Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.597
Filter
Add more filters

Publication year range
1.
Annu Rev Biochem ; 92: 385-410, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37127263

ABSTRACT

Carbon fixation is the process by which CO2 is converted from a gas into biomass. The Calvin-Benson-Bassham cycle (CBB) is the dominant carbon-consuming pathway on Earth, driving >99.5% of the ∼120 billion tons of carbon that are converted to sugar by plants, algae, and cyanobacteria. The carboxylase enzyme in the CBB, ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco), fixes one CO2 molecule per turn of the cycle into bioavailable sugars. Despite being critical to the assimilation of carbon, rubisco's kinetic rate is not very fast, limiting flux through the pathway. This bottleneck presents a paradox: Why has rubisco not evolved to be a better catalyst? Many hypothesize that the catalytic mechanism of rubisco is subject to one or more trade-offs and that rubisco variants have been optimized for their native physiological environment. Here, we review the evolution and biochemistry of rubisco through the lens of structure and mechanism in order to understand what trade-offs limit its improvement. We also review the many attempts to improve rubisco itself and thereby promote plant growth.


Subject(s)
Carbon Dioxide , Ribulose-Bisphosphate Carboxylase , Ribulose-Bisphosphate Carboxylase/genetics , Ribulose-Bisphosphate Carboxylase/chemistry , Ribulose-Bisphosphate Carboxylase/metabolism , Carbon Dioxide/metabolism , Photosynthesis
2.
Proc Natl Acad Sci U S A ; 121(11): e2321050121, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38442173

ABSTRACT

Rubisco is the primary entry point for carbon into the biosphere. However, rubisco is widely regarded as inefficient leading many to question whether the enzyme can adapt to become a better catalyst. Through a phylogenetic investigation of the molecular and kinetic evolution of Form I rubisco we uncover the evolutionary trajectory of rubisco kinetic evolution in angiosperms. We show that rbcL is among the 1% of slowest-evolving genes and enzymes on Earth, accumulating one nucleotide substitution every 0.9 My and one amino acid mutation every 7.2 My. Despite this, rubisco catalysis has been continually evolving toward improved CO2/O2 specificity, carboxylase turnover, and carboxylation efficiency. Consistent with this kinetic adaptation, increased rubisco evolution has led to a concomitant improvement in leaf-level CO2 assimilation. Thus, rubisco has been slowly but continually evolving toward improved catalytic efficiency and CO2 assimilation in plants.


Subject(s)
Carbon Dioxide , Ribulose-Bisphosphate Carboxylase , Ribulose-Bisphosphate Carboxylase/genetics , Phylogeny , Amino Acids , Catalysis
3.
Proc Natl Acad Sci U S A ; 121(4): e2311013121, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38241434

ABSTRACT

The pyrenoid is a chloroplastic microcompartment in which most algae and some terrestrial plants condense the primary carboxylase, Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) as part of a CO2-concentrating mechanism that improves the efficiency of CO2 capture. Engineering a pyrenoid-based CO2-concentrating mechanism (pCCM) into C3 crop plants is a promising strategy to enhance yield capacities and resilience to the changing climate. Many pyrenoids are characterized by a sheath of starch plates that is proposed to act as a barrier to limit CO2 diffusion. Recently, we have reconstituted a phase-separated "proto-pyrenoid" Rubisco matrix in the model C3 plant Arabidopsis thaliana using proteins from the alga with the most well-studied pyrenoid, Chlamydomonas reinhardtii [N. Atkinson, Y. Mao, K. X. Chan, A. J. McCormick, Nat. Commun. 11, 6303 (2020)]. Here, we describe the impact of introducing the Chlamydomonas proteins StArch Granules Abnormal 1 (SAGA1) and SAGA2, which are associated with the regulation of pyrenoid starch biogenesis and morphology. We show that SAGA1 localizes to the proto-pyrenoid in engineered Arabidopsis plants, which results in the formation of atypical spherical starch granules enclosed within the proto-pyrenoid condensate and adjacent plate-like granules that partially cover the condensate, but without modifying the total amount of chloroplastic starch accrued. Additional expression of SAGA2 further increases the proportion of starch synthesized as adjacent plate-like granules that fully encircle the proto-pyrenoid. Our findings pave the way to assembling a diffusion barrier as part of a functional pCCM in vascular plants, while also advancing our understanding of the roles of SAGA1 and SAGA2 in starch sheath formation and broadening the avenues for engineering starch morphology.


