serve as models to better understand the diversity and asymmetric functioning of GPCRs.NEW & NOTEWORTHY γ-aminobutyric acid type B (GABAB) and metabotropic glutamate (mGlu) receptors form constitutive dimers, which are required for their function. They serve as models to better understand the diversity and activation of G protein-coupled receptors (GPCRs). The structures of these receptors in different conformations and in complexes with G proteins have revealed their asymmetric activation. This asymmetry is further highlighted by the recent discovery of specific and functional mGlu heterodimers. Allosteric modulators can be developed to target the transmembrane interface and modulate the asymmetry.


Subject(s)
Receptors, Metabotropic Glutamate , Receptors, Metabotropic Glutamate/genetics , Receptors, Metabotropic Glutamate/chemistry , Receptors, Metabotropic Glutamate/metabolism , Allosteric Regulation , Receptors, G-Protein-Coupled , Synaptic Transmission , Glutamic Acid , Receptors, GABA-B/genetics , Receptors, GABA-B/metabolism
8.
RNA ; 27(10): 1220-1240, 2021 10.
Article in English | MEDLINE | ID: mdl-34244459

ABSTRACT

Metabotropic glutamate receptor 4 (mGlu4) is one of eight mGlu receptors within the Class C G protein-coupled receptor superfamily. mGlu4 is primarily localized to the presynaptic membrane of neurons where it functions as an auto and heteroreceptor controlling synaptic release of neurotransmitter. mGlu4 is implicated in numerous disorders and is a promising drug target; however, more remains to be understood about its regulation and pharmacology. Using high-throughput sequencing, we have validated and quantified an adenosine-to-inosine (A-to-I) RNA editing event that converts glutamine 124 to arginine in mGlu4; additionally, we have identified a rare but novel K129R site. Using an in vitro editing assay, we then validated the pre-mRNA duplex that allows for editing by ADAR enzymes and predicted its conservation across the mammalian species. Structural modeling of the mGlu4 protein predicts the Q124R substitution to occur in the B helix of the receptor that is critical for receptor dimerization and activation. Interestingly, editing of a receptor homodimer does not disrupt G protein activation in response to the endogenous agonist, glutamate. Using an assay designed to specifically measure heterodimer populations at the surface, however, we found that Q124R substitution decreased the propensity of mGlu4 to heterodimerize with mGlu2 and mGlu7 Our study is the first to extensively describe the extent and regulatory factors of RNA editing of mGlu4 mRNA transcripts. In addition, we have proposed a novel functional consequence of this editing event that provides insights regarding its effects in vivo and expands the regulatory capacity for mGlu receptors.


Subject(s)
RNA Editing , RNA, Messenger/genetics , Receptors, Metabotropic Glutamate/genetics , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Amino Acid Sequence , Animals , Base Pairing , Base Sequence , Birds , Cerebral Cortex/cytology , Cerebral Cortex/metabolism , Corpus Striatum/cytology , Corpus Striatum/metabolism , HEK293 Cells , Hippocampus/cytology , Hippocampus/metabolism , Humans , Models, Molecular , Neurons/cytology , Neurons/metabolism , Nucleic Acid Conformation , Point Mutation , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , RNA, Messenger/chemistry , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Metabotropic Glutamate/chemistry , Receptors, Metabotropic Glutamate/metabolism , Reptiles , Sequence Homology, Amino Acid
9.
Nat Chem Biol ; 17(3): 291-297, 2021 03.
Article in English | MEDLINE | ID: mdl-33398167

ABSTRACT

G protein-coupled receptors (GPCRs) relay information across cell membranes through conformational coupling between the ligand-binding domain and cytoplasmic signaling domain. In dimeric class C GPCRs, the mechanism of this process, which involves propagation of local ligand-induced conformational changes over 12 nm through three distinct structural domains, is unknown. Here, we used single-molecule FRET and live-cell imaging and found that metabotropic glutamate receptor 2 (mGluR2) interconverts between four conformational states, two of which were previously unknown, and activation proceeds through the conformational selection mechanism. Furthermore, the conformation of the ligand-binding domains and downstream domains are weakly coupled. We show that the intermediate states act as conformational checkpoints for activation and control allosteric modulation of signaling. Our results demonstrate a mechanism for activation of mGluRs where ligand binding controls the proximity of signaling domains, analogous to some receptor kinases. This design principle may be generalizable to other biological allosteric sensors.


