Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.645
Filter
Add more filters

Publication year range
1.
Methods ; 225: 100-105, 2024 May.
Article in English | MEDLINE | ID: mdl-38565390

ABSTRACT

The development of reliable probe technology for the detection of bisulfite (HSO3-) in situ in food and biological samples is contributing significantly to food quality and safety assurance as well as community health. In this work, a responsive probe, EHDI, is developed for ratiometric fluorescence detection of HSO3- in aqueous solution, meat samples, and living cells. The probe is designed based on the HSO3- triggered 1,4-addition of electron deficit C = C bond of EHDI. As a result of this specific 1,4-addition, the π-conjugation system was destructed, resulting in blue shifts of the emission from 687 to 440 nm and absorption from 577 to 355 nm. The probe has good water solubility, high sensitivity and selectivity, allowing it to be used for imaging of HSO3- internalization and production endogenously. The capability of probe EHDI for HSO3- was then validated by traditional HPLC technology, enabling accurately detect HSO3- in beef samples. The successful development of this probe thus offers a new tool for investigating HSO3- in situ in food and biological conditions.


Subject(s)
Fluorescent Dyes , Meat , Sulfites , Sulfites/analysis , Sulfites/chemistry , Fluorescent Dyes/chemistry , Animals , Humans , Meat/analysis , Spectrometry, Fluorescence/methods , Cattle , Red Meat/analysis
2.
Br J Nutr ; 131(12): 1975-1984, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38439535

ABSTRACT

Trans vaccenic acid (TVA, trans11-18 : 1) and cis9, trans11-CLA (also known as rumenic acid; RA) have received widespread attention as potentially beneficial trans-FA due to their putative health benefits, including anti-diabetic properties. The objective of this study was to determine the effects of beef fat naturally enriched with TVA and RA on parameters related to glucose homoeostasis and associated metabolic markers in diet-induced obese (DIO) mice. Thirty-six male C57BL/6J mice (8 weeks old) were fed for 19 weeks with either a control low-fat diet (CLF), a control high-fat diet (CHF), or a TVA+RA-enriched high-fat diet (EHF). Compared with CLF, feeding either CHF or EHF resulted in adverse metabolic outcomes associated with high-fat diets, including adiposity, impaired glucose control and hepatic steatosis. However, the EHF diet induced a significantly higher liver weight TAG content and elevated plasma alanine transaminase levels compared with the CHF diet. Collectively, the findings from this study suggest that EHF does not improve glucose tolerance and worsens liver steatosis in DIO mice. However, the adverse effects of EHF on the liver could be in part related to the presence of other trans-FA in the enriched beef fat.


Subject(s)
Diet, High-Fat , Homeostasis , Liver , Mice, Inbred C57BL , Obesity , Oleic Acids , Animals , Male , Diet, High-Fat/adverse effects , Liver/metabolism , Obesity/metabolism , Obesity/etiology , Mice , Cattle , Red Meat/analysis , Lipid Metabolism/drug effects , Linoleic Acids, Conjugated/pharmacology , Dietary Fats/pharmacology , Glucose/metabolism , Mice, Obese , Adiposity/drug effects , Fatty Liver/etiology , Fatty Liver/metabolism , Blood Glucose/metabolism , Triglycerides/metabolism , Triglycerides/blood
3.
BMC Vet Res ; 20(1): 380, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39182072

ABSTRACT

Customers are very concerned about high-quality products whose provenance is healthy. The identification of meat authenticity is a subject of growing concern for a variety of reasons, including religious, economic, legal, and public health. Between March and April of 2023, 150 distinct marketable beef product samples from various retailers in El-Fayoum, Egypt, were gathered. There were 30 samples of each of the following: luncheon, kofta, sausage, burger, and minced meat. Every sample underwent a histological investigation as well as subjected to a standard polymerase chain reaction (PCR) analysis to identify meat types that had not been stated by Egyptian regulations. According to the obtained data, the meat products under scrutiny contained a variety of unauthorized tissues which do not match Egyptian regulations. Furthermore, the PCR results indicated that the chicken, camels, donkeys, and pigs derivatives were detected in 60%, 30%, 16%, and 8% of examined samples, respectively. In conclusion, besides displaying a variety of illegal tissues, the majority of the meat items under examination were tainted with flesh from many species. As a result, it is crucial to regularly inspect these products before they are put on the market to ensure that they comply with the law and don't mislead customers Furthermore, it is advisable for authorities to implement rigorous oversight of food manufacturing facilities to ensure the production of safe and wholesome meat.