Subject(s)
Arabidopsis , Chlamydomonas reinhardtii , Arabidopsis/genetics , Arabidopsis/metabolism , Ribulose-Bisphosphate Carboxylase/genetics , Ribulose-Bisphosphate Carboxylase/metabolism , Carbon Dioxide/metabolism , Chloroplasts/metabolism , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism , Photosynthesis , Starch/metabolism
4.
Proc Natl Acad Sci U S A ; 121(16): e2311390121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38593075

ABSTRACT

Many organisms that utilize the Calvin-Benson-Bassham (CBB) cycle for autotrophic growth harbor metabolic pathways to remove and/or salvage 2-phosphoglycolate, the product of the oxygenase activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). It has been presumed that the occurrence of 2-phosphoglycolate salvage is linked to the CBB cycle, and in particular, the C2 pathway to the CBB cycle and oxygenic photosynthesis. Here, we examined 2-phosphoglycolate salvage in the hyperthermophilic archaeon Thermococcus kodakarensis, an obligate anaerobe that harbors a Rubisco that functions in the pentose bisphosphate pathway. T. kodakarensis harbors enzymes that have the potential to convert 2-phosphoglycolate to glycine and serine, and their genes were identified by biochemical and/or genetic analyses. 2-phosphoglycolate phosphatase activity increased 1.6-fold when cells were grown under microaerobic conditions compared to anaerobic conditions. Among two candidates, TK1734 encoded a phosphatase specific for 2-phosphoglycolate, and the enzyme was responsible for 80% of the 2-phosphoglycolate phosphatase activity in T. kodakarensis cells. The TK1734 disruption strain displayed growth impairment under microaerobic conditions, which was relieved upon addition of sodium sulfide. In addition, glycolate was detected in the medium when T. kodakarensis was grown under microaerobic conditions. The results suggest that T. kodakarensis removes 2-phosphoglycolate via a phosphatase reaction followed by secretion of glycolate to the medium. As the Rubisco in T. kodakarensis functions in the pentose bisphosphate pathway and not in the CBB cycle, mechanisms to remove 2-phosphoglycolate in this archaeon emerged independent of the CBB cycle.


Subject(s)
Archaea , Ribulose-Bisphosphate Carboxylase , Ribulose-Bisphosphate Carboxylase/genetics , Ribulose-Bisphosphate Carboxylase/metabolism , Archaea/metabolism , Photosynthesis , Glycolates/metabolism , Phosphoric Monoester Hydrolases/metabolism , Oxygenases/metabolism , Pentoses
5.
Proc Natl Acad Sci U S A ; 121(10): e2318542121, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38408230

ABSTRACT

Pyrenoids are microcompartments that are universally found in the photosynthetic plastids of various eukaryotic algae. They contain ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and play a pivotal role in facilitating CO2 assimilation via CO2-concentrating mechanisms (CCMs). Recent investigations involving model algae have revealed that pyrenoid-associated proteins participate in pyrenoid biogenesis and CCMs. However, these organisms represent only a small part of algal lineages, which limits our comprehensive understanding of the diversity and evolution of pyrenoid-based CCMs. Here we report a pyrenoid proteome of the chlorarachniophyte alga Amorphochlora amoebiformis, which possesses complex plastids acquired through secondary endosymbiosis with green algae. Proteomic analysis using mass spectrometry resulted in the identification of 154 potential pyrenoid components. Subsequent localization experiments demonstrated the specific targeting of eight proteins to pyrenoids. These included a putative Rubisco-binding linker, carbonic anhydrase, membrane transporter, and uncharacterized GTPase proteins. Notably, most of these proteins were unique to this algal lineage. We suggest a plausible scenario in which pyrenoids in chlorarachniophytes have evolved independently, as their components are not inherited from green algal pyrenoids.