Subject(s)
Glutamic Acid/chemistry , Receptors, Metabotropic Glutamate/chemistry , Allosteric Regulation , Amino Acids/pharmacology , Binding Sites , Biosensing Techniques , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cyclopropanes/pharmacology , Fluorescence Resonance Energy Transfer , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Glutamic Acid/pharmacology , Glycine/analogs & derivatives , Glycine/pharmacology , HEK293 Cells , Humans , Ligands , Models, Molecular , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Multimerization/drug effects , Receptors, Metabotropic Glutamate/agonists , Receptors, Metabotropic Glutamate/genetics , Receptors, Metabotropic Glutamate/metabolism , Single Molecule Imaging
10.
Int J Mol Sci ; 24(16)2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37629122

ABSTRACT

The expression of canonical chemosensory receptors of the tongue, such as the heteromeric sweet taste (TAS1R2/TAS1R3) and umami taste (TAS1R1/TAS1R3) receptors, has been demonstrated in many extra-oral cells and tissues. Gene expression studies have revealed transcripts for all TAS1 and metabotropic glutamate (mGlu) receptors in different types of immune cells, where they are involved, for example, in the chemotaxis of human neutrophils and the protection of T cells from activation-induced cell death. Like other class-C G protein-coupling receptors (GPCRs), TAS1Rs and mGlu receptors form heteromers within their families. Since mGlu receptors and TAS1R1/TAS1R3 share the same ligand, monosodium glutamate (MSG), we hypothesized their hitherto unknown heteromerization across receptor families in leukocytes. Here we show, by means of immunocytochemistry and co-IP/Western analysis, that across class-C GPCR families, mGlu2 and TAS1R3 co-localize and heterodimerize in blood leukocytes. Expressing the recombinant receptors in HEK-293 cells, we validated their heterodimerization by bioluminescence resonance energy transfer. We demonstrate MSG-induced, mGlu2/TAS1R3 heteromer-dependent gain-of-function and pertussis toxin-sensitive signaling in luminescence assays. Notably, we show that mGlu2/TAS1R3 is necessary and sufficient for MSG-induced facilitation of N-formyl-methionyl-leucyl-phenylalanine-stimulated IL-8 secretion in neutrophils, using receptor-specific antagonists. In summary, our results demonstrate mGlu2/TAS1R3 heterodimerization in leukocytes, suggesting cellular function-tailored chemoreceptor combinations to modulate cellular immune responses.


Subject(s)
Receptors, G-Protein-Coupled , Receptors, Metabotropic Glutamate , Humans , Glutamates , HEK293 Cells , Leukocytes , Sodium Glutamate , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Receptors, Metabotropic Glutamate/chemistry , Receptors, Metabotropic Glutamate/metabolism
11.
Phys Chem Chem Phys ; 24(30): 18291-18305, 2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35880533

ABSTRACT

Metabotropic glutamate receptors (mGluRs) play an important role in regulating glutamate signal pathways, which are involved in neuropathy and periphery homeostasis. mGluR4, which belongs to Group III mGluRs, is most widely distributed in the periphery among all the mGluRs. It has been proved that the regulation of this receptor is involved in diabetes, colorectal carcinoma and many other diseases. However, the application of structure-based drug design to identify small molecules to regulate the mGluR4 receptor is limited due to the absence of a resolved mGluR4 protein structure. In this work, we first built a homology model of mGluR4 based on a crystal structure of mGluR8, and then conducted hierarchical virtual screening (HVS) to identify possible active ligands for mGluR4. The HVS protocol consists of three hierarchical filters including Glide docking, molecular dynamic (MD) simulation and binding free energy calculation. We successfully prioritized active ligands of mGluR4 from a set of screening compounds using HVS. The predicted active ligands based on binding affinities can almost cover all the experiment-determined active ligands, with only one ligand missed. The correlation between the measured and predicted binding affinities is significantly improved for the MM-PB/GBSA-WSAS methods compared to the Glide docking method. More importantly, we have identified hotspots for ligand binding, and we found that SER157 and GLY158 tend to contribute to the selectivity of mGluR4 ligands, while ALA154 and ALA155 could account for the ligand selectivity to mGluR8. We also recognized other 5 key residues that are critical for ligand potency. The difference of the binding profiles between mGluR4 and mGluR8 can guide us to develop more potent and selective modulators. Moreover, we evaluated the performance of IPSF, a novel type of scoring function trained by a machine learning algorithm on residue-ligand interaction profiles, in guiding drug lead optimization. The cross-validation root-mean-square errors (RMSEs) are much smaller than those by the endpoint methods, and the correlation coefficients are comparable to the best endpoint methods for both mGluRs. Thus, machine learning-based IPSF can be applied to guide lead optimization, albeit the total number of actives/inactives are not big, a typical scenario in drug discovery projects.