Subject(s)
Meat Products , Animals , Cattle , Egypt , Meat Products/analysis , Meat Products/standards , Equidae , Polymerase Chain Reaction/veterinary , Camelus , Chickens , Swine , Red Meat/analysis , Red Meat/standards
4.
Med Vet Entomol ; 38(3): 366-371, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38741222

ABSTRACT

Alpha-Gal/α-Gal is an oligosaccharide produced by non-primate mammals. Humans have developed an immune response mediated by anti-α-Gal antibodies that can trigger an allergic reaction and cause anaphylaxis. In recent years, cases of patients with delayed allergic reaction to mammalian meat have been reported worldwide. In Spain, these cases have been related to the species Ixodes ricinus L. (Ixodida: Ixodidae), whose distribution is located in the north of the country. In this work, the presence of α-Gal in water-soluble extracts from samples of salivary glands and digestive tracts of Hyalomma lusitanicum Koch (Ixodida: Ixodidae) both engorged and collected from vegetation were studied. The presence of that epitope was confirmed by the presence of reactive proteins of >250 kDa in both samples. The highest concentrations of α-Gal were detected in salivary glands. Neither sex nor diet influenced the concentration of α-Gal, which seems to indicate its endogenous production and its possible inoculation to the host during tick feeding.


Subject(s)
Food Hypersensitivity , Ixodidae , Animals , Ixodidae/immunology , Female , Food Hypersensitivity/immunology , Male , Salivary Glands , Spain , Epitopes , Red Meat/analysis , Disaccharides/analysis
5.
J Sep Sci ; 47(1): e2300716, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38234024

ABSTRACT

This study introduces a cost-effective, automated ultra-high-performance liquid chromatography-tandem mass spectrometry method for the detection of 14 ß-agonists in pork using a novel solid-phase microextraction probe composed of polyacrylonitrile and molecularly imprinted polymer. Integrated into an automated extraction device, the probe optimizes extraction prior to analysis while reducing expenses and time compared to traditional solid-phase extraction procedures. The method validation followed the Chinese National Standard (GB/T 27404-2008) and examined limits of detection, limits of quantification, matrix effects, linearity, intraday, and interday precision. Average recovery rates ranged from 71.6% to 82.2%, with relative standard deviations less than 15%. Limits of detection and limits of quantification ranged from 0.09 to 0.39 and 0.27 to 0.99 µg/kg, respectively. The new method identified positive samples more accurately than the current National Standard GB/T 31658.22-2022 and demonstrated its potential for routine assessment and regulatory compliance in the detection of ß-agonists in pork.


Subject(s)
Pork Meat , Red Meat , Animals , Swine , Chromatography, High Pressure Liquid/methods , Red Meat/analysis , Pork Meat/analysis , Tandem Mass Spectrometry/methods , Solid Phase Microextraction , Solid Phase Extraction/methods
6.
Anim Genet ; 55(3): 465-470, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38584305

ABSTRACT

One of the most important processes that occur during the transformation of muscle to meat is the pH decline as a consequence of the post-mortem metabolism of muscle tissue. Abnormal pH declines lead to pork defects such as pale, soft, and exudative meat. There is genetic variance for ultimate pH and the role of some genes on this phenotype is well established. After conducting a genome-wide association study on ultimate pH using 526 purebred Duroc pigs, we identified associated regions on Sus scrofa chromosomes (SSC) 3, 8, and 15. Functional candidate genes in these regions included PRKAG3 and PHKG1. The SSC8 region, at 71.6 Mb, was novel and, although no candidate causative gene could be identified, it may have regulatory effects. Subsequent analysis on 828 pigs from the same population confirmed the impact of the three associated regions on pH and meat color. We detected no interaction between the three regions. Further investigations are necessary to unravel the functional significance of the novel genomic region at SSC8. These variants could be used as markers in marker-assisted selection for improving meat quality.