Subject(s)
Carbon Dioxide , Chlorophyta , Carbon Dioxide/metabolism , Ribulose-Bisphosphate Carboxylase/genetics , Ribulose-Bisphosphate Carboxylase/metabolism , Proteomics , Plastids/metabolism , Photosynthesis/genetics , Chlorophyta/genetics , Chlorophyta/metabolism , Plants/metabolism
6.
Semin Cell Dev Biol ; 155(Pt A): 37-47, 2024 03 01.
Article in English | MEDLINE | ID: mdl-37085353

ABSTRACT

Rubisco catalyses the entry of almost all CO2 into the biosphere and is often the rate-limiting step in plant photosynthesis and growth. Its notoriety as the most abundant protein on Earth stems from the slow and error-prone catalytic properties that require plants, cyanobacteria, algae and photosynthetic bacteria to produce it in high amounts. Efforts to improve the CO2-fixing properties of plant Rubisco has been spurred on by the discovery of more effective isoforms in some algae with the potential to significantly improve crop productivity. Incompatibilities between the protein folding machinery of leaf and algae chloroplasts have, so far, prevented efforts to transplant these more effective Rubisco variants into plants. There is therefore increasing interest in improving Rubisco catalysis by directed (laboratory) evolution. Here we review the advances being made in, and the ongoing challenges with, improving the solubility and/or carboxylation activity of differing non-plant Rubisco lineages. We provide perspectives on new opportunities for the directed evolution of crop Rubiscos and the existing plant transformation capabilities available to evaluate the extent to which Rubisco activity improvements can benefit agricultural productivity.


Subject(s)
Carbon Dioxide , Ribulose-Bisphosphate Carboxylase , Ribulose-Bisphosphate Carboxylase/genetics , Plant Leaves , Protein Folding
7.
Plant Cell ; 35(2): 795-807, 2023 02 20.
Article in English | MEDLINE | ID: mdl-36471570

ABSTRACT

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) performs most of the carbon fixation on Earth. However, plant Rubisco is an intrinsically inefficient enzyme given its low carboxylation rate, representing a major limitation to photosynthesis. Replacing endogenous plant Rubisco with a faster Rubisco is anticipated to enhance crop photosynthesis and productivity. However, the requirement of chaperones for Rubisco expression and assembly has obstructed the efficient production of functional foreign Rubisco in chloroplasts. Here, we report the engineering of a Form 1A Rubisco from the proteobacterium Halothiobacillus neapolitanus in Escherichia coli and tobacco (Nicotiana tabacum) chloroplasts without any cognate chaperones. The native tobacco gene encoding Rubisco large subunit was genetically replaced with H. neapolitanus Rubisco (HnRubisco) large and small subunit genes. We show that HnRubisco subunits can form functional L8S8 hexadecamers in tobacco chloroplasts at high efficiency, accounting for ∼40% of the wild-type tobacco Rubisco content. The chloroplast-expressed HnRubisco displayed a ∼2-fold greater carboxylation rate and supported a similar autotrophic growth rate of transgenic plants to that of wild-type in air supplemented with 1% CO2. This study represents a step toward the engineering of a fast and highly active Rubisco in chloroplasts to improve crop photosynthesis and growth.


Subject(s)
Nicotiana , Ribulose-Bisphosphate Carboxylase , Nicotiana/metabolism , Ribulose-Bisphosphate Carboxylase/genetics , Ribulose-Bisphosphate Carboxylase/metabolism , Photosynthesis/genetics , Chloroplasts/metabolism , Plants, Genetically Modified/metabolism , Carbon Dioxide/metabolism
8.
Proc Natl Acad Sci U S A ; 120(25): e2304833120, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37311001

ABSTRACT

The slow kinetics and poor substrate specificity of the key photosynthetic CO2-fixing enzyme Rubisco have prompted the repeated evolution of Rubisco-containing biomolecular condensates known as pyrenoids in the majority of eukaryotic microalgae. Diatoms dominate marine photosynthesis, but the interactions underlying their pyrenoids are unknown. Here, we identify and characterize the Rubisco linker protein PYCO1 from Phaeodactylum tricornutum. PYCO1 is a tandem repeat protein containing prion-like domains that localizes to the pyrenoid. It undergoes homotypic liquid-liquid phase separation (LLPS) to form condensates that specifically partition diatom Rubisco. Saturation of PYCO1 condensates with Rubisco greatly reduces the mobility of droplet components. Cryo-electron microscopy and mutagenesis data revealed the sticker motifs required for homotypic and heterotypic phase separation. Our data indicate that the PYCO1-Rubisco network is cross-linked by PYCO1 stickers that oligomerize to bind to the small subunits lining the central solvent channel of the Rubisco holoenzyme. A second sticker motif binds to the large subunit. Pyrenoidal Rubisco condensates are highly diverse and tractable models of functional LLPS.


