Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.290
Filter
Add more filters

Publication year range
1.
J Transl Med ; 22(1): 230, 2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38433198

ABSTRACT

BACKGROUND: Mitochondrial transplantation (MTx) has emerged as a novel therapeutic strategy, particularly effective in diseases characterized by mitochondrial dysfunction. This review synthesizes current knowledge on MTx, focusing on its role in modulating immune responses and explores its potential in treating post-cardiac arrest syndrome (PCAS). METHODS: We conducted a comprehensive narrative review of animal and human studies that have investigated the effects of MTx in the context of immunomodulation. This included a review of the immune responses following critical condition such as ischemia reperfusion injury, the impact of MTx on these responses, and the therapeutic potential of MTx in various conditions. RESULTS: Recent studies indicate that MTx can modulate complex immune responses and reduce ischemia-reperfusion injury post-CA, suggesting MTx as a novel, potentially more effective approach. The review highlights the role of MTx in immune modulation, its potential synergistic effects with existing treatments such as therapeutic hypothermia, and the need for further research to optimize its application in PCAS. The safety and efficacy of autologous versus allogeneic MTx, particularly in the context of immune reactions, are critical areas for future investigation. CONCLUSION: MTx represents a promising frontier in the treatment of PCAS, offering a novel approach to modulate immune responses and restore cellular energetics. Future research should focus on long-term effects, combination therapies, and personalized medicine approaches to fully harness the potential of MTx in improving patient outcomes in PCAS.


Subject(s)
Heart Arrest , Hypothermia, Induced , Reperfusion Injury , Animals , Humans , Combined Modality Therapy , Precision Medicine , Heart Arrest/therapy , Immunomodulation , Reperfusion Injury/therapy
2.
Cell Commun Signal ; 22(1): 291, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802835

ABSTRACT

A promising new therapy option for acute kidney injury (AKI) is mesenchymal stem cells (MSCs). However, there are several limitations to the use of MSCs, such as low rates of survival, limited homing capacity, and unclear differentiation. In search of better therapeutic strategies, we explored all-trans retinoic acid (ATRA) pretreatment of MSCs to observe whether it could improve the therapeutic efficacy of AKI. We established a renal ischemia/reperfusion injury model and treated mice with ATRA-pretreated MSCs via tail vein injection. We found that AKI mice treated with ATRA-MSCs significantly improved renal function compared with DMSO-MSCs treatment. RNA sequencing screened that hyaluronic acid (HA) production from MSCs promoted by ATRA. Further validation by chromatin immunoprecipitation experiments verified that retinoic acid receptor RARα/RXRγ was a potential transcription factor for hyaluronic acid synthase 2. Additionally, an in vitro hypoxia/reoxygenation model was established using human proximal tubular epithelial cells (HK-2). After co-culturing HK-2 cells with ATRA-pretreated MSCs, we observed that HA binds to cluster determinant 44 (CD44) and activates the PI3K/AKT pathway, which enhances the anti-inflammatory, anti-apoptotic, and proliferative repair effects of MSCs in AKI. Inhibition of the HA/CD44 axis effectively reverses the renal repair effect of ATRA-pretreated MSCs. Taken together, our study suggests that ATRA pretreatment promotes HA production by MSCs and activates the PI3K/AKT pathway in renal tubular epithelial cells, thereby enhancing the efficacy of MSCs against AKI.


Subject(s)
Acute Kidney Injury , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Tretinoin , Acute Kidney Injury/therapy , Acute Kidney Injury/pathology , Acute Kidney Injury/metabolism , Acute Kidney Injury/drug therapy , Animals , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/cytology , Tretinoin/pharmacology , Tretinoin/therapeutic use , Humans , Mice , Male , Mice, Inbred C57BL , Hyaluronic Acid/pharmacology , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics , Proto-Oncogene Proteins c-akt/metabolism , Cell Line , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/drug effects , Reperfusion Injury/therapy , Reperfusion Injury/drug therapy , Reperfusion Injury/pathology , Reperfusion Injury/metabolism , Disease Models, Animal , Apoptosis/drug effects
3.
Mol Biol Rep ; 51(1): 377, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38427114

ABSTRACT

BACKGROUND: Repetitive transcranial magnetic stimulation (rTMS) exerts neuroprotective effects early in cerebral ischemia/reperfusion (I/R) injury. Intermittent theta-brust stimulation (iTBS), a more time-efficient modality of rTMS, improves the efficiency without at least decreasing the efficacy of the therapy. iTBS elevates cortical excitability, and in recent years it has become increasingly common to apply iTBS to patients in the early post-IS period. However, little is known about the neuroprotective mechanisms of iTBS. Endoplasmic reticulum stress (ERS), and ferroptosis have been shown to be involved in the development of I/R injury. We aimed to investigate the potential regulatory mechanisms by which iTBS attenuates neurological injury after I/R in rats. METHODS: Rats were randomly divided into three groups: sham-operated group, MCAO/R group, and MCAO/R + iTBS group, and were stimulated with iTBS 36 h after undergoing middle cerebral artery occlusion (MCAO) or sham-operated. The expression of ERS, ferroptosis, and apoptosis-related markers was subsequently detected by western blot assays. We also investigated the mechanism by which iTBS attenuates nerve injury after ischemic reperfusion in rats by using the modified Neurological Severity Score (mNSS) and the balance beam test to measure nerve function. RESULTS: iTBS performed early in I/R injury attenuated the levels of ERS, ferroptosis, and apoptosis, and improved neurological function, including mNSS and balance beam experiments. It is suggested that this mode of stimulation reduces the cost per treatment by several times without compromising the efficacy of the treatment and could be a practical and less costly intervention.