Subject(s)
Receptors, Metabotropic Glutamate , Glutamic Acid/chemistry , Ligands , Machine Learning , Molecular Dynamics Simulation , Protein Binding , Receptors, Metabotropic Glutamate/chemistry , Receptors, Metabotropic Glutamate/metabolism
12.
Mol Cell Proteomics ; 19(12): 1952-1968, 2020 12.
Article in English | MEDLINE | ID: mdl-32912969

ABSTRACT

At neuronal synapses, activation of group I metabotropic glutamate receptors (mGluR1/5) triggers a form of long-term depression (mGluR-LTD) that relies on new protein synthesis and the internalization of AMPA-type glutamate receptors. Dysregulation of these processes has been implicated in the development of mental disorders such as autism spectrum disorders and therefore merit a better understanding on a molecular level. Here, to study mGluR-induced signaling pathways, we integrated quantitative phosphoproteomics with the analyses of newly synthesized proteins via bio-orthogonal amino acids (azidohomoalanine) in a pulsed labeling strategy in cultured hippocampal neurons stimulated with DHPG, a specific agonist for group I mGluRs. We identified several kinases with important roles in DHPG-induced mGluR activation, which we confirmed using small molecule kinase inhibitors. Furthermore, changes in the AMPA receptor endocytosis pathway in both protein synthesis and protein phosphorylation were identified, whereby Intersectin-1 was validated as a novel player in this pathway. This study revealed several new insights into the molecular pathways downstream of group I mGluR activation in hippocampal neurons, and provides a rich resource for further analyses.


Subject(s)
Neurons/metabolism , Protein Biosynthesis , Proteomics , Receptors, Metabotropic Glutamate/metabolism , Amino Acid Sequence , Animals , Endocytosis/drug effects , Hippocampus/metabolism , Methoxyhydroxyphenylglycol/analogs & derivatives , Methoxyhydroxyphenylglycol/pharmacology , Neurons/drug effects , Phosphorylation/drug effects , Protein Biosynthesis/drug effects , Rats , Receptors, AMPA/metabolism , Receptors, Metabotropic Glutamate/chemistry , Signal Transduction/drug effects , Time Factors
13.
Int J Mol Sci ; 23(2)2022 Jan 13.
Article in English | MEDLINE | ID: mdl-35055030

ABSTRACT

Group I metabotropic glutamate (mGlu) receptors (mGlu1/5 subtypes) are G protein-coupled receptors and are broadly expressed in the mammalian brain. These receptors play key roles in the modulation of normal glutamatergic transmission and synaptic plasticity, and abnormal mGlu1/5 signaling is linked to the pathogenesis and symptomatology of various mental and neurological disorders. Group I mGlu receptors are noticeably regulated via a mechanism involving dynamic protein-protein interactions. Several synaptic protein kinases were recently found to directly bind to the intracellular domains of mGlu1/5 receptors and phosphorylate the receptors at distinct amino acid residues. A variety of scaffolding and adaptor proteins also interact with mGlu1/5. Constitutive or activity-dependent interactions between mGlu1/5 and their interacting partners modulate trafficking, anchoring, and expression of the receptors. The mGlu1/5-associated proteins also finetune the efficacy of mGlu1/5 postreceptor signaling and mGlu1/5-mediated synaptic plasticity. This review analyzes the data from recent studies and provides an update on the biochemical and physiological properties of a set of proteins or molecules that interact with and thus regulate mGlu1/5 receptors.


Subject(s)
Carrier Proteins/metabolism , Receptors, Metabotropic Glutamate/metabolism , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Glutamic Acid/metabolism , Humans , MAP Kinase Signaling System , Phosphorylation , Protein Binding , Protein Interaction Domains and Motifs , Protein Isoforms , Protein Kinase C/metabolism , Protein Transport , Receptors, Metabotropic Glutamate/chemistry , Receptors, Metabotropic Glutamate/genetics , Signal Transduction , Structure-Activity Relationship
14.
Arch Biochem Biophys ; 697: 108632, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33075300

ABSTRACT

The Metabotropic glutamate receptor 2 (mGluR2) is involved in several neurological and psychiatric disorders and is an attractive drug target. It is believed to form a strict dimer and the dimeric assembly is necessary for glutamate induced activation. Although many studies have focused on glutamate induced conformational changes, the dimerization propensity of mGluR2 with and without glutamate has never been investigated. Also, the role of the unstructured loop in dimerization of mGluR2 is not clear. Here, using Forster Resonance Energy Transfer (FRET) based assay in live cells we show that mGluR2 does not form a "strict dimer" rather it exists in a dynamic monomer-dimer equilibrium. The unstructured loop moderately destabilizes the dimers. Furthermore, binding of glutamate to mGluR2 induces conformational change that promotes monomerization of mGluR2. In the absence of an unstructured loop, mGluR2 neither undergoes conformational change nor monomerizes upon binding to glutamate.


Subject(s)
Glutamic Acid/metabolism , Glutamic Acid/pharmacology , Protein Multimerization/drug effects , Receptors, Metabotropic Glutamate/chemistry , Receptors, Metabotropic Glutamate/metabolism , HEK293 Cells , Humans , Ligands , Protein Binding , Protein Structure, Quaternary
15.
FASEB J ; 34(11): 14977-14996, 2020 11.
Article in English | MEDLINE | ID: mdl-32931036

ABSTRACT

Metabotropic glutamate receptor 7 (mGlu7) regulates neurotransmitter release at the presynaptic active zone in the mammalian brain. The regulation of mGlu7 trafficking into and out of the plasma membrane by binding proteins within the C-terminal region of mGlu7 governs the bidirectional synaptic plasticity. However, the functional importance of the extracellular domain of mGlu7 has not yet been characterized. N-glycosylation is an abundant posttranslational modification that plays crucial roles in protein folding and forward trafficking, but the role of N-glycosylation in mGlu7 function remains unknown. In this study, we find that mGlu7 is N-glycosylated at four asparagine residues in heterologous cells and rat cultured neurons. We demonstrate that N-glycosylation is essential for forward transport and surface expression of mGlu7. Deglycosylated mGlu7 is retained in the ER, obstructing expression on the cell surface, and is degraded through the autophagolysosomal degradation pathway. In addition, we identify the binding domain of mGlu7 to Elfn1, a transsynaptic adhesion protein. We find that N-glycosylation of mGlu7 promotes its interaction with Elfn1, thereby enabling proper localization and stable surface expression of mGlu7 at the presynaptic active zone. These findings provide evidence that N-glycans act to modulate the surface expression, stability, and function of mGlu7.


Subject(s)
Cell Membrane/metabolism , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Polysaccharides/metabolism , Receptors, Metabotropic Glutamate/metabolism , Synaptic Transmission , Animals , Autophagy , Cell Movement , Female , Glycosylation , Nerve Tissue Proteins/genetics , Protein Transport , Rats , Rats, Sprague-Dawley , Receptors, Metabotropic Glutamate/chemistry , Receptors, Metabotropic Glutamate/genetics
16.
Bioorg Med Chem Lett ; 32: 127724, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33253881

ABSTRACT

Further optimization of the VU0486321 series of highly selective and CNS-penetrant mGlu1 PAMs identified unique 'molecular switches' on the central aromatic ring that engendered positive cooperativity with multiple mGlu subtypes across the receptor family, resulting in compounds with comparable activity at Group I (mGlu1/5) and Group III (mGlu4/6/7/8) mGlu receptors, receptors. These exciting data suggests this PAM chemotype appears to bind to multiple mGlu receptors, and that subtype selectivity is dictated by the degree of cooperativity, not a subtype selective, unique allosteric binding site. Moreover, there is interesting therapeutic potential for mGlu1/4/7/8 PAMs, as well as the first report of a GPCR allosteric 'privileged structure'.