Subject(s)
Diatoms , Prions , Ribulose-Bisphosphate Carboxylase/genetics , Cryoelectron Microscopy , Biomolecular Condensates , Diatoms/genetics
9.
Plant J ; 118(4): 940-952, 2024 May.
Article in English | MEDLINE | ID: mdl-38321620

ABSTRACT

The introduction of the carboxysome-based CO2 concentrating mechanism (CCM) into crop plants has been modelled to significantly increase crop yields. This projection serves as motivation for pursuing this strategy to contribute to global food security. The successful implementation of this engineering challenge is reliant upon the transfer of a microcompartment that encapsulates cyanobacterial Rubisco, known as the carboxysome, alongside active bicarbonate transporters. To date, significant progress has been achieved with respect to understanding various aspects of the cyanobacterial CCM, and more recently, different components of the carboxysome have been successfully introduced into plant chloroplasts. In this Perspective piece, we summarise recent findings and offer new research avenues that will accelerate research in this field to ultimately and successfully introduce the carboxysome into crop plants for increased crop yields.


Subject(s)
Carbon Dioxide , Chloroplasts , Crops, Agricultural , Ribulose-Bisphosphate Carboxylase , Carbon Dioxide/metabolism , Chloroplasts/metabolism , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism , Ribulose-Bisphosphate Carboxylase/genetics , Photosynthesis/physiology , Cyanobacteria/metabolism , Cyanobacteria/physiology , Cyanobacteria/genetics , Plants, Genetically Modified
10.
Mol Cell ; 67(5): 744-756.e6, 2017 Sep 07.
Article in English | MEDLINE | ID: mdl-28803776

ABSTRACT

How AAA+ chaperones conformationally remodel specific target proteins in an ATP-dependent manner is not well understood. Here, we investigated the mechanism of the AAA+ protein Rubisco activase (Rca) in metabolic repair of the photosynthetic enzyme Rubisco, a complex of eight large (RbcL) and eight small (RbcS) subunits containing eight catalytic sites. Rubisco is prone to inhibition by tight-binding sugar phosphates, whose removal is catalyzed by Rca. We engineered a stable Rca hexamer ring and analyzed its functional interaction with Rubisco. Hydrogen/deuterium exchange and chemical crosslinking showed that Rca structurally destabilizes elements of the Rubisco active site with remarkable selectivity. Cryo-electron microscopy revealed that Rca docks onto Rubisco over one active site at a time, positioning the C-terminal strand of RbcL, which stabilizes the catalytic center, for access to the Rca hexamer pore. The pulling force of Rca is fine-tuned to avoid global destabilization and allow for precise enzyme repair.


Subject(s)
Bacterial Proteins/metabolism , Molecular Chaperones/metabolism , Plant Proteins/metabolism , Rhodobacter sphaeroides/enzymology , Ribulose-Bisphosphate Carboxylase/metabolism , Tissue Plasminogen Activator/metabolism , Adenosine Triphosphate/metabolism , Allosteric Regulation , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Binding Sites , Catalytic Domain , Cross-Linking Reagents/chemistry , Deuterium Exchange Measurement , Enzyme Stability , Molecular Chaperones/chemistry , Molecular Chaperones/genetics , Molecular Docking Simulation , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Quaternary , Protein Subunits , Rhodobacter sphaeroides/genetics , Ribulose-Bisphosphate Carboxylase/chemistry , Ribulose-Bisphosphate Carboxylase/genetics , Structure-Activity Relationship , Time Factors , Tissue Plasminogen Activator/chemistry , Tissue Plasminogen Activator/genetics
11.
Plant J ; 113(6): 1278-1294, 2023 03.
Article in English | MEDLINE | ID: mdl-36648196