Subject(s)
Ferroptosis , Reperfusion Injury , Humans , Rats , Animals , Transcranial Magnetic Stimulation , Reperfusion Injury/therapy , Reperfusion , Endoplasmic Reticulum Stress
4.
Cell Biochem Funct ; 42(4): e4040, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38850132

ABSTRACT

Liver ischemia-reperfusion injury (IRI) is an important factor affecting the prognosis of liver transplantation, and extended criteria donors (e.g., steatosis donor livers) are considered to be more sensitive to ischemia-reperfusion injury in liver transplantation. Currently, the application of human umbilical cord mesenchymal stem cells (hMSCs) has great promise in the treatment of various injuries in the liver. This study aimed to investigate the therapeutic role and mechanism of hMSCs in fatty liver IRI. After more than 8 weeks of high-fat chow feeding, we constructed a fatty liver mouse model and established ischemic injury of about 70% of the liver. Six hours after IRI, liver injury was significantly alleviated in hMSCs-treated mice, and the expression levels of liver enzyme, inflammatory factor TNF-α, and apoptotic proteins were significantly lower than those of the control group, which were also significant in pathological sections. Transcriptomics analysis showed that IFNγ was significantly upregulated in the hMSCs group. Mechanistically, IFNγ, which activates the MAPK pathway, is a potent agonist that promotes the occurrence of autophagy in hepatocytes to exert a protective function, which was confirmed by in vitro experiments. In summary, hMSCs treatment could slow down IRI in fatty liver by activating autophagy through upregulation of IFNγ, and this effect was partly direct.


Subject(s)
Autophagy , Fatty Liver , Interferon-gamma , Mesenchymal Stem Cells , Reperfusion Injury , Umbilical Cord , Up-Regulation , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Reperfusion Injury/therapy , Humans , Animals , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Interferon-gamma/metabolism , Umbilical Cord/cytology , Umbilical Cord/metabolism , Mice , Fatty Liver/metabolism , Fatty Liver/therapy , Fatty Liver/pathology , Mice, Inbred C57BL , Male , Disease Models, Animal , Mesenchymal Stem Cell Transplantation
5.
Int J Mol Sci ; 25(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38892418

ABSTRACT

Renal ischemia-reperfusion is a common cause of acute kidney injury leading to significant morbidity and mortality. There are no effective treatments available in clinical practice. This meta-analysis aims to assess the effect of IL-10 immunotherapy on renal ischemia-reperfusion injury. Medline, Embase, Cochrane-library, Google Scholar and clinicaltrials.gov were searched up to 31 March 2023. Preclinical and clinical interventional studies investigating IL-10 immunotherapy for renal ischemia-reperfusion were eligible for inclusion. The primary endpoint was renal function (serum creatinine) following ischemia-reperfusion. The secondary endpoints included mitochondrial integrity, cellular proliferation, regulated cell death (TUNEL assay), expression of inflammatory cytokines (TNF-α, IL-6 and IL-1ß), M1/M2 macrophage polarization, tissue integrity (tubular injury score), long-term kidney fibrosis (fibrotic area %) and adverse events (pulmonary toxicity, cardiotoxicity hepatotoxicity). The search returned 861 records. From these, 16 full texts were screened and subsequently, seven animal studies, corresponding to a population of 268 mice/rats, were included. Compared to the control treatment, IL-10 immunotherapy reduced serum creatinine more effectively within 24 h of administration (95% CI: -9.177, -5.601, I2 = 22.42%). IL-10 immunotherapy promoted mitochondrial integrity and cellular proliferation and reduced regulated cell death (95% CI: -11.000, -4.184, I2 = 74.94%). It decreased the expression of TNF-α, IL-6 and IL-1ß, led to M2 polarization of the local macrophages, reduced tubular injury score (95% CI: -8.917, -5.755, I2 = 22.71%), and long-term kidney fibrosis (95% CI: -6.963, -3.438, I2 = 0%). No adverse outcomes were captured. In Conclusion, IL-10 immunotherapy safely improves outcomes in animal models of renal ischemia-reperfusion; the translational potential of IL-10 immunotherapy needs to be further investigated in clinical trials.


Subject(s)
Interleukin-10 , Reperfusion Injury , Reperfusion Injury/therapy , Animals , Interleukin-10/metabolism , Humans , Immunotherapy/methods , Kidney/pathology , Kidney/metabolism , Acute Kidney Injury/therapy , Mice
6.
Int J Mol Sci ; 25(9)2024 May 05.
Article in English | MEDLINE | ID: mdl-38732257