Subject(s)
Coumarins/chemistry , Furans/chemistry , Receptor, Metabotropic Glutamate 5/metabolism , Receptors, Metabotropic Glutamate/metabolism , Allosteric Regulation , Coumarins/metabolism , Furans/metabolism , Humans , Receptor, Metabotropic Glutamate 5/chemistry , Receptors, Metabotropic Glutamate/chemistry , Structure-Activity Relationship
17.
Phys Chem Chem Phys ; 23(42): 24125-24139, 2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34596645

ABSTRACT

Positive allosteric modulators (PAMs) of human metabotropic glutamate receptor 2 (hmGlu2) are well-known in the treatment of psychiatric disorders for their higher selectivity and lower tolerance risk. A variety of PAMs have been reported over the last decade and two compounds were in Phase II clinical trials for schizophrenia and anxiety. These trials were discontinued on account of the unsatisfactory therapeutic efficacy, but PAMs were explored as novel treatments for addiction and epilepsy. Thus, it is still important to explore novel hmGlu2 PAMs in the near future. Nowadays, the challenges in optimizing drug potency and improving scaffold diversity for PAMs are the noncomprehensive character analyses of multiple scaffolds; the exploration of the binding modes of PAMs in the allosteric binding site have been proposed to reduce this difficulty. However, there has been no comprehensive research about the binding profiles of PAMs in the hmGlu2 receptor. To address this issue, this work explores the binding characters of eight PAMs representing five chemical series by multiple computational methods. As a result, the shared binding modes of the eight studied PAMs interacting with 15 residues in the allosteric binding site were defined. In addition, the reduced hydrophobicity with low electronegativity of R1, increased hydrophobicity with low negative electron density of R2 and the electronegativity of the linker were identified as indicators that regulate the affinity of PAMs. This finding agrees well with the physicochemical properties of reported multiple series PAMs. This comprehensive work sheds additional light on the binding mechanism and physicochemical regularity underlining PAMs affinity and could be further utilized as a structural and energetic blueprint for discovering and assessing novel PAMs for hmGlu2.


Subject(s)
Molecular Dynamics Simulation , Receptors, Metabotropic Glutamate/chemistry , Allosteric Regulation , Binding Sites , Humans , Ligands , Molecular Structure , Receptors, Metabotropic Glutamate/metabolism
18.
Bioorg Chem ; 117: 105429, 2021 12.
Article in English | MEDLINE | ID: mdl-34736134

ABSTRACT

This study aimed at assessing 2-methoxyphenyl piperazine derivative for its binding specificity and suitability in mapping metabotropic glutamate receptor subtype 1, which is implicated in several neuropsychiatric disorders. N-(2-(4-(2-Methoxyphenyl)piperazin-1-yl)ethyl)-N-methylpyridin-2-amine was synthesised and evaluated for brain imaging subsequent to radiolabelling with [11C] radioisotope via methylation process in 98.9% purity and 52 ± 6% yield (decay corrected). The specific activity was in the range of 72-93 GBq/µmol. The haemolysis of blood was 2-5% for initial 4 hr and remained < 10% after 24 h of incubation indicating low toxicity. In vitro autoradiograms after coincubation with unlabelled ligand confirmed the high uptake of the PET radioligand in the mGluR1 receptor rich regions. The PET as well as biodistribution studies also showed high activity in the brain with a direct correlation between receptor abundance distribution pattern and tracer activity. The biodistribution analyses revealed initial high brain uptake (4.18 ± 0.48). The highest uptake was found in cerebellum (SUV 4.7 ± 0.2), followed by thalamus (SUV 3.5 ± 0.1), and striatum (SUV 3 ± 0.1). In contrast, pons had negligible tracer activity. The high uptake observed in all the regions with known mGluR1 activity indicates suitability of the ligand for mGluR1 imaging.