ABSTRACT

Saccharum spontaneum and Saccharum officinarum contributed to the genetic background of modern sugarcane cultivars. Saccharum spontaneum has shown a higher net photosynthetic rate and lower soluble sugar than S. officinarum. Here, we analyzed 198 RNA-sequencing samples to investigate the molecular mechanisms for the divergences of photosynthesis and sugar accumulation between the two Saccharum species. We constructed gene co-expression networks based on differentially expressed genes (DEGs) both for leaf developmental gradients and diurnal rhythm. Our results suggested that the divergence of sugar accumulation may be attributed to the enrichment of major carbohydrate metabolism and the oxidative pentose phosphate pathway. Compared with S. officinarum, S. spontaneum DEGs showed a high enrichment of photosynthesis and contained more complex regulation of photosynthesis-related genes. Noticeably, S. spontaneum lacked gene interactions with sulfur assimilation stimulated by photorespiration. In S. spontaneum, core genes related to clock and photorespiration displayed a sensitive regulation by the diurnal rhythm and phase-shift. Small subunit of Rubisco (RBCS) displayed higher expression in the source tissues of S. spontaneum. Additionally, it was more sensitive under a diurnal rhythm, and had more complex gene networks than that in S. officinarum. This indicates that the differential regulation of RBCS Rubisco contributed to photosynthesis capacity divergence in both Saccharum species.


Subject(s)
Saccharum , Saccharum/genetics , Saccharum/metabolism , Transcriptome , Ribulose-Bisphosphate Carboxylase/genetics , Ribulose-Bisphosphate Carboxylase/metabolism , Photosynthesis/genetics , Sugars/metabolism
12.
EMBO J ; 39(18): e104081, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32500941

ABSTRACT

CO2 is converted into biomass almost solely by the enzyme rubisco. The poor carboxylation properties of plant rubiscos have led to efforts that made it the most kinetically characterized enzyme, yet these studies focused on < 5% of its natural diversity. Here, we searched for fast-carboxylating variants by systematically mining genomic and metagenomic data. Approximately 33,000 unique rubisco sequences were identified and clustered into ≈ 1,000 similarity groups. We then synthesized, purified, and biochemically tested the carboxylation rates of 143 representatives, spanning all clusters of form-II and form-II/III rubiscos. Most variants (> 100) were active in vitro, with the fastest having a turnover number of 22 ± 1 s-1 -sixfold faster than the median plant rubisco and nearly twofold faster than the fastest measured rubisco to date. Unlike rubiscos from plants and cyanobacteria, the fastest variants discovered here are homodimers and exhibit a much simpler folding and activation kinetics. Our pipeline can be utilized to explore the kinetic space of other enzymes of interest, allowing us to get a better view of the biosynthetic potential of the biosphere.


Subject(s)
Data Mining , Databases, Nucleic Acid , Ribulose-Bisphosphate Carboxylase , Isoenzymes/classification , Isoenzymes/genetics , Ribulose-Bisphosphate Carboxylase/classification , Ribulose-Bisphosphate Carboxylase/genetics
13.
Plant Cell ; 33(5): 1706-1727, 2021 07 02.
Article in English | MEDLINE | ID: mdl-33625514

ABSTRACT

Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) is present in all photosynthetic organisms and is a key enzyme for photosynthesis-driven life on Earth. Its most prominent form is a hetero-oligomer in which small subunits (SSU) stabilize the core of the enzyme built from large subunits (LSU), yielding, after a chaperone-assisted multistep assembly process, an LSU8SSU8 hexadecameric holoenzyme. Here we use Chlamydomonas reinhardtii and a combination of site-directed mutants to dissect the multistep biogenesis pathway of Rubisco in vivo. We identify assembly intermediates, in two of which LSU are associated with the RAF1 chaperone. Using genetic and biochemical approaches we further unravel a major regulation process during Rubisco biogenesis, in which LSU translation is controlled by its ability to assemble with the SSU, via the mechanism of control by epistasy of synthesis (CES). Altogether this leads us to propose a model whereby the last assembly intermediate, an LSU8-RAF1 complex, provides the platform for SSU binding to form the Rubisco enzyme, and when SSU is not available, converts to a key regulatory form that exerts negative feedback on the initiation of LSU translation.


Subject(s)
Chlamydomonas reinhardtii/enzymology , Protein Biosynthesis , Protein Multimerization , Protein Subunits/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism , 5' Untranslated Regions/genetics , Down-Regulation , Models, Biological , Mutation/genetics , Protein Binding , Protein Stability , Ribulose-Bisphosphate Carboxylase/genetics
14.
Int J Mol Sci ; 25(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38612566

ABSTRACT

Rubisco large-subunit methyltransferase (LSMT), a SET-domain protein lysine methyltransferase, catalyzes the formation of trimethyl-lysine in the large subunit of Rubisco or in fructose-1,6-bisphosphate aldolases (FBAs). Rubisco and FBAs are both vital proteins involved in CO2 fixation in chloroplasts; however, the physiological effect of their trimethylation remains unknown. In Nannochloropsis oceanica, a homolog of LSMT (NoLSMT) is found. Phylogenetic analysis indicates that NoLSMT and other algae LSMTs are clustered in a basal position, suggesting that algal species are the origin of LSMT. As NoLSMT lacks the His-Ala/ProTrp triad, it is predicted to have FBAs as its substrate instead of Rubisco. The 18-20% reduced abundance of FBA methylation in NoLSMT-defective mutants further confirms this observation. Moreover, this gene (nolsmt) can be induced by low-CO2 conditions. Intriguingly, NoLSMT-knockout N. oceanica mutants exhibit a 9.7-13.8% increase in dry weight and enhanced growth, which is attributed to the alleviation of photoinhibition under high-light stress. This suggests that the elimination of FBA trimethylation facilitates carbon fixation under high-light stress conditions. These findings have implications in engineering carbon fixation to improve microalgae biomass production.


Subject(s)
Aldehyde-Lyases , Lysine , Ribulose-Bisphosphate Carboxylase/genetics , Biomass , Carbon Dioxide , Phylogeny , Fructose-Bisphosphate Aldolase , Histone-Lysine N-Methyltransferase , Chloroplasts/genetics
15.
J Biol Chem ; 298(1): 101476, 2022 01.
Article in English | MEDLINE | ID: mdl-34890642

ABSTRACT

The CO2-fixing enzyme rubisco is responsible for almost all carbon fixation. This process frequently requires rubisco activase (Rca) machinery, which couples ATP hydrolysis to the removal of inhibitory sugar phosphates, including the rubisco substrate ribulose 1,5-bisphosphate (RuBP). Rubisco is sometimes compartmentalized in carboxysomes, bacterial microcompartments that enable a carbon dioxide concentrating mechanism (CCM). Characterized carboxysomal rubiscos, however, are not prone to inhibition, and often no activase machinery is associated with these enzymes. Here, we characterize two carboxysomal rubiscos of the form IAC clade that are associated with CbbQO-type Rcas. These enzymes release RuBP at a much lower rate than the canonical carboxysomal rubisco from Synechococcus PCC6301. We found that CbbQO-type Rcas encoded in carboxysome gene clusters can remove RuBP and the tight-binding transition state analog carboxy-arabinitol 1,5-bisphosphate from cognate rubiscos. The Acidithiobacillus ferrooxidans genome encodes two form IA rubiscos associated with two sets of cbbQ and cbbO genes. We show that the two CbbQO activase systems display specificity for the rubisco enzyme encoded in the same gene cluster, and this property can be switched by substituting the C-terminal three residues of the large subunit. Our findings indicate that the kinetic and inhibitory properties of proteobacterial form IA rubiscos are diverse and predict that Rcas may be necessary for some α-carboxysomal CCMs. These findings will have implications for efforts aiming to introduce biophysical CCMs into plants and other hosts for improvement of carbon fixation of crops.


Subject(s)
Bacterial Proteins , Ribulose-Bisphosphate Carboxylase , Synechococcus , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbon Dioxide , Multigene Family , Ribulose-Bisphosphate Carboxylase/chemistry , Ribulose-Bisphosphate Carboxylase/genetics , Ribulose-Bisphosphate Carboxylase/metabolism , Synechococcus/enzymology , Synechococcus/genetics , Synechococcus/metabolism , Tissue Plasminogen Activator
16.
Plant J ; 109(1): 261-277, 2022 01.
Article in English | MEDLINE | ID: mdl-34709689

ABSTRACT

The green alga Chlamydomonas reinhardtii is one of the most studied microorganisms in photosynthesis research and for biofuel production. A detailed understanding of the dynamic regulation of its carbon metabolism is therefore crucial for metabolic engineering. Post-translational modifications can act as molecular switches for the control of protein function. Acetylation of the ɛ-amino group of lysine residues is a dynamic modification on proteins across organisms from all kingdoms. Here, we performed mass spectrometry-based profiling of proteome and lysine acetylome dynamics in Chlamydomonas under varying growth conditions. Chlamydomonas liquid cultures were transferred from mixotrophic (light and acetate as carbon source) to heterotrophic (dark and acetate) or photoautotrophic (light only) growth conditions for 30 h before harvest. In total, 5863 protein groups and 1376 lysine acetylation sites were identified with a false discovery rate of <1%. As a major result of this study, our data show that dynamic changes in the abundance of lysine acetylation on various enzymes involved in photosynthesis, fatty acid metabolism, and the glyoxylate cycle are dependent on acetate and light. Exemplary determination of acetylation site stoichiometries revealed particularly high occupancy levels on K175 of the large subunit of RuBisCO and K99 and K340 of peroxisomal citrate synthase under heterotrophic conditions. The lysine acetylation stoichiometries correlated with increased activities of cellular citrate synthase and the known inactivation of the Calvin-Benson cycle under heterotrophic conditions. In conclusion, the newly identified dynamic lysine acetylation sites may be of great value for genetic engineering of metabolic pathways in Chlamydomonas.