ABSTRACT

In transplantation, hypothermic machine perfusion (HMP) has been shown to be superior to static cold storage (SCS) in terms of functional outcomes. Ex vivo machine perfusion offers the possibility to deliver drugs or other active substances, such as Mesenchymal Stem Cells (MSCs), directly into an organ without affecting the recipient. MSCs are multipotent, self-renewing cells with tissue-repair capacities, and their application to ameliorate ischemia- reperfusion injury (IRI) is being investigated in several preclinical and clinical studies. The aim of this study was to introduce MSCs into a translational model of hypothermic machine perfusion and to test the efficiency and feasibility of this method. Methods: three rodent kidneys, six porcine kidneys and three human kidneys underwent HMP with 1-5 × 106 labelled MSCs within respective perfusates. Only porcine kidneys were compared to a control group of 6 kidneys undergoing HMP without MSCs, followed by mimicked reperfusion with whole blood at 37 °C for 2 h for all 12 kidneys. Reperfusion perfusate samples were analyzed for levels of NGAL and IL-ß by ELISA. Functional parameters, including urinary output, oxygen consumption and creatinine clearance, were compared and found to be similar between the MSC treatment group and the control group in the porcine model. IL-1ß levels were higher in perfusate and urine samples in the MSC group, with a median of 285.3 ng/mL (IQR 224.3-407.8 ng/mL) vs. 209.2 ng/mL (IQR 174.9-220.1), p = 0.51 and 105.3 ng/mL (IQR 71.03-164.7 ng/mL) vs. 307.7 ng/mL (IQR 190.9-349.6 ng/mL), p = 0.16, respectively. MSCs could be traced within the kidneys in all models using widefield microscopy after HMP. The application of Mesenchymal Stem Cells in an ex vivo hypothermic machine perfusion setting is feasible, and MSCs can be delivered into the kidney grafts during HMP. Functional parameters during mimicked reperfusion were not altered in treated kidney grafts. Changes in levels of IL-1ß suggest that MSCs might have an effect on the kidney grafts, and whether this leads to a positive or a negative outcome on IRI in transplantation needs to be determined in further experiments.


Subject(s)
Kidney Transplantation , Kidney , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Perfusion , Reperfusion Injury , Animals , Swine , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Kidney/metabolism , Mesenchymal Stem Cell Transplantation/methods , Perfusion/methods , Humans , Kidney Transplantation/methods , Reperfusion Injury/therapy , Reperfusion Injury/metabolism , Organ Preservation/methods , Translational Research, Biomedical , Male , Hypothermia, Induced/methods
7.
Int J Mol Sci ; 25(12)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38928308

ABSTRACT

Hepatic ischemia/reperfusion injury (IRI) is an important factor affecting liver regeneration and functional recovery postoperatively. Many studies have suggested that mesenchymal stem cells (MSCs) contribute to hepatic tissue repair and functional recovery through paracrine mechanisms mediated by exosomes. Minipigs exhibit much more similar characteristics of the liver to those of humans than rodents. This study aimed to explore whether exosomes from adipose-derived MSCs (ADSCs-exo) could actively promote liver regeneration after hepatectomy combined with HIRI in minipigs and the role they play in the cell proliferation process. This study also compared the effects and differences in the role of ADSCs and ADSCs-exo in the inflammatory response and liver regeneration. The results showed that ADSCs-exo suppressed histopathological changes and reduced inflammatory infiltration in the liver; significantly decreased levels of ALT, TBIL, HA, and the pro-inflammatory cytokines TNF-α, IL-6, and CRP; increased levels of the anti-inflammatory cytokine IL-10 and the pro-regeneration factors Ki67, PCNA, CyclinD1, HGF, STAT3, VEGF, ANG1, ANG2; and decreased levels of the anti-regeneration factors SOCS3 and TGF-ß. These indicators above showed similar changes with the ADSCs intervention group. Indicating that ADSCs-exo can exert the same role as ADSCs in regulating inflammatory responses and promoting liver regeneration. Our findings provide experimental evidence for the possibility that ADSCs-exo could be considered a safe and effective cell-free therapy to promote regeneration of injured livers.


Subject(s)
Adipose Tissue , Exosomes , Liver Regeneration , Liver , Mesenchymal Stem Cells , Swine, Miniature , Animals , Swine , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Exosomes/metabolism , Exosomes/transplantation , Adipose Tissue/cytology , Adipose Tissue/metabolism , Liver/metabolism , Liver/pathology , Cell Proliferation , Reperfusion Injury/therapy , Reperfusion Injury/metabolism , Hepatectomy , Cytokines/metabolism , Male
8.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2316-2325, 2024 May.
Article in Zh | MEDLINE | ID: mdl-38812132

ABSTRACT

This study aimed to investigate the intervention effect of tetramethylpyrazine(TMP) combined with transplantation of neural stem cells(NSCs) on middle cerebral artery occlusion(MCAO) rat model and to explore the mechanism of TMP combined with NSCs transplantation on ischemic stroke based on the regulation of stem cell biological behavior. MCAO rats were randomly divided into a model group, a TMP group, an NSCs transplantation group, and a TMP combined with NSCs transplantation group according to neurological function scores. A sham group was set up at the same time. The neurological function score was used to evaluate the improvement of neurological function in MCAO rats after TMP combined with NSCs transplantation. The proliferation, migration, and differentiation of NSCs were evaluated by BrdU, BrdU/DCX, BrdU/NeuN, and BrdU/GFAP immunofluorescence labeling. The protein expression of stromal cell-derived factor 1(SDF-1), C-X-C motif chemokine receptor 4(CXCR4), as well as oxidative stress pathway proteins nuclear factor erythroid 2-related factor 2(Nrf2), Kelch-like ECH-associated protein 1(KEAP1), heme oxygenase 1(HO-1), NAD(P)H quinone oxidoreductase 1(NQO1) was detected by Western blot to study the migration mechanism of TMP combined with NSCs. The results showed that TMP combined with NSCs transplantation significantly improved the neurological function score in MCAO rats. Immunofluorescence staining showed a significant increase in the number of BrdU~+, BrdU~+/DCX~+, BrdU~+/NeuN~+, and BrdU~+/GFAP~+ cells in the TMP, NSCs transplantation, and combined treatment groups, with the combined treatment group showing the most significant increase. Further Western blot analysis revealed significantly elevated expression of CXCR4 protein in the TMP, NSCs transplantation, and combined treatment groups, along with up-regulated protein expression of Nrf2, HO-1, and NQO1, and decreased KEAP1 protein expression. This study showed that both TMP and NSCs transplantation can promote the recovery of neurological function by promoting the proliferation, migration, and differentiation of NSCs, and the effect of TMP combined with NSCs transplantation is superior. The mechanism of action may be related to the activation of the Nrf2/HO-1/CXCR4 pathway.


Subject(s)
Brain Ischemia , Doublecortin Protein , NF-E2-Related Factor 2 , Neural Stem Cells , Pyrazines , Rats, Sprague-Dawley , Receptors, CXCR4 , Animals , Pyrazines/pharmacology , Neural Stem Cells/drug effects , Neural Stem Cells/transplantation , Neural Stem Cells/metabolism , Rats , Male , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , Brain Ischemia/therapy , Brain Ischemia/metabolism , Brain Ischemia/drug therapy , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Chemokine CXCL12/metabolism , Chemokine CXCL12/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Stem Cell Transplantation/methods , Cell Proliferation/drug effects , Cell Movement/drug effects , Humans , Reperfusion Injury/therapy , Reperfusion Injury/metabolism , Infarction, Middle Cerebral Artery/therapy , NAD(P)H Dehydrogenase (Quinone)/metabolism , NAD(P)H Dehydrogenase (Quinone)/genetics
9.
BMC Neurosci ; 24(1): 63, 2023 12 06.
Article in English | MEDLINE | ID: mdl-38057703

ABSTRACT

BACKGROUND: Ischemic stroke is a serious disease leading to significant disability in humans worldwide. Increasing evidence suggests that some microRNAs (miRNAs) participate in the pathophysiology of ischemic stroke. A key role for MiR-212 has been found in neuronal function and synaptic plasticity. Ischemic stroke can be effectively treated with electroacupuncture (EA); however, there is a lack of understanding of the relevant mechanisms. In this study, we employed behavioral test and resting-state functional magnetic resonance imaging (rs-fMRI) to detect behavioral and brain function alterations in rats suffering from ischemic stroke. The efficacy of EA therapy and miR-212-5p's role in this process were also evaluated. METHODS AND RESULTS: Forty rats were randomly divided into the following groups: Sham, middle cerebral artery occlusion/reperfusion (MCAO/R), MCAO/R + EA, MCAO/R + EA + antagomir-negative control and MCAO/R + EA + antagomir-212-5p groups. Behavioral changes were assessed by Catwalk gait analysis prior to and after modeling. Rs-fMRI was performed at one week after EA treatment, amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) were calculated to reveal neural activity. Furthermore, neuronal apoptosis in the ischemic penumbra was analyzed using a TUNEL assay. Treatment with EA significantly improved the performance of rats in the behavioral test. The motor and cognition-related brain regions showed decreased ALFF and ReHo following focal cerebral ischemia-reperfusion, and EA treatment could reactivate these brain regions. Moreover, EA treatment significantly decreased MCAO/R-induced cell death. However, the transfection of antagomir-212-5p attenuated the therapeutic effect of EA. CONCLUSIONS: In conclusion, the results suggested that EA improved the behavioral and imaging outcomes of ischemic stroke through miR-212-5p.


Subject(s)
Brain Ischemia , Electroacupuncture , Ischemic Stroke , MicroRNAs , Reperfusion Injury , Stroke , Humans , Rats , Animals , Rats, Sprague-Dawley , Electroacupuncture/methods , Antagomirs , Brain Ischemia/diagnostic imaging , Brain Ischemia/therapy , Brain Ischemia/metabolism , Infarction, Middle Cerebral Artery/diagnostic imaging , Infarction, Middle Cerebral Artery/therapy , MicroRNAs/metabolism , Reperfusion Injury/therapy , Reperfusion Injury/metabolism , Stroke/diagnostic imaging , Stroke/therapy , Stroke/metabolism
10.
Stem Cells ; 40(11): 1056-1070, 2022 11 29.
Article in English | MEDLINE | ID: mdl-35999023

ABSTRACT

Liver transplantation is an effective therapy, but increasing demand for donor organs has led to the use of marginal donor organs with increased complication rates. Mesenchymal stromal cells (MSC) pleiotropically modulate aberrant immune-mediated responses and represent a potential therapy to target the inflammation seen post-transplant with marginal donor livers. To avoid the confounding effects of xenotransplantation seen in studies with human MSC, a PDGFRα/Sca-1 (PaS) sorted MSC population was used which was analogous to human MSC populations (LNGFR+Thy-1+VCAM-1Hi). PaS MSC are a well-described population that demonstrate MSC properties without evidence of clonal mutation during expansion. We demonstrate their anti-inflammatory properties herein through their suppression of T-lymphocyte proliferation in vitro and secretion of anti-inflammatory cytokines (IL-10 and OPG) after stimulation (P = .004 and P = .003). The MDR2-/- model of biliary injury and hepatic ischemia-reperfusion (HIR) injury models were used to replicate the non-anastomotic biliary complications seen following liver transplantation. Systemic MSC therapy in MDR2-/- mice led to reduced liver injury with an increase in restorative macrophages (5913 ± 333.9 vs 12 597 ± 665.8, P = .002, n = 7) and a change in lymphocyte ratios (3.55 ± 0.37 vs 2.59 ± 0.139, P = .023, n = 17), whereas subcutaneous administration of MSC showed no beneficial effect. MSC also reduced cell death in the HIR model assessed by Periodic acid-Schiff (PAS) staining (91.7% ± 2.8 vs 80.1% ± 4.6, P = .03). Systemically administered quantum dot-labeled MSC were tracked using single-cell resolution CryoViz imaging which demonstrated their sequestration in the lungs alongside retention/redistribution to injured liver tissue. MSC represent a potential novel therapy in marginal organ transplantation which warrants further study.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Reperfusion Injury , Mice , Animals , Humans , Mesenchymal Stem Cell Transplantation/methods , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Disease Models, Animal , Mesenchymal Stem Cells/metabolism , Liver , Reperfusion Injury/therapy
11.
J Nanobiotechnology ; 21(1): 340, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37735391

ABSTRACT

Flap necrosis, the most prevalent postoperative complication of reconstructive surgery, is significantly associated with ischaemia-reperfusion injury. Recent research indicates that exosomes derived from bone marrow mesenchymal stem cells (BMSCs) hold potential therapeutic applications in several diseases. Traditionally, BMSCs are cultured under normoxic conditions, a setting that diverges from their physiological hypoxic environment in vivo. Consequently, we propose a method involving the hypoxic preconditioning of BMSCs, aimed at exploring the function and the specific mechanisms of their exosomes in ischaemia-reperfusion skin flaps. This study constructed a 3 × 6 cm2 caudal superficial epigastric skin flap model and subjected it to ischaemic conditions for 6 h. Our findings reveal that exosomes from hypoxia-pretreated BMSCs significantly promoted flap survival, decrease MCP-1, IL-1ß, and IL-6 levels in ischaemia-reperfusion injured flap, and reduce oxidative stress injury and apoptosis. Moreover, results indicated that Hypo-Exo provides protection to vascular endothelial cells from ischaemia-reperfusion injury both in vivo and in vitro. Through high-throughput sequencing and bioinformatics analysis, we further compared the differential miRNA expression profiles between Hypo-Exo and normoxic exosomes. Results display the enrichment of several pathways, including autophagy and mTOR. We have also elucidated a mechanism wherein Hypo-Exo promotes the survival of ischaemia-reperfusion injured flaps. This mechanism involves carrying large amounts of miR-421-3p, which target and regulate mTOR, thereby upregulating the expression of phosphorylated ULK1 and FUNDC1, and subsequently further activating autophagy. In summary, hypoxic preconditioning constitutes an effective and promising method for optimizing the therapeutic effects of BMSC-derived exosomes in the treatment of flap ischaemia-reperfusion injury.


Subject(s)
Exosomes , MicroRNAs , Reperfusion Injury , Humans , Endothelial Cells , Reperfusion Injury/therapy , Oxidative Stress , Hypoxia , Autophagy-Related Protein-1 Homolog , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins , Mitochondrial Proteins , MicroRNAs/genetics
12.
Clin Exp Pharmacol Physiol ; 50(10): 779-788, 2023 10.
Article in English | MEDLINE | ID: mdl-37417429

ABSTRACT

Moxibustion is an effective treatment for the clinical management of acute cerebral infarction. However, its exact mechanism of action is still not fully understood. This study aimed to investigate the protective effect of moxibustion on cerebral ischemia-reperfusion injury (CIRI) in rats. Middle cerebral artery occlusion/reperfusion (MCAO/R) was used to construct a CIRI rat model, all animals were randomly divided into four groups including sham operation group, MCAO/R group (MCAO/R), moxibustion therapy + MCAO/R (Moxi) and ferrostatin-1 + MCAO/R (Fer-1) group. In the Moxi group, moxibustion treatment was initiated 24 h after modeling, once a day for 30 mins each time for 7 days. Moreover, the Fer-1 group received intraperitoneal injections of Fer-1 12 h after modeling, once a day for a total of 7 days. The results showed that moxibustion could reduce nerve function damage and neuronal death. Additionally, moxibustion could reduce the production of lipid peroxides such as lipid peroxide, malondialchehyche and ACSL4 to regulate lipid metabolism, promote the production of glutathione and glutathione peroxidase 4 and reduce the expression of hepcidin by inhibiting the production of inflammatory factor interleukin-6, therefore, downregulating the expression of SLC40A1, reducing the iron level in the cerebral cortex, reducing the accumulation of reactive oxygen species and inhibiting ferroptosis. Based on our studies, it can be concluded that moxibustion has the ability to inhibit ferroptosis of nerve cells post CIRI and plays a protective role in the brain. This protective role can be attributed to the regulation of iron metabolism of nerve cells, reduction of iron deposition in the hippocampus and lowering the level of lipid peroxidation.


Subject(s)
Brain Ischemia , Ferroptosis , Moxibustion , Reperfusion Injury , Rats , Animals , Rats, Sprague-Dawley , Reperfusion Injury/therapy , Reperfusion Injury/metabolism , Brain Ischemia/therapy , Infarction, Middle Cerebral Artery/therapy , Iron
13.
Biochem J ; 479(16): 1653-1708, 2022 08 31.
Article in English | MEDLINE | ID: mdl-36043493

ABSTRACT

Ischaemia-reperfusion (I-R) injury, initiated via bursts of reactive oxygen species produced during the reoxygenation phase following hypoxia, is well known in a variety of acute circumstances. We argue here that I-R injury also underpins elements of the pathology of a variety of chronic, inflammatory diseases, including rheumatoid arthritis, ME/CFS and, our chief focus and most proximally, Long COVID. Ischaemia may be initiated via fibrin amyloid microclot blockage of capillaries, for instance as exercise is started; reperfusion is a necessary corollary when it finishes. We rehearse the mechanistic evidence for these occurrences here, in terms of their manifestation as oxidative stress, hyperinflammation, mast cell activation, the production of marker metabolites and related activities. Such microclot-based phenomena can explain both the breathlessness/fatigue and the post-exertional malaise that may be observed in these conditions, as well as many other observables. The recognition of these processes implies, mechanistically, that therapeutic benefit is potentially to be had from antioxidants, from anti-inflammatories, from iron chelators, and via suitable, safe fibrinolytics, and/or anti-clotting agents. We review the considerable existing evidence that is consistent with this, and with the biochemical mechanisms involved.


Subject(s)
Arthritis, Rheumatoid , COVID-19 , Fatigue Syndrome, Chronic , Reperfusion Injury , Arthritis, Rheumatoid/therapy , COVID-19/complications , Fatigue Syndrome, Chronic/metabolism , Humans , Oxidative Stress/physiology , Reperfusion Injury/therapy , Post-Acute COVID-19 Syndrome
14.
Mediators Inflamm ; 2023: 5677865, 2023.
Article in English | MEDLINE | ID: mdl-37101593

ABSTRACT

Background: As a noninvasive treatment, transcutaneous electrical nerve stimulation (TENS) has been utilized to treat various diseases in clinic. However, whether TENS can be an effective intervention in the acute stage of ischemic stroke still remains unclear. In the present study, we aimed to explore whether TENS could alleviate brain infarct volume, reduce oxidative stress and neuronal pyroptosis, and activate mitophagy following ischemic stroke. Methods: TENS was performed at 24 h after middle cerebral artery occlusion/reperfusion (MCAO/R) in rats for 3 consecutive days. Neurological scores, the volume of infarction, and the activity of SOD, MDA, GSH, and GSH-px were measured. Moreover, western blot was performed to detect the related protein expression, including Bcl-2, Bax, TXNIP, GSDMD, caspase-1, NLRP3, BRCC3, HIF-1α, BNIP3, LC3, and P62. Real-time PCR was performed to detect NLRP3 expression. Immunofluorescence was performed to detect the levels of LC3. Results: There was no significant difference of neurological deficit scores between the MCAO group and the TENS group at 2 h after MCAO/R operation (P > 0.05), while the neurological deficit scores of TENS group significantly decreased in comparison with MCAO group at 72 h following MACO/R injury (P < 0.05). Similarly, TENS treatment significantly reduced the brain infarct volume compared with the MCAO group (P < 0.05). Moreover, TENS decreased the expression of Bax, TXNIP, GSDMD, caspase-1, BRCC3, NLRP3, and P62 and the activity of MDA as well as increasing the level of Bcl-2, HIF-1α, BNIP3, and LC3 and the activity of SOD, GSH, and GSH-px (P < 0.05). Conclusions: In conclusion, our results indicated that TENS alleviated brain damage following ischemic stroke via inhibiting neuronal oxidative stress and pyroptosis and activating mitophagy, possibly via the regulation of TXNIP, BRCC3/NLRP3, and HIF-1α/BNIP3 pathways.


Subject(s)
Brain Injuries , Brain Ischemia , Ischemic Stroke , Reperfusion Injury , Transcutaneous Electric Nerve Stimulation , Rats , Animals , Pyroptosis , Mitophagy , Rats, Sprague-Dawley , bcl-2-Associated X Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Reperfusion Injury/therapy , Reperfusion Injury/metabolism , Infarction, Middle Cerebral Artery/therapy , Infarction, Middle Cerebral Artery/metabolism , Oxidative Stress , Proto-Oncogene Proteins c-bcl-2/metabolism , Caspase 1/metabolism , Brain/metabolism , Superoxide Dismutase/metabolism , Brain Ischemia/therapy
15.
Int J Mol Sci ; 24(8)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37108659

ABSTRACT

Liver transplantation is the only treatment for hepatic insufficiency as a result of acute and chronic liver injuries/pathologies that fail to recover. Unfortunately, there remains an enormous and growing gap between organ supply and demand. Although recipients on the liver transplantation waitlist have significantly higher mortality, livers are often not allocated because they are (i) classified as extended criteria or marginal livers and (ii) subjected to longer cold preservation time (>6 h) with a direct correlation of poor outcomes with longer cold ischemia. Downregulating the recipient's innate immune response to successfully tolerate a graft having longer cold ischemia times or ischemia-reperfusion injury through induction of immune tolerance in the graft and the host would significantly improve organ utilization and post-transplant outcomes. Broadly, technologies proposed for development aim to extend the life of the transplanted liver through post-transplant or recipient conditioning. In this review, we focus on the potential benefits of nanotechnology to provide unique pre-transplant grafting and recipient conditioning of extended criteria donor livers using immune tolerance induction and hyperthermic pre-conditioning.


Subject(s)
Liver Failure , Liver Transplantation , Reperfusion Injury , Humans , Liver , Tissue Donors , Reperfusion Injury/therapy , Organ Preservation
16.
Biochem Biophys Res Commun ; 632: 92-99, 2022 12 03.
Article in English | MEDLINE | ID: mdl-36206599

ABSTRACT

BACKGROUND: Mesenchymal stem cells-derived exosomes (MSCs-Exo) were able to exert neuroprotective effects in brain injury after ischemic stroke (IS). In addition, exosomes containing microRNAs (miRNAs) can be transported to recipient cells to mediate intercellular communication. It has been shown that the level of miR-145 was significantly downregulated in brain tissues of rats subjected to middle cerebral artery occlusion (MCAO). However, the role of MSCs-derived exosomal miR-145 in IS progression remains largely unknown. METHODS: Microglial BV2 cell exposed to oxygen-glucose deprivation/reperfusion (OGD/R) was applied to mimic cerebral ischemia/reperfusion (I/R) injury conditions in vitro. In addition, a rat model of MCAO was established to induce I/R injury. Meanwhile, exosomes were isolated from miR-145-transfected bone marrow MSCs, and then these isolated exosomes were used to treat OGD/R-stimulated BV-2 cell and rats subject to MCAO/R. RESULTS: In this study, we found that miR-145 could be transferred from MSCs to BV2 cells via exosomes. In addition, exosomal miR-145-derived from MSCs was able to shift microglia polarization toward anti-inflammatory M2 phenotype in OGD/R-stimulated BV2 cells. Moreover, exosomal miR-145 markedly suppressed the apoptosis, cell cycle arrest and oxidative stress in OGD/R-treated BV2 cells. Additionally, exosomal miR-145 notably decreased the expression of FOXO1 in BV2 cell exposed to OGD/R and in brain tissues of MCAO rats. Furthermore, exosomal miR-145 remarkably decreased infarct area in MCAO rats. CONCLUSION: Collectively, exosomal miR-145-derived from MSCs was able to attenuate cerebral I/R injury through downregulation of FOXO1. These studies may serve as a potential approach for treating of cerebral I/R injury.


Subject(s)
Brain Injuries , Exosomes , Forkhead Box Protein O1 , Mesenchymal Stem Cells , MicroRNAs , Neuroprotective Agents , Reperfusion Injury , Animals , Rats , Bone Marrow/metabolism , Brain Injuries/metabolism , Down-Regulation , Exosomes/genetics , Exosomes/metabolism , Glucose/metabolism , Infarction, Middle Cerebral Artery/genetics , Infarction, Middle Cerebral Artery/therapy , Infarction, Middle Cerebral Artery/metabolism , Mesenchymal Stem Cells/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Nerve Tissue Proteins/metabolism , Neuroprotective Agents/metabolism , Oxygen/metabolism , Reperfusion Injury/genetics , Reperfusion Injury/therapy , Forkhead Box Protein O1/genetics
17.
Hepatology ; 73(6): 2494-2509, 2021 06.
Article in English | MEDLINE | ID: mdl-32924145

ABSTRACT

BACKGROUND AND AIMS: Liver ischemia/reperfusion injury (IRI) induces local and systemic inflammation in which neutrophil extracellular traps (NETs) are major drivers. IRI markedly augments metastatic growth, which is consistent with the notion that the liver IRI can serve as a premetastatic niche. Exercise training (ExT) confers a sustainable protection, reducing IRI in some animal models, and has been associated with improved survival in patients with cancer; however, the impact of ExT on liver IRI or development of hepatic metastases is unknown. APPROACH AND RESULTS: Mice were randomized into exercise (ExT) and sedentary groups before liver IRI and tumor injection. Computerized dynamic network analysis of 20 inflammatory mediators was used to dissect the sequence of mediator interactions after ischemia/reperfusion (I/R) that induce injury. ExT mice showed a significant decrease in hepatic IRI and tissue necrosis. This coincided with disassembly of complex networks among inflammatory mediators seen in sedentary mice. Neutrophil infiltration and NET formation were decreased in the ExT group, which suppressed the expression of liver endothelial cell adhesion molecules. Concurrently, ExT mice revealed a distinct population of infiltrating macrophages expressing M2 phenotypic genes. In a metastatic model, fewer metastases were present 3 weeks after I/R in the ExT mice, a finding that correlated with a marked increase in tumor-suppressing T cells within the tumor microenvironment. CONCLUSIONS: ExT preconditioning mitigates the inflammatory response to liver IRI, protecting the liver from injury and metastases. In light of these findings, potential may exist for the reduction of liver premetastatic niches induced by liver IRI through the use of ExT as a nonpharmacologic therapy before curative surgical approaches.


Subject(s)
Extracellular Traps/immunology , Inflammation , Liver Diseases , Neoplasm Metastasis , Neutrophil Infiltration/immunology , Physical Conditioning, Animal/methods , Reperfusion Injury , Animals , Cell Proliferation , Disease Models, Animal , Immunity , Inflammation/etiology , Inflammation/immunology , Inflammation/therapy , Liver Diseases/immunology , Liver Diseases/pathology , Liver Diseases/therapy , Mice , Neoplasm Metastasis/immunology , Neoplasm Metastasis/therapy , Protective Factors , Reperfusion Injury/immunology , Reperfusion Injury/pathology , Reperfusion Injury/therapy , Treatment Outcome
18.
Cytotherapy ; 24(5): 489-499, 2022 05.
Article in English | MEDLINE | ID: mdl-35183443

ABSTRACT

BACKGROUND AND AIMS: We have previously reported that outgrowth endothelial cells (OECs) restore cerebral endothelial cell integrity through effective homing to the injury site. This study further investigates whether treatment with OECs can restore blood-brain barrier (BBB) function in settings of ischemia-reperfusion injury both in vitro and in vivo. METHODS: An in vitro model of human BBB was established by co-culture of astrocytes, pericytes, and human brain microvascular endothelial cells (HBMECs) before exposure to oxygen-glucose deprivation alone or followed by reperfusion (OGD±R) in the absence or presence of exogenous OECs. Using a rodent model of middle cerebral artery occlusion (MCAO), we further assessed the therapeutic potential of OECs in vivo. RESULTS: Owing to their prominent antioxidant, proliferative, and migratory properties, alongside their inherent capacity to incorporate into brain vasculature, treatments with OECs attenuated the extent of OGD±R injury on BBB integrity and function, as ascertained by increases in transendothelial electrical resistance and decreases in paracellular flux across the barrier. Similarly, intravenous delivery of OECs also led to better barrier protection in MCAO rats as evidenced by significant decreases in ipsilateral brain edema volumes on day 3 after treatment. Mechanistic studies subsequently showed that treatment with OECs substantially reduced oxidative stress and apoptosis in HBMECs subjected to ischemic damages. CONCLUSION: This experimental study shows that OEC-based cell therapy restores BBB integrity in an effective manner by integrating into resident cerebral microvascular network, suppressing oxidative stress and cellular apoptosis.


Subject(s)
Brain Ischemia , Reperfusion Injury , Animals , Blood-Brain Barrier , Brain Ischemia/therapy , Endothelial Cells , Humans , Infarction, Middle Cerebral Artery/therapy , Ischemia , Rats , Reperfusion Injury/therapy
19.
Metab Brain Dis ; 37(5): 1503-1516, 2022 06.
Article in English | MEDLINE | ID: mdl-35499797

ABSTRACT

Multiple neuronal injury pathways are activated during cerebral ischemia and reperfusion (I/R). This study was designed to decrease potential neuronal injuries by using both transcranial direct current stimulation (tDCS) polarities in cerebral ischemia and its following reperfusion period. Ninety rats were randomly divided into six groups. In the sham group, rats were intact. In the I/R group, global cerebral I/R was only induced. In the I/R + c-tDCS and I/R + a-tDCS groups, cathodal and anodal currents were applied, respectively. In the I/R + c/a-tDCS, cathodal current was used in the cerebral ischemia and anodal in the reperfusion. In the I/R + a/c-tDCS group, cathodal and anodal currents were applied in the I/R, respectively. Hippocampal tissue was used to determine the levels of IL-1ß, TNF-α, NOS, SOD, MDA, and NMDAR. Hot plate and open field tests evaluated sensory and locomotor performances. The cerebral edema was also measured. Histological assessment was assessed by H/E and Nissl staining of the hippocampal CA1 region. All tDCS modes significantly decreased IL-1ß and TNF-α levels, especially in the c/a-tDCS. All tDCS caused a significant decrease in MDA and NOS levels while increasing SOD activity compared to the I/R group, especially in the c/a-tDCS mode. In the c-tDCS and a/c-tDCS groups, the NMDAR level was significantly decreased. The c/a-tDCS group improved sensory and locomotor performances more than other groups receiving tDCS. Furthermore, the least neuronal death was observed in the c/a-tDCS mode. Using two different polarities of tDCS could induce more neuroprotective versus pathophysiological pathways in cerebral I/R, especially in c/a-tDCS mode. HIGHLIGHTS: Multiple pathways of neuronal injury are activated in cerebral ischemia and reperfusion (I/R). Using tDCS could modulate neuroinflammation and oxidative stress pathways in global cerebral I/R. Using c/a-tDCS mode during cerebral I/R causes more neuroprotective effects against neuronal injuries of cerebral I/R.


Subject(s)
Brain Ischemia , Reperfusion Injury , Transcranial Direct Current Stimulation , Animals , Brain Ischemia/therapy , Cerebral Infarction , Rats , Reperfusion , Reperfusion Injury/therapy , Superoxide Dismutase , Tumor Necrosis Factor-alpha/metabolism
20.
Tohoku J Exp Med ; 259(1): 49-55, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36351614

ABSTRACT

This study aimed to investigate whether fecal microbiota transplantation (FMT) provides protection for stroke injury in obese patients. Rats were fed high-fat diet (HFD) for 4 weeks and subjected to middle cerebral artery occlusion (MCAO). After FMT for 30 days, body weight, serum total cholesterol and triglyceride levels, neurological score, brain water content, and cerebral infarction volume were measured. Brain reactive oxygen species, superoxide dismutase and malondialdehyde were detected and the levels of Bcl-2, Bax and cleaved caspase-3 were examined. Rats fed with HFD had higher body weight and higher serum total cholesterol and triglyceride levels. Neurological score was lower, brain water content and cerebral infarction volume were higher in obese rats following MCAO, but FMT improved neurological deficit. Moreover, oxidative stress was enhanced in obese rats following MCAO, but FMT attenuated oxidative stress. Brain Bcl-2 level was lower while Bax and cleaved caspase-3 levels were higher in obese rats following MCAO, but FMT increased brain Bcl-2 level and decreased Bax and cleaved caspase-3 levels. In conclusion, FMT attenuated cerebral ischemic injury in obese rats and the beneficial effects of FMT may be mediated by the attenuation of oxidative stress and apoptosis in the brain.


Subject(s)
Brain Ischemia , Neuroprotective Agents , Reperfusion Injury , Animals , Rats , Caspase 3/metabolism , Caspase 3/pharmacology , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/pharmacology , Fecal Microbiota Transplantation , Neuroprotective Agents/pharmacology , Reperfusion Injury/therapy , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/therapy , Proto-Oncogene Proteins c-bcl-2/metabolism , Oxidative Stress , Apoptosis , Obesity/complications , Obesity/therapy , Body Weight , Water/pharmacology , Triglycerides , Cholesterol , Brain Ischemia/complications , Brain Ischemia/therapy
SELECTION OF CITATIONS
SEARCH DETAIL