Subject(s)
Quantitative Trait Loci , Sus scrofa , Animals , Hydrogen-Ion Concentration , Sus scrofa/genetics , Phenotype , Genome-Wide Association Study/veterinary , Color , Polymorphism, Single Nucleotide , Red Meat/analysis , Pork Meat/analysis , Meat/analysis
7.
Anim Biotechnol ; 35(1): 2388704, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39133095

ABSTRACT

The flavour, tenderness and juiciness of the beef are all impacted by the composition of the intramuscular fat (IMF), which is a key determinant of beef quality. Thus, enhancing the IMF composition of beef cattle has become a major area of research. Consequently, the aim of this paper was to provide insight and synthesis into the emerging technologies, nutritional practices and management strategies to improve IMF composition in beef cattle. This review paper examined the current knowledge of management techniques and nutritional approaches relevant to cattle farming in the beef industry. It includes a thorough investigation of animal handling, weaning age, castration, breed selection, sex determination, environmental factors, grazing methods, slaughter weight and age. Additionally, it rigorously explored dietary energy levels and optimization of fatty acid profiles, as well as the use of feed additives and hormone implant techniques with their associated regulations. The paper also delved into emerging technologies that are shaping future beef production, such as genomic selection methods, genome editing techniques, epigenomic analyses, microbiome manipulation strategies, transcriptomic profiling approaches and metabolomics analyses. In conclusion, a holistic approach combining genomic, nutritional and management strategies is imperative for achieving targeted IMF content and ensuring high-quality beef production.


Subject(s)
Red Meat , Animals , Cattle/physiology , Red Meat/analysis , Animal Husbandry/methods , Muscle, Skeletal , Adipose Tissue , Animal Feed/analysis , Animal Nutritional Physiological Phenomena
8.
Foodborne Pathog Dis ; 21(2): 109-118, 2024 02.
Article in English | MEDLINE | ID: mdl-38011665

ABSTRACT

Pork products were the most common media of Salmonella in China, breaded pork products as a very popular meat presently, whose Salmonella risk should be drawn to attention. Given that quantitative risk assessment is a more scientific method for risk evaluation, a quantitative risk assessment model of Salmonella in breaded pork products was first constructed from processing to consumption, and was used for assessing the risk and the effective interventions in this study. The data of Salmonella contamination in breaded pork products during processing were obtained from the actual detection data of samples from a representative meat processing plant. With combining the predictive microbial modeling and dose-response relationship, the risk of Salmonella in breaded pork products was charactered, and the probability of Salmonella infection per meal was found to be 5.585 × 10-9. Based on the results of sensitivity analysis, the curing and seasoning process was found to be the key control point for Salmonella contamination during the processing, and consumer behavior was the key control point affecting the probability of Salmonella infection from processing to consumption. The model was also applied for assessing the effectiveness of risk interventions, and among the nine interventions given, control of thawing temperature before cooking such as microwave thawing could reduce the risk of infection by 30.969-fold, while cooking the products thoroughly, Salmonella would not pose a pathogenic hazard to consumers. The model and the assessed results in this study may provide guidance on microbial control in producing process and safety consumption of breaded pork products.


Subject(s)
Meat Products , Red Meat , Salmonella Infections , Animals , Swine , Red Meat/analysis , Food Contamination/analysis , Food Microbiology , Food Handling/methods , Salmonella , Risk Assessment/methods
9.
Sensors (Basel) ; 24(17)2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39275501

ABSTRACT

This study used an odor sensing system with a 16-channel electrochemical sensor array to measure beef odors, aiming to distinguish odors under different storage days and processing temperatures for quality monitoring. Six storage days ranged from purchase (D0) to eight days (D8), with three temperature conditions: no heat (RT), boiling (100 °C), and frying (180 °C). Gas chromatography-mass spectrometry (GC-MS) analysis showed that odorants in the beef varied under different conditions. Compounds like acetoin and 1-hexanol changed significantly with the storage days, while pyrazines and furans were more detectable at higher temperatures. The odor sensing system data were visualized using principal component analysis (PCA) and uniform manifold approximation and projection (UMAP). PCA and unsupervised UMAP clustered beef odors by storage days but struggled with the processing temperatures. Supervised UMAP accurately clustered different temperatures and dates. Machine learning analysis using six classifiers, including support vector machine, achieved 57% accuracy for PCA-reduced data, while unsupervised UMAP reached 49.1% accuracy. Supervised UMAP significantly enhanced the classification accuracy, achieving over 99.5% with the dimensionality reduced to three or above. Results suggest that the odor sensing system can sufficiently enhance non-destructive beef quality and safety monitoring. This research advances electronic nose applications and explores data downscaling techniques, providing valuable insights for future studies.


Subject(s)
Gas Chromatography-Mass Spectrometry , Odorants , Principal Component Analysis , Temperature , Odorants/analysis , Cattle , Animals , Gas Chromatography-Mass Spectrometry/methods , Food Storage/methods , Electronic Nose , Red Meat/analysis , Support Vector Machine
10.
Sensors (Basel) ; 24(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38931722

ABSTRACT

This study aimed to fabricate and characterize a novel colorimetric indicator designed to detect ammonia (NH3) and monitor meat freshness. The sensing platform was constructed using electrospun nanofibers made from polylactic acid (PLA), which were then impregnated with anthocyanins as a natural pH-sensitive dye, extracted from red cabbage. This research involved investigating the relationship between the various concentrations of anthocyanins and the colorimetric platform's efficiency when exposed to ammonia vapor. Scanning electron microscope (SEM) results were used to examine the morphology and structure of the nanofiber mats before and after the dip-coating process. The study also delved into the selectivity of the indicator when exposed to various volatile organic compounds (VOCs) and their stability under extreme humidity levels. Furthermore, the platform's sensitivity was evaluated as it encountered ammonia (NH3) in concentrations ranging from 1 to 100 ppm, with varying dye concentrations. The developed indicator demonstrated an exceptional detection limit of 1 ppm of MH3 within just 30 min, making it highly sensitive to subtle changes in gas concentration. The indicator proved effective in assessing meat freshness by detecting spoilage levels in beef over time. It reliably identified spoilage after 10 h and 7 days, corresponding to bacterial growth thresholds (107 CFU/mL), both at room temperature and in refrigerated environments, respectively. With its simple visual detection mechanism, the platform offered a straightforward and user-friendly solution for consumers and industry professionals alike to monitor packaged beef freshness, enhancing food safety and quality assurance.


Subject(s)
Ammonia , Colorimetry , Food Packaging , Red Meat , Colorimetry/methods , Food Packaging/methods , Ammonia/chemistry , Ammonia/analysis , Cattle , Red Meat/analysis , Red Meat/microbiology , Animals , Nanofibers/chemistry , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry , Polyesters/chemistry , Anthocyanins/chemistry , Meat/analysis , Meat/microbiology
11.
J Sci Food Agric ; 104(12): 7688-7703, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38924063

ABSTRACT

BACKGROUND: Although microorganisms are the main cause of spoilage in prepared beef steaks, very few deep spoilage mechanisms have been reported so far. Aiming to unravel the mechanisms during 12 days of storage at 4 °C affecting the quality of prepared beef steak, the present study investigated the changes in microbial dynamic community using a combined high-throughput sequencing combined and bioinformatics. In addition, gas chromatography-mass spectrometry combined with multivariate statistical analysis was utilized to identify marker candidates for prepared steaks. Furthermore, cloud platform analysis was applied to determine prepared beef steak spoilage, including the relationship between microbiological and physicochemical indicators and volatile compounds. RESULTS: The results showed that the dominant groups of Pseudomonas, Brochothrix thermosphacta, Lactobacillus and Lactococcus caused the spoilage of prepared beef steak, which are strongly associated with significant changes in physicochemical properties and volatile organic compounds (furan-2-pentyl-, pentanal, 1-octanol, 1-nonanol and dimethyl sulfide). Metabolic pathways were proposed, among which lipid metabolism and amino acid metabolism were most abundant. CONCLUSION: The present study is helpful with respect to further understanding the relationship between spoilage microorganisms and the quality of prepared beef steak, and provides a reference for investigating the spoilage mechanism of dominant spoilage bacteria and how to extend the shelf life of meat products. © 2024 Society of Chemical Industry.


Subject(s)
Bacteria , Computational Biology , Volatile Organic Compounds , Cattle , Animals , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/analysis , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Bacteria/metabolism , Gas Chromatography-Mass Spectrometry , Food Microbiology , Food Storage , Pseudomonas/growth & development , Pseudomonas/metabolism , Lactobacillus/metabolism , Refrigeration , Brochothrix/metabolism , Brochothrix/growth & development , Brochothrix/isolation & purification , Lactococcus , Red Meat/microbiology , Red Meat/analysis
12.
Compr Rev Food Sci Food Saf ; 23(2): e13314, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38389429

ABSTRACT

One of the most consistent epidemiological associations between diet and human disease risk is the impact of consuming red meat and processed meat products. In recent years, the health concerns surrounding red meat and processed meat have gained worldwide attention. The fact that humans have lost the ability to synthesize N-glycolylneuraminic acid (Neu5Gc) makes red meat and processed meat products the most important source of exogenous Neu5Gc for humans. As our research of Neu5Gc has increased, it has been discovered that Neu5Gc in red meat and processed meat is a key factor in many major diseases. Given the objective evidence of the harmful risk caused by Neu5Gc in red meat and processed meat to human health, there is a need for heightened attention in the field of food. This updated review has several Neu5Gc aspects given including biosynthetic pathway of Neu5Gc and its accumulation in the human body, the distribution of Neu5Gc in food, the methods for detecting Neu5Gc, and most importantly, a systematic review of the existing methods for reducing the content of Neu5Gc in red meat and processed meat. It also provides some insights into the current status and future directions in this area.


Subject(s)
Meat Products , Neuraminic Acids , Red Meat , Neuraminic Acids/chemistry , Meat Products/analysis , Meat Products/adverse effects , Humans , Animals , Red Meat/analysis , Red Meat/adverse effects
13.
Trop Anim Health Prod ; 56(6): 213, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39002032

ABSTRACT

The present study describes the expression of genes in the Longissimus dorsi muscle related to meat quality of hair lambs finished in an Integration Crop-Livestock system. Twenty-eight non-castrated lambs of two breeds, Somalis Brasileira and Santa Inês, at 120 ± 15 days of age, with an average initial live weight of 18 ± 3.1 kg, were kept in a pasture-based finishing system with supplementation. Upon reaching 28 kg body weight, animals were sent for slaughter. Samples of the Longissimus dorsi and Biceps femoris muscle were harvested for analyses of gene expression and physicochemical properties. Significant differences were detected between the breeds for tissue and chemical composition, whereas the physical aspects did not differ. We observed the expression of six genes related to lipid synthesis (acetyl-CoA carboxylase [ACACA], fatty acid synthase [FAS], stearoyl-CoA desaturase [SCD], lipoprotein lipase [LPL], cell death-inducing DFFA-like effector A [CIDEA], and thyroid hormone responsive [THRSP]) and six genes related to molecular synthesis (myostatin [MSTN], growth differentiation factor 8 [GDF8], insulin-like growth factor 1 [IGF1], insulin-like growth factor 2 [IGF2], delta-like 1 homolog [DLK1], and growth hormone receptor [GHr]) in both breeds. The Santa Inês breed and the Somalis Brasileira showed similar expression patterns of genes related to lipogenesis and myogenesis of the Longissimus dorsi muscle, with the exception of the THRSP gene, in which the Somalis Brasileira have more receptors for the action of thyroid hormones, which resulted in greater thickness of fat in the carcass (subcutaneous fat) and higher lipid content in the chemical composition of the meat.


Subject(s)
Muscle, Skeletal , Sheep, Domestic , Animals , Muscle, Skeletal/metabolism , Muscle, Skeletal/chemistry , Sheep, Domestic/genetics , Sheep, Domestic/physiology , Male , Gene Expression , Red Meat/analysis
14.
Trop Anim Health Prod ; 56(6): 214, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39004692

ABSTRACT

This meta-analysis aims to investigate the effects of residual feed intake (RFI) phenotype on performance, nutrient utilization and meat quality traits in Zebu (Bos indicus) cattle. Twenty-three peer-reviewed publications with 37 treatment means were included in the dataset. Weighted mean difference analysis compared animals categorized into low RFI (more efficient) versus medium or high RFI (less efficient) groups. Data heterogeneity via meta-regression and subgroup analysis, considering variables such as animal age, sex class, experimental duration, RFI group, dietary concentrate, and estimated metabolizable energy intake were also explored. The predominant genetic group of cattle in the dataset was Nellore (89.18%), followed by Brahman (10.81%). More efficient animals (low RFI phenotype) exhibited less dry matter intake (DMI; P < 0.010) than medium or high RFI animals (-0.95 kg vs. -0.42 kg/d). Cattle dietary crude protein and fiber digestibility were consistent across RFI groups (P > 0.05), while dietary ether extract digestibility tended to decrease (P = 0.050) in low RFI animals (-13.20 g/kg DM). Low RFI animals tended to increased (P = 0.065) ribeye area (REA) compared to the high/medium RFI groups, while carcass backfat thickness (BFT) decreased (P = 0.042) compared to high/medium RFI groups. Moreover, there was an increase (P < 0.001) of 0.22 kg in Warner-Bratzler shear force (WBSF) and a reduction (P < 0.001) in the myofibrillar fragmentation index (MFI) in low RFI animals. Meat color parameters (lightness [L*] and yellowness [b*]) and visual marbling scores were consistent (P > 0.05) across RFI groups. In conclusion, Zebu cattle classified as efficient (low RFI) exhibited reduced DMI, which improves their feed efficiency. However, BFT and meat quality parameters such as tenderness (WBSF and MFI) and redness [a*] were compromised by low RFI phenotype, highlighting the challenge of enhancing feed efficiency and meat quality traits in Zebu cattle.


Subject(s)
Animal Feed , Animal Nutritional Physiological Phenomena , Diet , Animals , Cattle/physiology , Female , Male , Animal Feed/analysis , Diet/veterinary , Phenotype , Red Meat/analysis
15.
Trop Anim Health Prod ; 56(4): 162, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38735887

ABSTRACT

Biscuit bran (BB) is a co-product with worldwide distribution, with Brazil as the second largest cookie producer in the world with 1,157,051 tons. We evaluate the impact of completely replacing corn with BB on the characteristics and morphometry of carcass of purebred and crossbred Morada Nova lambs using machine learning techniques as an auxiliary method. Twenty male lambs from two genetic groups (GG) were used: purebred red-coated Morada Nova (MNR) and crossbred MNR × white-coated Morada Nova (MNF1). Supervised and unsupervised machine learning techniques were used. No interaction (P > 0.05) was observed between diets (D) and genetic groups (GG) and no simple isolated effect was observed for carcass characteristics, qualitative-quantitative typification of the Longissimus dorsi muscle, weight of non-carcass components, weight and yield of commercial cuts and carcass morphometric measurements. The formation of two horizontal clusters was verified: (i) crossed lambs with corn and BB and (ii) purebred lambs fed corn and BB. Vertically, three clusters were formed based on carcass and meat characteristics of native lambs: (i) thermal insulation, body capacity, true yield, and commercial cuts; (ii) choice, performance, physical carcass traits, and palatability; and (iii) yield cuts and non-carcass components. The heatmap also allowed us to observe that pure MN lambs had a greater body capacity when fed BB, while those fed corn showed superiority in commercial cuts, true yields, and non-carcass components. Crossbred lambs, regardless of diet, showed a greater association of physical characteristics of the carcass, performance, palatability, and less noble cuts. Crossbred lambs, regardless of diet, showed a greater association of physical characteristics of the carcass, performance, palatability, and less noble cuts. BB can be considered an alternative energy source in total replacement of corn. Integrating of machine learning techniques is a useful statistical tool for studies with large numbers of variables, especially when it comes to analyzing complex data with multiple effects in the search for data patterns and insights in decision-making on the farm.