Subject(s)
Piperazines/chemistry , Positron-Emission Tomography , Receptors, Metabotropic Glutamate/chemistry , Animals , Brain/metabolism , Healthy Volunteers , Humans , Ligands , Mice , Mice, Inbred BALB C , Molecular Structure , Piperazines/blood , Piperazines/pharmacokinetics , Rats , Receptors, Metabotropic Glutamate/metabolism , Tissue Distribution
19.
Nature ; 524(7566): 497-501, 2015 Aug 27.
Article in English | MEDLINE | ID: mdl-26258295

ABSTRACT

G-protein-coupled receptors (GPCRs) constitute the largest family of membrane receptors in eukaryotes. Crystal structures have provided insight into GPCR interactions with ligands and G proteins, but our understanding of the conformational dynamics of activation is incomplete. Metabotropic glutamate receptors (mGluRs) are dimeric class C GPCRs that modulate neuronal excitability, synaptic plasticity, and serve as drug targets for neurological disorders. A 'clamshell' ligand-binding domain (LBD), which contains the ligand-binding site, is coupled to the transmembrane domain via a cysteine-rich domain, and LBD closure seems to be the first step in activation. Crystal structures of isolated mGluR LBD dimers led to the suggestion that activation also involves a reorientation of the dimer interface from a 'relaxed' to an 'active' state, but the relationship between ligand binding, LBD closure and dimer interface rearrangement in activation remains unclear. Here we use single-molecule fluorescence resonance energy transfer to probe the activation mechanism of full-length mammalian group II mGluRs. We show that the LBDs interconvert between three conformations: resting, activated and a short-lived intermediate state. Orthosteric agonists induce transitions between these conformational states, with efficacy determined by occupancy of the active conformation. Unlike mGluR2, mGluR3 displays basal dynamics, which are Ca(2+)-dependent and lead to basal protein activation. Our results support a general mechanism for the activation of mGluRs in which agonist binding induces closure of the LBDs, followed by dimer interface reorientation. Our experimental strategy should be widely applicable to study conformational dynamics in GPCRs and other membrane proteins.


Subject(s)
Fluorescence Resonance Energy Transfer , Receptors, Metabotropic Glutamate/chemistry , Receptors, Metabotropic Glutamate/classification , Animals , Binding Sites , Drug Partial Agonism , Humans , Ligands , Models, Biological , Models, Molecular , Protein Binding , Protein Conformation , Rats , Receptors, Metabotropic Glutamate/genetics , Receptors, Metabotropic Glutamate/metabolism
20.
Acta Pharmacol Sin ; 42(8): 1354-1367, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33122823

ABSTRACT

Group I metabotropic glutamate receptors (mGlu1 and mGlu5) are promising targets for multiple psychiatric and neurodegenerative disorders. Understanding the subtype selectivity of mGlu1 and mGlu5 allosteric sites is essential for the rational design of novel modulators with single- or dual-target mechanism of action. In this study, starting from the deposited mGlu1 and mGlu5 crystal structures, we utilized computational modeling approaches integrating docking, molecular dynamics simulation, and efficient post-trajectory analysis to reveal the subtype-selective mechanism of mGlu1 and mGlu5 to 10 diverse drug scaffolds representing known negative allosteric modulators (NAMs) in the literature. The results of modeling identified six pairs of non-conserved residues and four pairs of conserved ones as critical features to distinguish the selective NAMs binding to the corresponding receptors. In addition, nine pairs of residues are beneficial to the development of novel dual-target NAMs of group I metabotropic glutamate receptors. Furthermore, the binding modes of a reported dual-target NAM (VU0467558) in mGlu1 and mGlu5 were predicted to verify the identified residues that play key roles in the receptor selectivity and the dual-target binding. The results of this study can guide rational structure-based design of novel NAMs, and the approach can be generally applicable to characterize the features of selectivity for other G-protein-coupled receptors.


Subject(s)
Allosteric Regulation/drug effects , Heterocyclic Compounds/metabolism , Receptor, Metabotropic Glutamate 5/metabolism , Receptors, Metabotropic Glutamate/metabolism , Allosteric Site , Heterocyclic Compounds/chemistry , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Receptor, Metabotropic Glutamate 5/antagonists & inhibitors , Receptor, Metabotropic Glutamate 5/chemistry , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Receptors, Metabotropic Glutamate/chemistry , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL