Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.553
Filter
Add more filters

Publication year range
1.
N Engl J Med ; 389(17): 1590-1600, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37889107

ABSTRACT

BACKGROUND: Passive immunization with plasma collected from convalescent patients has been regularly used to treat coronavirus disease 2019 (Covid-19). Minimal data are available regarding the use of convalescent plasma in patients with Covid-19-induced acute respiratory distress syndrome (ARDS). METHODS: In this open-label trial, we randomly assigned adult patients with Covid-19-induced ARDS who had been receiving invasive mechanical ventilation for less than 5 days in a 1:1 ratio to receive either convalescent plasma with a neutralizing antibody titer of at least 1:320 or standard care alone. Randomization was stratified according to the time from tracheal intubation to inclusion. The primary outcome was death by day 28. RESULTS: A total of 475 patients underwent randomization from September 2020 through March 2022. Overall, 237 patients were assigned to receive convalescent plasma and 238 to receive standard care. Owing to a shortage of convalescent plasma, a neutralizing antibody titer of 1:160 was administered to 17.7% of the patients in the convalescent-plasma group. Glucocorticoids were administered to 466 patients (98.1%). At day 28, mortality was 35.4% in the convalescent-plasma group and 45.0% in the standard-care group (P = 0.03). In a prespecified analysis, this effect was observed mainly in patients who underwent randomization 48 hours or less after the initiation of invasive mechanical ventilation. Serious adverse events did not differ substantially between the two groups. CONCLUSIONS: The administration of plasma collected from convalescent donors with a neutralizing antibody titer of at least 1:160 to patients with Covid-19-induced ARDS within 5 days after the initiation of invasive mechanical ventilation significantly reduced mortality at day 28. This effect was mainly observed in patients who underwent randomization 48 hours or less after ventilation initiation. (Funded by the Belgian Health Care Knowledge Center; ClinicalTrials.gov number, NCT04558476.).


Subject(s)
COVID-19 Serotherapy , COVID-19 , Respiratory Distress Syndrome , Adult , Humans , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , COVID-19/complications , COVID-19/immunology , COVID-19/therapy , Respiration, Artificial , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/therapy , SARS-CoV-2 , Treatment Outcome
2.
Nature ; 587(7834): 466-471, 2020 11.
Article in English | MEDLINE | ID: mdl-33116313

ABSTRACT

Severe respiratory infections can result in acute respiratory distress syndrome (ARDS)1. There are no effective pharmacological therapies that have been shown to improve outcomes for patients with ARDS. Although the host inflammatory response limits spread of and eventually clears the pathogen, immunopathology is a major contributor to tissue damage and ARDS1,2. Here we demonstrate that respiratory viral infection induces distinct fibroblast activation states, which we term extracellular matrix (ECM)-synthesizing, damage-responsive and interferon-responsive states. We provide evidence that excess activity of damage-responsive lung fibroblasts drives lethal immunopathology during severe influenza virus infection. By producing ECM-remodelling enzymes-in particular the ECM protease ADAMTS4-and inflammatory cytokines, damage-responsive fibroblasts modify the lung microenvironment to promote robust immune cell infiltration at the expense of lung function. In three cohorts of human participants, the levels of ADAMTS4 in the lower respiratory tract were associated with the severity of infection with seasonal or avian influenza virus. A therapeutic agent that targets the ECM protease activity of damage-responsive lung fibroblasts could provide a promising approach to preserving lung function and improving clinical outcomes following severe respiratory infections.


Subject(s)
ADAMTS4 Protein/metabolism , Fibroblasts/enzymology , Fibroblasts/pathology , Influenza A virus/pathogenicity , Lung/pathology , Lung/physiopathology , ADAMTS4 Protein/antagonists & inhibitors , Animals , Birds/virology , Extracellular Matrix/enzymology , Gene Expression Profiling , Humans , Influenza in Birds/virology , Influenza, Human/pathology , Influenza, Human/therapy , Influenza, Human/virology , Interferons/immunology , Interferons/metabolism , Leukocyte Common Antigens/metabolism , Lung/enzymology , Lung/virology , Mice , Respiratory Distress Syndrome/enzymology , Respiratory Distress Syndrome/physiopathology , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/virology , Seasons , Single-Cell Analysis , Stromal Cells/metabolism
3.
Semin Immunol ; 60: 101640, 2022 03.
Article in English | MEDLINE | ID: mdl-35853795

ABSTRACT

Patients in the intensive care unit (ICU) often straddle the divide between life and death. Understanding the complex underlying pathomechanisms relevant to such situations may help intensivists select broadly acting treatment options that can improve the outcome for these patients. As one of the most important defense mechanisms of the innate immune system, the complement system plays a crucial role in a diverse spectrum of diseases that can necessitate ICU admission. Among others, myocardial infarction, acute lung injury/acute respiratory distress syndrome (ARDS), organ failure, and sepsis are characterized by an inadequate complement response, which can potentially be addressed via promising intervention options. Often, ICU monitoring and existing treatment options rely on massive intervention strategies to maintain the function of vital organs, and these approaches can further contribute to an unbalanced complement response. Artificial surfaces of extracorporeal organ support devices, transfusion of blood products, and the application of anticoagulants can all trigger or amplify undesired complement activation. It is, therefore, worth pursuing the evaluation of complement inhibition strategies in the setting of ICU treatment. Recently, clinical studies in COVID-19-related ARDS have shown promising effects of central inhibition at the level of C3 and paved the way for prospective investigation of this approach. In this review, we highlight the fundamental and often neglected role of complement in the ICU, with a special focus on targeted complement inhibition. We will also consider complement substitution therapies to temporarily counteract a disease/treatment-related complement consumption.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , Complement C3 , Prospective Studies , COVID-19/therapy , Intensive Care Units , Respiratory Distress Syndrome/therapy , Complement Activation
4.
Annu Rev Med ; 74: 457-471, 2023 01 27.
Article in English | MEDLINE | ID: mdl-36469902

ABSTRACT

Heterogeneity in sepsis and acute respiratory distress syndrome (ARDS) is increasingly being recognized as one of the principal barriers to finding efficacious targeted therapies. The advent of multiple high-throughput biological data ("omics"), coupled with the widespread access to increased computational power, has led to the emergence of phenotyping in critical care. Phenotyping aims to use a multitude of data to identify homogenous subgroups within an otherwise heterogenous population. Increasingly, phenotyping schemas are being applied to sepsis and ARDS to increase understanding of these clinical conditions and identify potential therapies. Here we present a selective review of the biological phenotyping schemas applied to sepsis and ARDS. Further, we outline some of the challenges involved in translating these conceptual findings to bedside clinical decision-making tools.


Subject(s)
Respiratory Distress Syndrome , Sepsis , Humans , Respiratory Distress Syndrome/therapy
5.
Am J Respir Crit Care Med ; 209(1): 37-47, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37487152

ABSTRACT

Background: Since publication of the 2012 Berlin definition of acute respiratory distress syndrome (ARDS), several developments have supported the need for an expansion of the definition, including the use of high-flow nasal oxygen, the expansion of the use of pulse oximetry in place of arterial blood gases, the use of ultrasound for chest imaging, and the need for applicability in resource-limited settings. Methods: A consensus conference of 32 critical care ARDS experts was convened, had six virtual meetings (June 2021 to March 2022), and subsequently obtained input from members of several critical care societies. The goal was to develop a definition that would 1) identify patients with the currently accepted conceptual framework for ARDS, 2) facilitate rapid ARDS diagnosis for clinical care and research, 3) be applicable in resource-limited settings, 4) be useful for testing specific therapies, and 5) be practical for communication to patients and caregivers. Results: The committee made four main recommendations: 1) include high-flow nasal oxygen with a minimum flow rate of ⩾30 L/min; 2) use PaO2:FiO2 ⩽ 300 mm Hg or oxygen saturation as measured by pulse oximetry SpO2:FiO2 ⩽ 315 (if oxygen saturation as measured by pulse oximetry is ⩽97%) to identify hypoxemia; 3) retain bilateral opacities for imaging criteria but add ultrasound as an imaging modality, especially in resource-limited areas; and 4) in resource-limited settings, do not require positive end-expiratory pressure, oxygen flow rate, or specific respiratory support devices. Conclusions: We propose a new global definition of ARDS that builds on the Berlin definition. The recommendations also identify areas for future research, including the need for prospective assessments of the feasibility, reliability, and prognostic validity of the proposed global definition.


Subject(s)
Respiratory Distress Syndrome , Humans , Prospective Studies , Reproducibility of Results , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/therapy , Oximetry , Oxygen
6.
Am J Respir Crit Care Med ; 209(5): 563-572, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38190718

ABSTRACT

Rationale: Hypoxemia during mechanical ventilation might be worsened by expiratory muscle activity, which reduces end-expiratory lung volume through lung collapse. A proposed mechanism of benefit of neuromuscular blockade in acute respiratory distress syndrome (ARDS) is the abolition of expiratory efforts. This may contribute to the restoration of lung volumes. The prevalence of this phenomenon, however, is unknown. Objectives: To investigate the incidence and amount of end-expiratory lung impedance (EELI) increase after the administration of neuromuscular blocking agents (NMBAs), clinical factors associated with this phenomenon, its impact on regional lung ventilation, and any association with changes in pleural pressure. Methods: We included mechanically ventilated patients with ARDS monitored with electrical impedance tomography (EIT) who received NMBAs in one of two centers. We measured changes in EELI, a surrogate for end-expiratory lung volume, before and after NMBA administration. In an additional 10 patients, we investigated the characteristic signatures of expiratory muscle activity depicted by EIT and esophageal catheters simultaneously. Clinical factors associated with EELI changes were assessed. Measurements and Main Results: We included 46 patients, half of whom showed an increase in EELI of >10% of the corresponding Vt (46.2%; IQR, 23.9-60.9%). The degree of EELI increase correlated positively with fentanyl dosage and negatively with changes in end-expiratory pleural pressures. This suggests that expiratory muscle activity might exert strong counter-effects against positive end-expiratory pressure that are possibly aggravated by fentanyl. Conclusions: Administration of NMBAs during EIT monitoring revealed activity of expiratory muscles in half of patients with ARDS. The resultant increase in EELI had a dose-response relationship with fentanyl dosage. This suggests a potential side effect of fentanyl during protective ventilation.


Subject(s)
Neuromuscular Blocking Agents , Respiratory Distress Syndrome , Humans , Positive-Pressure Respiration/methods , Lung , Respiration, Artificial/methods , Respiratory Distress Syndrome/therapy , Fentanyl/therapeutic use
7.
Am J Respir Crit Care Med ; 209(11): 1304-1313, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38477657

ABSTRACT

Acute respiratory distress syndrome (ARDS) is associated with long-term impairments in brain and muscle function that significantly impact the quality of life of those who survive the acute illness. The mechanisms underlying these impairments are not yet well understood, and evidence-based interventions to minimize the burden on patients remain unproved. The NHLBI of the NIH assembled a workshop in April 2023 to review the state of the science regarding ARDS-associated brain and muscle dysfunction, to identify gaps in current knowledge, and to determine priorities for future investigation. The workshop included presentations by scientific leaders across the translational science spectrum and was open to the public as well as the scientific community. This report describes the themes discussed at the workshop as well as recommendations to advance the field toward the goal of improving the health and well-being of ARDS survivors.


Subject(s)
Respiratory Distress Syndrome , Survivors , Humans , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/physiopathology , United States , National Heart, Lung, and Blood Institute (U.S.) , Quality of Life , Brain/physiopathology
8.
Am J Respir Crit Care Med ; 209(7): 871-878, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38306669

ABSTRACT

Rationale: The epidemiology, management, and outcomes of acute respiratory distress syndrome (ARDS) differ between children and adults, with lower mortality rates in children despite comparable severity of hypoxemia. However, the relationship between age and mortality is unclear.Objective: We aimed to define the association between age and mortality in ARDS, hypothesizing that it would be nonlinear.Methods: We performed a retrospective cohort study using data from two pediatric ARDS observational cohorts (n = 1,236), multiple adult ARDS trials (n = 5,547), and an adult observational ARDS cohort (n = 1,079). We aligned all datasets to meet Berlin criteria. We performed unadjusted and adjusted logistic regression using fractional polynomials to assess the potentially nonlinear relationship between age and 90-day mortality, adjusting for sex, PaO2/FiO2, immunosuppressed status, year of study, and observational versus randomized controlled trial, treating each individual study as a fixed effect.Measurements and Main Results: There were 7,862 subjects with median ages of 4 years in the pediatric cohorts, 52 years in the adult trials, and 61 years in the adult observational cohort. Most subjects (43%) had moderate ARDS by Berlin criteria. Ninety-day mortality was 19% in the pediatric cohorts, 33% in the adult trials, and 67% in the adult observational cohort. We found a nonlinear relationship between age and mortality, with mortality risk increasing at an accelerating rate between 11 and 65 years of age, after which mortality risk increased more slowly.Conclusions: There was a nonlinear relationship between age and mortality in pediatric and adult ARDS.


Subject(s)
Hypoxia , Respiratory Distress Syndrome , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Humans , Middle Aged , Young Adult , Algorithms , Hospital Mortality , Respiratory Distress Syndrome/therapy , Retrospective Studies
9.
Am J Respir Crit Care Med ; 209(5): 543-552, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38051944

ABSTRACT

Rationale: Pulmonary complications contribute significantly to nonrelapse mortality following hematopoietic stem cell transplantation (HCT). Identifying patients at high risk can help enroll such patients into clinical studies to better understand, prevent, and treat posttransplantation respiratory failure syndromes. Objectives: To develop and validate a prediction model to identify those at increased risk of acute respiratory failure after HCT. Methods: Patients underwent HCT between January 1, 2019, and December 31, 2021, at one of three institutions. Those treated in Rochester, MN, formed the derivation cohort, and those treated in Scottsdale, AZ, or Jacksonville, FL, formed the validation cohort. The primary outcome was the development of acute respiratory distress syndrome (ARDS), with secondary outcomes including the need for invasive mechanical ventilation (IMV) and/or noninvasive ventilation (NIV). Predictors were based on prior case-control studies. Measurements and Main Results: Of 2,450 patients undergoing stem cell transplantation, there were 1,718 hospitalizations (888 patients) in the training cohort and 1,005 hospitalizations (470 patients) in the test cohort. A 22-point model was developed, with 11 points from prehospital predictors and 11 points from posttransplantation or early (<24-h) in-hospital predictors. The model performed well in predicting ARDS (C-statistic, 0.905; 95% confidence interval [CI], 0.870-0.941) and the need for IMV and/or NIV (C-statistic, 0.863; 95% CI, 0.828-0.898). The test cohort differed markedly in demographic, medical, and hematologic characteristics. The model also performed well in this setting in predicting ARDS (C-statistic, 0.841; 95% CI, 0.782-0.900) and the need for IMV and/or NIV (C-statistic, 0.872; 95% CI, 0.831-0.914). Conclusions: A novel prediction model incorporating data elements from the pretransplantation, posttransplantation, and early in-hospital domains can reliably predict the development of post-HCT acute respiratory failure.


Subject(s)
Lung Injury , Respiratory Distress Syndrome , Respiratory Insufficiency , Humans , Bone Marrow Transplantation/adverse effects , Lung Injury/complications , Cohort Studies , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/complications , Respiratory Insufficiency/therapy
10.
Am J Respir Crit Care Med ; 210(2): 155-166, 2024 07 15.
Article in English | MEDLINE | ID: mdl-38687499

ABSTRACT

Critical care uses syndromic definitions to describe patient groups for clinical practice and research. There is growing recognition that a "precision medicine" approach is required and that integrated biologic and physiologic data identify reproducible subpopulations that may respond differently to treatment. This article reviews the current state of the field and considers how to successfully transition to a precision medicine approach. To impact clinical care, identification of subpopulations must do more than differentiate prognosis. It must differentiate response to treatment, ideally by defining subgroups with distinct functional or pathobiological mechanisms (endotypes). There are now multiple examples of reproducible subpopulations of sepsis, acute respiratory distress syndrome, and acute kidney or brain injury described using clinical, physiological, and/or biological data. Many of these subpopulations have demonstrated the potential to define differential treatment response, largely in retrospective studies, and that the same treatment-responsive subpopulations may cross multiple clinical syndromes (treatable traits). To bring about a change in clinical practice, a precision medicine approach must be evaluated in prospective clinical studies requiring novel adaptive trial designs. Several such studies are underway, but there are multiple challenges to be tackled. Such subpopulations must be readily identifiable and be applicable to all critically ill populations around the world. Subdividing clinical syndromes into subpopulations will require large patient numbers. Global collaboration of investigators, clinicians, industry, and patients over many years will therefore be required to transition to a precision medicine approach and ultimately realize treatment advances seen in other medical fields.


Subject(s)
Critical Care , Intensive Care Units , Precision Medicine , Humans , Precision Medicine/methods , Critical Care/methods , Critical Care/standards , Consensus , Syndrome , Critical Illness/therapy , Phenotype , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/classification
11.
Am J Respir Crit Care Med ; 210(5): 629-638, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38526489

ABSTRACT

Rationale: Blood flow rate affects mixed venous oxygenation (SvO2) during venovenous extracorporeal membrane oxygenation (ECMO), with possible effects on the pulmonary circulation and the right heart function. Objectives: To describe the physiologic effects of different levels of SvO2 obtained by changing ECMO blood flow in patients with severe acute respiratory distress syndrome receiving ECMO and controlled mechanical ventilation. Methods: Low (SvO2 target, 70-75%), intermediate (SvO2 target, 75-80%), and high (SvO2 target, >80%) ECMO blood flows were applied for 30 minutes in random order in 20 patients. Mechanical ventilation settings were left unchanged. The hemodynamic and pulmonary effects were assessed with pulmonary artery catheter and electrical impedance tomography. Measurements and Main Results: Cardiac output decreased from low to intermediate and to high blood flow/SvO2 (9.2 [6.2-10.9] vs. 8.3 [5.9-9.8] vs. 7.9 [6.5-9.1] L/min; P = 0.014), as well as mean pulmonary artery pressure (34 ± 6 vs. 31 ± 6 vs. 30 ± 5 mm Hg; P < 0.001) and right ventricular stroke work index (14.2 ± 4.4 vs. 12.2 ± 3.6 vs. 11.4 ± 3.2 g × m/beat/m2; P = 0.002). Cardiac output was inversely correlated with mixed venous and arterial Po2 values (R2 = 0.257; P = 0.031; and R2 = 0.324; P = 0.05). Pulmonary artery pressure was correlated with decreasing mixed venous Po2 (R2 = 0.29; P < 0.001) and with increasing cardiac output (R2 = 0.378; P < 0.007). Measures of [Formula: see text]/[Formula: see text] mismatch did not differ between the three steps. Conclusions: In patients with severe acute respiratory distress syndrome, increased ECMO blood flow rate resulting in higher SvO2 decreases pulmonary artery pressure, cardiac output, and right heart workload.


Subject(s)
Extracorporeal Membrane Oxygenation , Respiratory Distress Syndrome , Humans , Extracorporeal Membrane Oxygenation/methods , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/physiopathology , Male , Female , Middle Aged , Adult , Cardiac Output/physiology , Hemodynamics/physiology , Respiration, Artificial/methods , Aged , Pulmonary Circulation/physiology
12.
Am J Respir Crit Care Med ; 209(12): 1441-1452, 2024 06 15.
Article in English | MEDLINE | ID: mdl-38354065

ABSTRACT

Rationale: It is unknown whether preventing overdistention or collapse is more important when titrating positive end-expiratory pressure (PEEP) in acute respiratory distress syndrome (ARDS). Objectives: To compare PEEP targeting minimal overdistention or minimal collapse or using a compromise between collapse and overdistention in a randomized trial and to assess the impact on respiratory mechanics, gas exchange, inflammation, and hemodynamics. Methods: In a porcine model of ARDS, lung collapse and overdistention were estimated using electrical impedance tomography during a decremental PEEP titration. Pigs were randomized to three groups and ventilated for 12 hours: PEEP set at ⩽3% of overdistention (low overdistention), ⩽3% of collapse (low collapse), and the crossing point of collapse and overdistention. Measurements and Main Results: Thirty-six pigs (12 per group) were included. Median (interquartile range) values of PEEP were 7 (6-8), 11 (10-11), and 15 (12-16) cm H2O in the three groups (P < 0.001). With low overdistension, 6 (50%) pigs died, whereas survival was 100% in both other groups. Cause of death was hemodynamic in nature, with high transpulmonary vascular gradient and high epinephrine requirements. Compared with the other groups, pigs surviving with low overdistension had worse respiratory mechanics and gas exchange during the entire protocol. Minimal differences existed between crossing-point and low-collapse animals in physiological parameters, but postmortem alveolar density was more homogeneous in the crossing-point group. Inflammatory markers were not significantly different. Conclusions: PEEP to minimize overdistention resulted in high mortality in an animal model of ARDS. Minimizing collapse or choosing a compromise between collapse and overdistention may result in less lung injury, with potential benefits of the compromise approach.


Subject(s)
Disease Models, Animal , Positive-Pressure Respiration , Respiratory Distress Syndrome , Animals , Swine , Positive-Pressure Respiration/methods , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/physiopathology , Pulmonary Atelectasis/therapy , Pulmonary Atelectasis/physiopathology , Random Allocation , Respiratory Mechanics/physiology , Hemodynamics/physiology , Female , Pulmonary Gas Exchange/physiology
13.
Am J Respir Crit Care Med ; 209(6): 670-682, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38127779

ABSTRACT

Hypoxemic respiratory failure is one of the leading causes of mortality in intensive care. Frequent assessment of individual physiological characteristics and delivery of personalized mechanical ventilation (MV) settings is a constant challenge for clinicians caring for these patients. Electrical impedance tomography (EIT) is a radiation-free bedside monitoring device that is able to assess regional lung ventilation and changes in aeration. With real-time tomographic functional images of the lungs obtained through a thoracic belt, clinicians can visualize and estimate the distribution of ventilation at different ventilation settings or following procedures such as prone positioning. Several studies have evaluated the performance of EIT to monitor the effects of different MV settings in patients with acute respiratory distress syndrome, allowing more personalized MV. For instance, EIT could help clinicians find the positive end-expiratory pressure that represents a compromise between recruitment and overdistension and assess the effect of prone positioning on ventilation distribution. The clinical impact of the personalization of MV remains to be explored. Despite inherent limitations such as limited spatial resolution, EIT also offers a unique noninvasive bedside assessment of regional ventilation changes in the ICU. This technology offers the possibility of a continuous, operator-free diagnosis and real-time detection of common problems during MV. This review provides an overview of the functioning of EIT, its main indices, and its performance in monitoring patients with acute respiratory failure. Future perspectives for use in intensive care are also addressed.


Subject(s)
Respiratory Distress Syndrome , Respiratory Insufficiency , Humans , Electric Impedance , Tomography, X-Ray Computed/methods , Lung , Respiratory Insufficiency/diagnostic imaging , Respiratory Insufficiency/therapy , Tomography/methods , Respiratory Distress Syndrome/diagnostic imaging , Respiratory Distress Syndrome/therapy
14.
Am J Physiol Lung Cell Mol Physiol ; 327(3): L269-L281, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38887793

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a severe lung disease of high mortality (30-50%). Patients require lifesaving supplemental oxygen therapy; however, hyperoxia can induce pulmonary inflammation and cellular damage. Although alveolar macrophages (AMs) are essential for lung immune homeostasis, they become compromised during inflammatory lung injury. To combat this, stem cell-derived alveolar-like macrophages (ALMs) are a prospective therapeutic for lung diseases like ARDS. Using in vitro and in vivo approaches, we investigated the impact of hyperoxia on murine ALMs during acute inflammation. In vitro, ALMs retained their viability, growth, and antimicrobial abilities when cultured at 60% O2, whereas they die at 90% O2. In contrast, ALMs instilled in mouse lungs remained viable during exposure of mice to 90% O2. The ability of the delivered ALMs to phagocytose Pseudomonas aeruginosa was not impaired by exposure to 60 or 90% O2. Furthermore, ALMs remained immunologically stable in a murine model of LPS-induced lung inflammation when exposed to 60 and 90% O2 and effectively attenuated the accumulation of CD11b+ inflammatory cells in the airways. These results support the potential use of ALMs in patients with ARDS receiving supplemental oxygen therapy.NEW & NOTEWORTHY The current findings support the prospective use of stem cell-derived alveolar-like macrophages (ALMs) as a therapeutic for inflammatory lung disease such as acute respiratory distress syndrome (ARDS) during supplemental oxygen therapy where lungs are exposed to high levels of oxygen. Alveolar-like macrophages directly delivered to mouse lungs were found to remain viable, immunologically stable, phagocytic toward live Pseudomonas aeruginosa, and effective in reducing CD11b+ inflammatory cell numbers in LPS-challenged lungs during moderate and extreme hyperoxic exposure.


Subject(s)
Disease Models, Animal , Hyperoxia , Lipopolysaccharides , Macrophages, Alveolar , Pneumonia , Pseudomonas aeruginosa , Animals , Hyperoxia/complications , Macrophages, Alveolar/immunology , Macrophages, Alveolar/pathology , Macrophages, Alveolar/metabolism , Mice , Pneumonia/pathology , Pneumonia/chemically induced , Pneumonia/immunology , Pneumonia/therapy , Mice, Inbred C57BL , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/chemically induced , Phagocytosis , Male , Lung/pathology , Lung/immunology
15.
Clin Immunol ; 258: 109872, 2024 01.
Article in English | MEDLINE | ID: mdl-38113963

ABSTRACT

Pulmonary and extrapulmonary acute respiratory distress syndrome (ARDS) is a life-threatening respiratory failure associated with high mortality. Despite progress in our understanding of the pathological mechanism causing the crippling illness, there are currently no targeted pharmaceutical treatments available for it. Recent discoveries have emphasized the existence of a potential nexus between gut and lung health fueling novel approaches including probiotics for the treatment of ARDS. We thus investigated the prophylactic-potential of Lactobacillus rhamnosus-(LR) in lipopolysaccharide (LPS)-induced pulmonary and cecal ligation puncture (CLP) induced extrapulmonary ARDS mice. Our in-vivo findings revealed that pretreatment with LR significantly ameliorated vascular-permeability (edema) of the lungs via modulating the neutrophils along with significantly reducing the expression of inflammatory-cytokines in the BALF, lungs and serum in both pulmonary and extrapulmonary mice-models. Interestingly, our ex-vivo immunofluorescence and flow cytometric data suggested that mechanistically LR via short chain fatty acids (butyrate being the most potent and efficient in ameliorating the pathophysiology of both pulmonary and extra-pulmonary ARDS) targets the phagocytic and neutrophils extracellular traps (NETs) releasing potential of neutrophils. Moreover, our in-vivo data further corroborated our ex-vivo findings and suggested that butyrate exhibits enhanced potential in ameliorating the pathophysiology of ARDS via reducing the infiltration of neutrophils into the lungs. Altogether, our study establishes the prophylactic role of LR and its associated metabolites in the prevention and management of both pulmonary and extrapulmonary ARDS via targeting neutrophils.


Subject(s)
Lacticaseibacillus rhamnosus , Respiratory Distress Syndrome , Animals , Mice , Neutrophils/metabolism , Lung/pathology , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/etiology , Butyrates/metabolism , Lipopolysaccharides
16.
Annu Rev Med ; 73: 95-111, 2022 01 27.
Article in English | MEDLINE | ID: mdl-34520220

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has posed unprecedented challenges in critical care medicine, including extreme demand for intensive care unit (ICU) resources and rapidly evolving understanding of a novel disease. Up to one-third of hospitalized patients with COVID-19 experience critical illness. The most common form of organ failure in COVID-19 critical illness is acute hypoxemic respiratory failure, which clinically presents as acute respiratory distress syndrome (ARDS) in three-quarters of ICU patients. Noninvasive respiratory support modalities are being used with increasing frequency given their potential to reduce the need for intubation. Determining optimal patient selection for and timing of intubation remains a challenge. Management of mechanically ventilated patients with COVID-19 largely mirrors that of non-COVID-19 ARDS. Organ failure is common and portends a poor prognosis. Mortality rates have improved over the course of the pandemic, likely owing to increasing disease familiarity, data-driven pharmacologics, and improved adherence to evidence-based critical care.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Critical Illness , Humans , Pandemics , Respiratory Distress Syndrome/epidemiology , Respiratory Distress Syndrome/therapy , SARS-CoV-2
17.
N Engl J Med ; 384(14): 1301-1311, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33471452

ABSTRACT

BACKGROUND: Patients with acute hypoxemic respiratory failure in the intensive care unit (ICU) are treated with supplemental oxygen, but the benefits and harms of different oxygenation targets are unclear. We hypothesized that using a lower target for partial pressure of arterial oxygen (Pao2) would result in lower mortality than using a higher target. METHODS: In this multicenter trial, we randomly assigned 2928 adult patients who had recently been admitted to the ICU (≤12 hours before randomization) and who were receiving at least 10 liters of oxygen per minute in an open system or had a fraction of inspired oxygen of at least 0.50 in a closed system to receive oxygen therapy targeting a Pao2 of either 60 mm Hg (lower-oxygenation group) or 90 mm Hg (higher-oxygenation group) for a maximum of 90 days. The primary outcome was death within 90 days. RESULTS: At 90 days, 618 of 1441 patients (42.9%) in the lower-oxygenation group and 613 of 1447 patients (42.4%) in the higher-oxygenation group had died (adjusted risk ratio, 1.02; 95% confidence interval, 0.94 to 1.11; P = 0.64). At 90 days, there was no significant between-group difference in the percentage of days that patients were alive without life support or in the percentage of days they were alive after hospital discharge. The percentages of patients who had new episodes of shock, myocardial ischemia, ischemic stroke, or intestinal ischemia were similar in the two groups (P = 0.24). CONCLUSIONS: Among adult patients with acute hypoxemic respiratory failure in the ICU, a lower oxygenation target did not result in lower mortality than a higher target at 90 days. (Funded by the Innovation Fund Denmark and others; HOT-ICU ClinicalTrials.gov number, NCT03174002.).


Subject(s)
Oxygen Inhalation Therapy/methods , Oxygen/administration & dosage , Oxygen/blood , Respiratory Insufficiency/therapy , Aged , Female , Humans , Hypoxia/blood , Hypoxia/etiology , Hypoxia/therapy , Intensive Care Units , Kaplan-Meier Estimate , Male , Middle Aged , Respiration, Artificial/methods , Respiratory Distress Syndrome/blood , Respiratory Distress Syndrome/mortality , Respiratory Distress Syndrome/therapy , Respiratory Insufficiency/blood , Respiratory Insufficiency/complications , Respiratory Insufficiency/mortality
18.
Crit Care Med ; 52(8): 1275-1284, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38635486

ABSTRACT

OBJECTIVES: Mortality due to acute respiratory distress syndrome (ARDS) is a major global health problem. Knowledge of epidemiological data on ARDS is crucial to design management, treatment strategies, and optimize resources. There is ample data regarding mortality of ARDS from high-income countries; in this review, we evaluated mortality due to ARDS in Latin America. DATA SOURCES: We searched in PubMed, Cochrane Central Register of Controlled Trials, Web of Science, and Latin American and Caribbean Health Science Literature databases from 1967 to March 2023. STUDY SELECTION: We searched prospective or retrospective observational studies and randomized controlled trials conducted in Latin American countries reporting ARDS mortality. DATA EXTRACTION: Three pairs of independent reviewers checked all studies for eligibility based on their titles and abstracts. We performed meta-analysis of proportions using a random-effects model. We performed sensitivity analyses including studies with low risk of bias and with diagnosis using the Berlin definition. Subgroup analysis comparing different study designs, time of publication (up to 2000 and from 2001 to present), and studies in which the diagnosis of ARDS was made using Pa o2 /F io2 less than or equal to 200 and regional variations. Subsequently, we performed meta-regression analyses. Finally, we graded the certainty of the evidence (Grading of Recommendations Assessment, Development, and Evaluation). DATA SYNTHESIS: Of 3315 articles identified, 32 were included (3627 patients). Mortality was 52% in the pooled group (low certainty of evidence). In the sensitivity analysis (according to the Berlin definition), mortality was 46% (moderate certainty of evidence). In the subgroup analysis mortality was 53% (randomized controlled trials), 51% (observational studies), 66% (studies published up to 2000), 50% (studies after 2000), 44% (studies with Pa o2 /F io2 ≤ 200), 56% (studies from Argentina/Brazil), and 40% (others countries). No variables were associated with mortality in the meta-regression. CONCLUSIONS: ARDS mortality in Latin America remains high, as in other regions. These results should constitute the basis for action planning to improve the prognosis of patients with ARDS (PROSPERO [CRD42022354035]).


Subject(s)
Respiratory Distress Syndrome , Humans , Latin America/epidemiology , Respiratory Distress Syndrome/mortality , Respiratory Distress Syndrome/therapy
19.
Crit Care Med ; 52(5): 743-751, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38214566

ABSTRACT

OBJECTIVES: Ventilator dyssynchrony may be associated with increased delivered tidal volumes (V t s) and dynamic transpulmonary pressure (ΔP L,dyn ), surrogate markers of lung stress and strain, despite low V t ventilation. However, it is unknown which types of ventilator dyssynchrony are most likely to increase these metrics or if specific ventilation or sedation strategies can mitigate this potential. DESIGN: A prospective cohort analysis to delineate the association between ten types of breaths and delivered V t , ΔP L,dyn , and transpulmonary mechanical energy. SETTING: Patients admitted to the medical ICU. PATIENTS: Over 580,000 breaths from 35 patients with acute respiratory distress syndrome (ARDS) or ARDS risk factors. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Patients received continuous esophageal manometry. Ventilator dyssynchrony was identified using a machine learning algorithm. Mixed-effect models predicted V t , ΔP L,dyn , and transpulmonary mechanical energy for each type of ventilator dyssynchrony while controlling for repeated measures. Finally, we described how V t , positive end-expiratory pressure (PEEP), and sedation (Richmond Agitation-Sedation Scale) strategies modify ventilator dyssynchrony's association with these surrogate markers of lung stress and strain. Double-triggered breaths were associated with the most significant increase in V t , ΔP L,dyn , and transpulmonary mechanical energy. However, flow-limited, early reverse-triggered, and early ventilator-terminated breaths were also associated with significant increases in V t , ΔP L,dyn , and energy. The potential of a ventilator dyssynchrony type to increase V t , ΔP L,dyn , or energy clustered similarly. Increasing set V t may be associated with a disproportionate increase in high-volume and high-energy ventilation from double-triggered breaths, but PEEP and sedation do not clinically modify the interaction between ventilator dyssynchrony and surrogate markers of lung stress and strain. CONCLUSIONS: Double-triggered, flow-limited, early reverse-triggered, and early ventilator-terminated breaths are associated with increases in V t , ΔP L,dyn , and energy. As flow-limited breaths are more than twice as common as double-triggered breaths, further work is needed to determine the interaction of ventilator dyssynchrony frequency to cause clinically meaningful changes in patient outcomes.


Subject(s)
Respiration, Artificial , Respiratory Distress Syndrome , Humans , Respiration, Artificial/adverse effects , Prospective Studies , Ventilators, Mechanical , Tidal Volume , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/etiology , Biomarkers
20.
Crit Care Med ; 52(10): 1602-1611, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38920618

ABSTRACT

OBJECTIVES: Despite the recommendation for lung-protective mechanical ventilation (LPMV) in pediatric acute respiratory distress syndrome (PARDS), there is a lack of robust supporting data and variable adherence in clinical practice. This study evaluates the impact of an LPMV protocol vs. standard care and adherence to LPMV elements on mortality. We hypothesized that LPMV strategies deployed as a pragmatic protocol reduces mortality in PARDS. DESIGN: Multicenter prospective before-and-after comparison design study. SETTING: Twenty-one PICUs. PATIENTS: Patients fulfilled the Pediatric Acute Lung Injury Consensus Conference 2015 definition of PARDS and were on invasive mechanical ventilation. INTERVENTIONS: The LPMV protocol included a limit on peak inspiratory pressure (PIP), delta/driving pressure (DP), tidal volume, positive end-expiratory pressure (PEEP) to F io2 combinations of the low PEEP acute respiratory distress syndrome network table, permissive hypercarbia, and conservative oxygen targets. MEASUREMENTS AND MAIN RESULTS: There were 285 of 693 (41·1%) and 408 of 693 (58·9%) patients treated with and without the LPMV protocol, respectively. Median age and oxygenation index was 1.5 years (0.4-5.3 yr) and 10.9 years (7.0-18.6 yr), respectively. There was no difference in 60-day mortality between LPMV and non-LPMV protocol groups (65/285 [22.8%] vs. 115/406 [28.3%]; p = 0.104). However, total adherence score did improve in the LPMV compared to non-LPMV group (57.1 [40.0-66.7] vs. 47.6 [31.0-58.3]; p < 0·001). After adjusting for confounders, adherence to LPMV strategies (adjusted hazard ratio, 0.98; 95% CI, 0.97-0.99; p = 0.004) but not the LPMV protocol itself was associated with a reduced risk of 60-day mortality. Adherence to PIP, DP, and PEEP/F io2 combinations were associated with reduced mortality. CONCLUSIONS: Adherence to LPMV elements over the first week of PARDS was associated with reduced mortality. Future work is needed to improve implementation of LPMV in order to improve adherence.


Subject(s)
Respiration, Artificial , Respiratory Distress Syndrome , Humans , Prospective Studies , Female , Male , Child , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/mortality , Respiration, Artificial/methods , Infant , Child, Preschool , Positive-Pressure Respiration/methods , Intensive Care Units, Pediatric , Adolescent , Controlled Before-After Studies , Tidal Volume
SELECTION OF CITATIONS
SEARCH DETAIL