Subject(s)
Animal Feed , Diet , Machine Learning , Zea mays , Animals , Male , Animal Feed/analysis , Diet/veterinary , Sheep, Domestic/growth & development , Brazil , Body Composition , Red Meat/analysis , Meat/analysis
16.
Trop Anim Health Prod ; 56(8): 261, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39292295

ABSTRACT

We developed a study to determine the ideal level of inclusion of soybean oil (SBOil) in the diet without affecting the quantitative and qualitative parameters of the carcass and meat of lambs in a feedlot system; therefore, determining the ideal level of inclusion. Forty male lambs (Santa Inês breed) were used. The initial body weight and age averaged 34.88 ± 3.19 kg and 5 months, respectively. Experimental units (lambs) were randomly distributed in 5 different diets: inclusion levels of SBOil: 0, 30, 60, 90, and 120 g/kg of dry matter (DM). The SOil inclusion reduced the DM intake (P < 0.001), Total digestible nutrients (P = 0.004), and crude protein (P < 0.001). Total weight gain (P < 0.001) decreased with the SBOil inclusion and subcutaneous fat thickness (P = 0.017) showed the same behaviour. The final body weight decreased by 42.9 g/kgDM until the inclusion level of 30 g/kgDM; from this level it was reduced by 145 g/kgDM. The hot and cold carcass weights (P = 0.013) decreased by 36.6 g/kgDM after including 30 g/kgDM of SBOil. Meat physicochemical composition was not altered (P > 0.05). Lower meat tenderness values ​​were obtained at the levels of 60 and 90 g/kgDM. The inclusion above 30 g/kgDM decreased meat tenderness. It is concluded that soybean oil should be included up to 30 g/kgDM in diets. It is important to note that with diets with 60% concentrate, SBOil levels greater than 30 g/kgDM promote yield losses.


Subject(s)
Animal Feed , Diet , Sheep, Domestic , Soybean Oil , Animals , Soybean Oil/administration & dosage , Soybean Oil/analysis , Male , Animal Feed/analysis , Diet/veterinary , Sheep, Domestic/physiology , Linoleic Acid/analysis , Linoleic Acid/administration & dosage , Animal Nutritional Physiological Phenomena , Random Allocation , Red Meat/analysis , Meat/analysis
17.
Anal Bioanal Chem ; 415(29-30): 7235-7246, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37957327

ABSTRACT

Adulteration of meat and meat products causes a concerning threat for consumers. It is necessary to develop novel robust and sensitive methods which can authenticate the origin of meat species to compensate for the drawbacks of existing methods. In the present study, the sarcoplasmic proteins of six meat species, namely, pork, beef, mutton, chicken, duck and turkey, were analyzed by one-dimensional gel electrophoresis. It was found that enolase could be used as a potential biomarker protein to distinguish between livestock and poultry meats. The glycosylation sites and glycans of enolase were analyzed by UPLC-QTOF-MS and a total of 41 glycopeptides were identified, indicating that the enolase N-glycopeptide profiles of different meats were species-specific. The identification models of livestock meat, poultry and mixed animal were established based on the glycopeptide contents, and the explanation degree of the three models was higher than 90%. The model prediction performance and feasibility results showed that the average prediction accuracy of the three models was 75.43%, with the animal-derived meat identification model showing superiority in identifying more closely related species. The obtained results indicated that the developed strategy was promising for application in animal-derived meat species monitoring and the quality supervision of animal-derived food.


Subject(s)
Glycopeptides , Red Meat , Cattle , Animals , Meat/analysis , Poultry , Red Meat/analysis , Chickens , Phosphopyruvate Hydratase
18.
Food Microbiol ; 109: 104114, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36309428

ABSTRACT

Hepatitis E virus (HEV) is the causative agent of hepatitis E. Some of the rise in hepatitis E infection in China may be linked to undercooked pork. In this study, we established a reverse transcription droplet digital PCR (RT-ddPCR) method to detect HEV in raw pork livers. The detection limit of the assay for HEV RNA was as low as 1.81 copies/µL. The suggested approach was validated on 14 samples, demonstrating greater sensitivity, specificity, and anti-interference performance features than RT-qPCR. Furthermore, we amplified the partial ORF2 gene by nested RT-PCR and sequenced for the HEV RNA positive samples. The prevalence of HEV in all collected samples was 2.24% (14/626), and the viral load was between 8.0 copies/µL and 8975 copies/µL. Specifically, the virus was detected in 10.62% (12/113) of the samples collected from the bio-safety disposal centers for dead livestock and poultry, in 0.67% (2/300) of the samples collected from the slaughterhouses, and none of the samples collected from the retail markets was HEV RNA positive. The subsequent phylogenetic analysis revealed that all HEV isolates belonged to the subtype 4d, which is one of the most common subtypes in northern China.


Subject(s)
Hepatitis E virus , Hepatitis E , Pork Meat , Red Meat , Swine Diseases , Animals , Swine , Humans , Reverse Transcriptase Polymerase Chain Reaction , Red Meat/analysis , Phylogeny , RNA, Viral/genetics , RNA, Viral/analysis , Swine Diseases/epidemiology , Genotype
19.
Molecules ; 28(4)2023 Feb 11.
Article in English | MEDLINE | ID: mdl-36838714

ABSTRACT

As the main consumed meat of Chinese residents, pork has a unique flavor, but the internal volatile organic compounds that cause the flavor differences between pork muscles are not clear at present. In this study, four muscles of Duroc × (Landrace × Yorkshire) pigs (loin, ham, shoulder and belly) were used as experimental subjects. Through the analysis of volatile organic compounds in four muscles of pork, the internal volatile organic compounds of different muscles of pork were discussed. Gas chromatography-ion mobility spectrometry was employed to analyze the four muscles, and volatile organic compounds in these muscles were analyzed and identified. A total of 65 volatile organic compound peaks were obtained by gas chromatography-ion mobility spectrometry. From the qualitative database, a total of 49 volatile organic compounds were identified, including aldehydes, alcohols and ketones. With the variable importance for the projection greater than 1 and significance level less than 0.05 as the criterion, the organic compounds with significant differences were screened by partial least squares-discriminant analysis and significance difference analysis. It was determined that 2-pentylfuran, 2-butanone (M), pentanal (M), butanal (D), (E)-2-hexenal, (E)-2-heptenal (D), 1,2-propanediol and 2-methylpropanal were the differential organic compounds that distinguish the four pork muscles.


Subject(s)
Pork Meat , Red Meat , Volatile Organic Compounds , Animals , Swine , Volatile Organic Compounds/analysis , Pork Meat/analysis , Red Meat/analysis , Gas Chromatography-Mass Spectrometry/methods , Muscles/chemistry
20.
Molecules ; 28(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36838834

ABSTRACT

The objective of this study was to distinguish between the Tunisian Djebel lamb meat and meat from typical Tunisian production systems (PSs) through the fatty acids (FAs) profile and the stable isotope ratio analysis (SIRA). Thirty-five lambs from three different regions and PSs (D = Djebel, B = Bou-Rebiaa, and O = Ouesslatia) were considered for this purpose. The results demonstrated that the PS and the geographic origin strongly influenced the FA profile of lamb meat. It was possible to discriminate between the Djebel lamb meat and the rest of the dataset thanks to the quantification of the conjugated linoleic acids (CLA) and the branched chain FAs. Moreover, statistically different concentrations of saturated, monounsaturated and polyunsaturated FAs and a different n-6/n-3 ratio were found for grazing (D and BR) and indoor (O) lambs, making it possible to discriminate between them. As for the stable isotope ratio analysis, all parameters made it possible to distinguish among the three groups, primarily on the basis of the dietary regimen (δ(13C) and δ(15N)) and breeding area (δ(18O) and δ(2H)).


Subject(s)
Fatty Acids , Red Meat , Sheep , Animals , Fatty Acids/analysis , Tunisia , Red Meat/analysis , Diet/veterinary , Meat/analysis , Isotopes/analysis , Animal Feed/analysis
SELECTION OF CITATIONS
SEARCH DETAIL