Subject(s)
Chlamydomonas reinhardtii/metabolism , Photosynthesis , Plant Proteins/metabolism , Protein Processing, Post-Translational , Proteome , Acetates/metabolism , Acetylation , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/radiation effects , Light , Lysine/metabolism , Mass Spectrometry , Metabolic Networks and Pathways , Plant Proteins/genetics , Ribulose-Bisphosphate Carboxylase/genetics , Ribulose-Bisphosphate Carboxylase/metabolism
17.
Mol Biol Evol ; 39(4)2022 04 10.
Article in English | MEDLINE | ID: mdl-35383845

ABSTRACT

Whole-genome duplications (WGDs) are a prominent process of diversification in eukaryotes. The genetic and evolutionary forces that WGD imposes on cytoplasmic genomes are not well understood, despite the central role that cytonuclear interactions play in eukaryotic function and fitness. Cellular respiration and photosynthesis depend on successful interaction between the 3,000+ nuclear-encoded proteins destined for the mitochondria or plastids and the gene products of cytoplasmic genomes in multi-subunit complexes such as OXPHOS, organellar ribosomes, Photosystems I and II, and Rubisco. Allopolyploids are thus faced with the critical task of coordinating interactions between the nuclear and cytoplasmic genes that were inherited from different species. Because the cytoplasmic genomes share a more recent history of common descent with the maternal nuclear subgenome than the paternal subgenome, evolutionary "mismatches" between the paternal subgenome and the cytoplasmic genomes in allopolyploids might lead to the accelerated rates of evolution in the paternal homoeologs of allopolyploids, either through relaxed purifying selection or strong directional selection to rectify these mismatches. We report evidence from six independently formed allotetraploids that the subgenomes exhibit unequal rates of protein-sequence evolution, but we found no evidence that cytonuclear incompatibilities result in altered evolutionary trajectories of the paternal homoeologs of organelle-targeted genes. The analyses of gene content revealed mixed evidence for whether the organelle-targeted genes are lost more rapidly than the non-organelle-targeted genes. Together, these global analyses provide insights into the complex evolutionary dynamics of allopolyploids, showing that the allopolyploid subgenomes have separate evolutionary trajectories despite sharing the same nucleus, generation time, and ecological context.


Subject(s)
Magnoliopsida , Cell Nucleus/genetics , Evolution, Molecular , Genome, Plant , Magnoliopsida/genetics , Plastids/genetics , Polyploidy , Ribulose-Bisphosphate Carboxylase/genetics
18.
Environ Microbiol ; 25(2): 219-228, 2023 02.
Article in English | MEDLINE | ID: mdl-36367380

ABSTRACT

Many carbon-fixing organisms have evolved CO2 concentrating mechanisms (CCMs) to enhance the delivery of CO2 to RuBisCO, while minimizing reactions with the competitive inhibitor, molecular O2 . These distinct types of CCMs have been extensively studied using genetics, biochemistry, cell imaging, mass spectrometry, and metabolic flux analysis. Highlighted in this paper, the cyanobacterial CCM features a bacterial microcompartment (BMC) called 'carboxysome' in which RuBisCO is co-encapsulated with the enzyme carbonic anhydrase (CA) within a semi-permeable protein shell. The cyanobacterial CCM is capable of increasing CO2 around RuBisCO, leading to one of the most efficient processes known for fixing ambient CO2 . The carboxysome life cycle is dynamic and creates a unique subcellular environment that promotes activity of the Calvin-Benson (CB) cycle. The carboxysome may function within a larger cellular metabolon, physical association of functionally coupled proteins, to enhance metabolite channelling and carbon flux. In light of CCMs, synthetic biology approaches have been used to improve enzyme complex for CO2 fixations. Research on CCM-associated metabolons has also inspired biologists to engineer multi-step pathways by providing anchoring points for enzyme cascades to channel intermediate metabolites towards valuable products.


Subject(s)
Carbon Dioxide , Cyanobacteria , Carbon Dioxide/metabolism , Ribulose-Bisphosphate Carboxylase/genetics , Ribulose-Bisphosphate Carboxylase/metabolism , Cyanobacteria/genetics , Cyanobacteria/metabolism , Organelles/metabolism , Photosynthesis , Carbon Cycle , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
19.
Metab Eng ; 80: 151-162, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37751790

ABSTRACT

Glycerol is the major organic byproduct of industrial ethanol production with the yeast Saccharomyces cerevisiae. Improved ethanol yields have been achieved with engineered S. cerevisiae strains in which heterologous pathways replace glycerol formation as the predominant mechanism for anaerobic re-oxidation of surplus NADH generated in biosynthetic reactions. Functional expression of heterologous phosphoribulokinase (PRK) and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) genes enables yeast cells to couple a net oxidation of NADH to the conversion of glucose to ethanol. In another strategy, NADH-dependent reduction of exogenous acetate to ethanol is enabled by introduction of a heterologous acetylating acetaldehyde dehydrogenase (A-ALD). This study explores potential advantages of co-cultivating engineered PRK-RuBisCO-based and A-ALD-based strains in anaerobic bioreactor batch cultures. Co-cultivation of these strains, which in monocultures showed reduced glycerol yields and improved ethanol yields, strongly reduced the formation of acetaldehyde and acetate, two byproducts that were formed in anaerobic monocultures of a PRK-RuBisCO-based strain. In addition, co-cultures on medium with low acetate-to-glucose ratios that mimicked those in industrial feedstocks completely removed acetate from the medium. Kinetics of co-cultivation processes and glycerol production could be optimized by tuning the relative inoculum sizes of the two strains. Co-cultivation of a PRK-RuBisCO strain with a Δgpd1 Δgpd2 A-ALD strain, which was unable to grow in the absence of acetate and evolved for faster anaerobic growth in acetate-supplemented batch cultures, further reduced glycerol formation but led to extended fermentation times. These results demonstrate the potential of using defined consortia of engineered S. cerevisiae strains for high-yield, minimal-waste ethanol production.


Subject(s)
Metabolic Engineering , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Metabolic Engineering/methods , NAD/metabolism , Ethanol/metabolism , Glycerol/metabolism , Ribulose-Bisphosphate Carboxylase/genetics , Acetates/metabolism , Fermentation , Glucose/metabolism
20.
Plant Physiol ; 189(2): 874-888, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35201348

ABSTRACT

Photosynthetic organisms possess a variety of mechanisms to achieve balance between absorbed light (source) and the capacity to metabolically utilize or dissipate this energy (sink). While regulatory processes that detect changes in metabolic status/balance are relatively well studied in plants, analogous pathways remain poorly characterized in photosynthetic microbes. Here, we explored systemic changes that result from alterations in carbon availability in the model cyanobacterium Synechococcus elongatus PCC 7942 by taking advantage of an engineered strain where influx/efflux of a central carbon metabolite, sucrose, can be regulated experimentally. We observed that induction of a high-flux sucrose export pathway leads to depletion of internal carbon storage pools (glycogen) and concurrent increases in estimates of photosynthetic activity. Further, a proteome-wide analysis and fluorescence reporter-based analysis revealed that upregulated factors following the activation of the metabolic sink are concentrated on ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) and auxiliary modules involved in Rubisco maturation. Carboxysome number and Rubisco activity also increased following engagement of sucrose secretion. Conversely, reversing the flux of sucrose by feeding exogenous sucrose through the heterologous transporter resulted in increased glycogen pools, decreased Rubisco abundance, and carboxysome reorganization. Our data suggest that Rubisco activity and organization are key variables connected to regulatory pathways involved in metabolic balancing in cyanobacteria.


Subject(s)
Ribulose-Bisphosphate Carboxylase , Synechococcus , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbon/metabolism , Carbon Dioxide/metabolism , Glycogen/metabolism , Ribulose-Bisphosphate Carboxylase/genetics , Ribulose-Bisphosphate Carboxylase/metabolism , Sucrose/metabolism , Synechococcus/genetics , Synechococcus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL