Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Plant J ; 113(4): 819-832, 2023 02.
Article in English | MEDLINE | ID: mdl-36579923

ABSTRACT

Rosemary (Salvia rosmarinus) is considered a sacred plant because of its special fragrance and is commonly used in cooking and traditional medicine. Here, we report a high-quality chromosome-level assembly of the S. rosmarinus genome of 1.11 Gb in size; the genome has a scaffold N50 value of 95.5 Mb and contains 40 701 protein-coding genes. In contrast to other diploid Labiataceae, an independent whole-genome duplication event occurred in S. rosmarinus at approximately 15 million years ago. Transcriptomic comparison of two S. rosmarinus cultivars with contrasting carnosic acid (CA) content revealed 842 genes significantly positively associated with CA biosynthesis in S. rosmarinus. Many of these genes have been reported to be involved in CA biosynthesis previously, such as genes involved in the mevalonate/methylerythritol phosphate pathways and CYP71-coding genes. Based on the genomes and these genes, we propose a model of CA biosynthesis in S. rosmarinus. Further, comparative genome analysis of the congeneric species revealed the species-specific evolution of CA biosynthesis genes. The genes encoding diterpene synthase and the cytochrome P450 (CYP450) family of CA synthesis-associated genes form a biosynthetic gene cluster (CPSs-KSLs-CYP76AHs) responsible for the synthesis of leaf and root diterpenoids, which are located on S. rosmarinus chromosomes 1 and 2, respectively. Such clustering is also observed in other sage (Salvia) plants, thus suggesting that genes involved in diterpenoid synthesis are conserved in the Labiataceae family. These findings provide new insights into the synthesis of aromatic terpenoids and their regulation.


Subject(s)
Diterpenes , Rosmarinus , Salvia , Rosmarinus/genetics , Rosmarinus/metabolism , Salvia/genetics , Salvia/metabolism , Abietanes/metabolism , Diterpenes/metabolism , Cytochrome P-450 Enzyme System/metabolism , Chromosomes
2.
Hum Mol Genet ; 31(20): 3521-3538, 2022 10 10.
Article in English | MEDLINE | ID: mdl-35708500

ABSTRACT

Recent research on familial dysautonomia (FD) has focused on the development of therapeutics that facilitate the production of the correctly spliced, exon 20-containing, transcript in cells and individuals bearing the splice-altering, FD-causing mutation in the elongator acetyltransferase complex subunit I (ELP1) gene. We report here the ability of carnosol, a diterpene present in plant species of the Lamiaceae family, including rosemary, to enhance the cellular presence of the correctly spliced ELP1 transcript in FD patient-derived fibroblasts by upregulating transcription of the ELP1 gene and correcting the aberrant splicing of the ELP1 transcript. Carnosol treatment also elevates the level of the RNA binding motif protein 24 (RBM24) and RNA binding motif protein 38 (RBM38) proteins, two multifunctional RNA-binding proteins. Transfection-mediated expression of either of these RNA binding motif (RBMs) facilitates the inclusion of exon 20 sequence into the transcript generated from a minigene-bearing ELP1 genomic sequence containing the FD-causing mutation. Suppression of the carnosol-mediated induction of either of these RBMs, using targeting siRNAs, limited the carnosol-mediated inclusion of the ELP1 exon 20 sequence. Carnosol treatment of FD patient peripheral blood mononuclear cells facilitates the inclusion of exon 20 into the ELP1 transcript. The increased levels of the ELP1 and RBM38 transcripts and the alternative splicing of the sirtuin 2 (SIRT2) transcript, a sentinel for exon 20 inclusion in the FD-derived ELP1 transcript, are observed in RNA isolated from whole blood of healthy adults following the ingestion of carnosol-containing rosemary extract. These findings and the excellent safety profile of rosemary together justify an expedited clinical study of the impact of carnosol on the FD patient population.


Subject(s)
Dysautonomia, Familial , Rosmarinus , Transcriptional Elongation Factors/metabolism , Abietanes/pharmacology , Acetyltransferases , Adult , Carrier Proteins/genetics , Dysautonomia, Familial/drug therapy , Dysautonomia, Familial/genetics , Dysautonomia, Familial/metabolism , Humans , Leukocytes, Mononuclear/metabolism , RNA , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Rosmarinus/genetics , Rosmarinus/metabolism , Sirtuin 2/metabolism , Transcriptional Elongation Factors/genetics
3.
Plant Biotechnol J ; 22(7): 1833-1847, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38363812

ABSTRACT

High-quality genome of rosemary (Salvia rosmarinus) represents a valuable resource and tool for understanding genome evolution and environmental adaptation as well as its genetic improvement. However, the existing rosemary genome did not provide insights into the relationship between antioxidant components and environmental adaptability. In this study, by employing Nanopore sequencing and Hi-C technologies, a total of 1.17 Gb (97.96%) genome sequences were mapped to 12 chromosomes with 46 121 protein-coding genes and 1265 non-coding RNA genes. Comparative genome analysis reveals that rosemary had a closely genetic relationship with Salvia splendens and Salvia miltiorrhiza, and it diverged from them approximately 33.7 million years ago (MYA), and one whole-genome duplication occurred around 28.3 MYA in rosemary genome. Among all identified rosemary genes, 1918 gene families were expanded, 35 of which are involved in the biosynthesis of antioxidant components. These expanded gene families enhance the ability of rosemary adaptation to adverse environments. Multi-omics (integrated transcriptome and metabolome) analysis showed the tissue-specific distribution of antioxidant components related to environmental adaptation. During the drought, heat and salt stress treatments, 36 genes in the biosynthesis pathways of carnosic acid, rosmarinic acid and flavonoids were up-regulated, illustrating the important role of these antioxidant components in responding to abiotic stresses by adjusting ROS homeostasis. Moreover, cooperating with the photosynthesis, substance and energy metabolism, protein and ion balance, the collaborative system maintained cell stability and improved the ability of rosemary against harsh environment. This study provides a genomic data platform for gene discovery and precision breeding in rosemary. Our results also provide new insights into the adaptive evolution of rosemary and the contribution of antioxidant components in resistance to harsh environments.


Subject(s)
Chromosomes, Plant , Genome, Plant , Genome, Plant/genetics , Chromosomes, Plant/genetics , Adaptation, Physiological/genetics , Salvia/genetics , Salvia/metabolism , Antioxidants/metabolism , Rosmarinus/genetics , Rosmarinus/metabolism , Transcriptome/genetics , Gene Expression Regulation, Plant , Depsides/metabolism , Multiomics
4.
Physiol Plant ; 176(4): e14453, 2024.
Article in English | MEDLINE | ID: mdl-39091124

ABSTRACT

Although used in in vitro culture to boost secondary metabolite production, UV-B radiation can seriously affect plant growth if not properly dosed. Rosemary callus can be used as an important source of effective ingredients in the food and medicine industry. To balance the positive and negative effects of UV-B on rosmary callus, this study investigated the effects of melatonin on rosemary callus under UV-B radiation. The results showed that melatonin improved rosemary callus growth, with fresh weight and dry weight increased by 15.81% and 8.30%, respectively. The addition of 100 µM melatonin increased antioxidant enzyme activity and NO content in rosemary callus. At the same time, melatonin also significantly reduced membrane lipid damage and H2O2 accumulation in rosemary callus under UV-B stress, with malondialdehyde (MDA) and H2O2 contents reduced by 13.03% and 14.55%, respectively. In addition, melatonin increased the total phenol and rosmarinic acid contents in rosemary callus by 19% and 54%, respectively. Melatonin significantly improved the antioxidant activity of the extracts from rosemary callus. These results suggest that exogenous melatonin can alleviate the adverse effects of UV-B stress on rosemary callus by promoting NO accumulation while further enhancing phenolic accumulation and biological activity.


Subject(s)
Antioxidants , Hydrogen Peroxide , Melatonin , Phenols , Rosmarinus , Ultraviolet Rays , Melatonin/pharmacology , Melatonin/metabolism , Rosmarinus/metabolism , Rosmarinus/drug effects , Rosmarinus/radiation effects , Antioxidants/metabolism , Phenols/metabolism , Hydrogen Peroxide/metabolism , Malondialdehyde/metabolism , Stress, Physiological/radiation effects , Stress, Physiological/drug effects , Rosmarinic Acid , Cinnamates/metabolism , Cinnamates/pharmacology , Depsides/metabolism
5.
Behav Pharmacol ; 34(1): 37-44, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36730811

ABSTRACT

Rosemary essential oil (REO) has been used for several medical purposes. Previous studies have shown the antinociceptive effect of the oil. This study aimed to investigate the role of some well-known receptors in the antinociceptive effect of REO. Male Swiss mice (25-30 g) were used. To assess the antinociceptive activity, the formalin test was used. At first, the antinociceptive effect of three doses of rosemary oil (150, 300 and 450 µL/kg) was tested, and then a dose of 300 µL/kg was selected for the mechanistic study. Animals were pretreated with several antagonists and enzyme inhibitors to evaluate the role of adrenergic, cholinergic, serotoninergic, dopaminergic and opioid receptors as well as the NO/cGMP/K ATP pathway in the antinociceptive effect of rosemary essential oil. Yohimbine (5 mg/kg), prazocin (2 mg/kg), propranolol (2 mg/kg), atropine (2.5 mg/kg) naloxone (5 mg/kg), cyproheptadine (2 mg/kg), ondansetron (2 mg/kg) and haloperidol (1 mg/kg) could not reverse the antinociceptive effect. Sulpiride (20 mg/kg) only showed preventive activity in the early phase of formalin test while methylene blue (5 mg/kg), L-NAME (20 mg/kg) and glibenclamide (10 mg/kg) significantly attenuated the antinociceptive effect of REO in both phases. Tadalafil (2 mg/kg) potentiated the antinociceptive effect of REO in the late phase of formalin test and arginine (100 mg/kg) had no effect on both phases. Therefore the NO/cGMP/K ATP pathway might have an important role in the antinociceptive effect of REO.


Subject(s)
Oils, Volatile , Rosmarinus , Mice , Male , Animals , Analgesics/pharmacology , Rosmarinus/metabolism , Cyclic GMP/metabolism , Adenosine Triphosphate
6.
Physiol Plant ; 175(4): e13956, 2023.
Article in English | MEDLINE | ID: mdl-37327069

ABSTRACT

Melatonin is a stress-related hormone that plays a critical role in triggering the plant defence system and regulating secondary metabolism when plants are exposed to stress. To explore the potential roles of melatonin in response to Ultraviolet-B (UV-B) radiation, we examined the effects of exogenous melatonin on rosemary in vitro shoots under UV-B stress. The application of melatonin (50 µM) alleviated the adverse effects of UV-B stress on the biomass, photosynthetic pigment contents, and membrane lipids of the rosemary in vitro shoots. Melatonin significantly increased superoxide dismutase (1.15.1.1, SOD), peroxidase (1.11.1.7, POD), and catalase (1.11.1.6, CAT) activities by 62%, 99%, and 53%, respectively. The contents of total phenols, rosmarinic acid, and carnosic acid increased under UV-B stress, and they further increased by the melatonin treatment by 41%, 68%, and 67%, respectively, compared with the control group. Under UV-B stress, the increased total phenol content in melatonin-pretreated plants could be attributed to the activation of phenylalanine ammonia-lyase (4.3.1.5, PAL) and tyrosine aminotransferase (2.6.1.5, TAT). In addition, melatonin enhanced the antioxidant and antibacterial activities of the rosemary in vitro shoots under UV-B stress. These results suggest that melatonin can alleviate the damage caused by UV-B stress and also enhance the secondary metabolism and bioactivity of rosemary in vitro shoots.


Subject(s)
Melatonin , Rosmarinus , Melatonin/pharmacology , Rosmarinus/metabolism , Biomass , Antioxidants/metabolism , Phenols/metabolism
7.
Anim Biotechnol ; 34(9): 5067-5074, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37878368

ABSTRACT

The present study aimed to assess the impact of grape seed extract (GSE), onion peel extract (OPE), and rosemary extract (ROE) on Diquat-induced growth restriction and oxidative stress in Lohmann chicks. A total of 200 chicks were randomly assigned to 5 diets: the positive control (PC) group, the negative control (NC) group, GSE group, OPE group, and ROE group. During the first 7 d of trial, compared with NC and PC groups, the GSE group enhanced average daily feed intake (ADFI). From day 8-21, diquat injection resulted in reduced growth performance, increased platelet volume distribution width (PWD), malondialdehyde (MDA) concentration, and activities of alanine aminotransferase (ALT) in chick serum; it also decreased total protein (TP), albumin (ALB), globulin (GLB) concentration, activities of superoxide dismutase (SOD) and glutathione S-transferase (GST) in chick serum; furthermore, it increased MDA concentration while decreasing GST activities in liver. The NC group exhibited lower average daily gain (ADG) than other groups. Compared with NC group, GSE group reduced ALT activities, MDA levels, and red cell distribution width (RDW), and PDW concentration; it also increased SOD, GST activities. The ROE group lowered ALT activities and MDA concentration. The OPE group decreased ALT activities, and MDA levels, RDW, and PDW concentration, and increased SOD activities of chicks. These results suggest that supplementing antioxidants in diets alleviated oxidative stress in chicks challenged by improving antioxidant capacity and liver function.


Subject(s)
Grape Seed Extract , Rosmarinus , Animals , Grape Seed Extract/pharmacology , Grape Seed Extract/metabolism , Diquat/toxicity , Diquat/metabolism , Onions/metabolism , Rosmarinus/metabolism , Antioxidants/pharmacology , Diet/veterinary , Oxidative Stress , Liver/metabolism , Dietary Supplements , Superoxide Dismutase/metabolism
8.
Molecules ; 27(21)2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36364071

ABSTRACT

Alzheimer's disease (AD) has been associated with the hallmark features of cholinergic dysfunction, amyloid beta (Aß) aggregation and impaired synaptic transmission, which makes the associated proteins, such as ß-site amyloid precursor protein cleaving enzyme 1 (BACE I), acetylcholine esterase (AChE) and synapsin I, II and III, major targets for therapeutic intervention. The present study investigated the therapeutic potential of three major phytochemicals of Rosmarinus officinalis, ursolic acid (UA), rosmarinic acid (RA) and carnosic acid (CA), based on their binding affinity with AD-associated proteins. Detailed docking studies were conducted using AutoDock vina followed by molecular dynamic (MD) simulations using Amber 20. The docking analysis of the selected molecules showed the binding energies of their interaction with the target proteins, while MD simulations comprising root mean square deviation (RMSD), root mean square fluctuation (RMSF) and molecular mechanics/generalized born surface area (MM/GBSA) binding free energy calculations were carried out to check the stability of bound complexes. The drug likeness and the pharmacokinetic properties of the selected molecules were also checked through the Lipinski filter and ADMETSAR analysis. All these bioactive compounds demonstrated strong binding affinity with AChE, BACE1 and synapsin I, II and III. The results showed UA and RA to be potential inhibitors of AChE and BACE1, exhibiting binding energies comparable to those of donepezil, used as a positive control. The drug likeness and pharmacokinetic properties of these compounds also demonstrated drug-like characteristics, indicating the need for further in vitro and in vivo investigations to ascertain their therapeutic potential for AD.


Subject(s)
Alzheimer Disease , Rosmarinus , Amyloid Precursor Protein Secretases , Aspartic Acid Endopeptidases , Molecular Docking Simulation , Alzheimer Disease/drug therapy , Rosmarinus/metabolism , Cholinesterase Inhibitors/chemistry , Amyloid beta-Peptides/therapeutic use , Synapsins/therapeutic use , Acetylcholinesterase/metabolism , Molecular Dynamics Simulation
9.
Molecules ; 27(8)2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35458697

ABSTRACT

Aryl hydrocarbon receptor (AhR) activation by environmental agents and microbial metabolites is potentially implicated in a series of skin diseases. Hence, it would be very important to identify natural compounds that could inhibit the AhR activation by ligands of microbial origin as 6-formylindolo[3,2-b]carbazole (FICZ), indirubin (IND) and pityriazepin (PZ) or the prototype ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Five different dry Rosmarinus officinalis L. extracts (ROEs) were assayed for their activities as antagonists of AhR ligand binding with guinea pig cytosol in the presence of [3H]TCDD. The methanolic ROE was further assayed towards CYP1A1 mRNA induction using RT-PCR in human keratinocytes against TCDD, FICZ, PZ, and IND. The isolated metabolites, carnosic acid, carnosol, 7-O-methyl-epi-rosmanol, 4',7-O-dimethylapigenin, and betulinic acid, were assayed for their agonist and antagonist activity in the presence and absence of TCDD using the gel retardation assay (GRA). All assayed ROE extracts showed similar dose-dependent activities with almost complete inhibition of AhR activation by TCDD at 100 ppm. The methanol ROE at 10 ppm showed 99%, 50%, 90%, and 85% inhibition against TCDD, FICZ, IND, and PZ, respectively, in human keratinocytes. Most assayed metabolites exhibited dose-dependent antagonist activity. ROEs inhibit AhR activation by TCDD and by the Malassezia metabolites FICZ, PZ, and IND. Hence, ROE could be useful for the prevention or treatment of skin diseases mediated by activation of AhR.


Subject(s)
Polychlorinated Dibenzodioxins , Rosmarinus , Skin Neoplasms , Animals , Cytochrome P-450 CYP1A1/metabolism , Guinea Pigs , Humans , Keratinocytes/metabolism , Ligands , Plant Extracts/metabolism , Plant Extracts/pharmacology , Receptors, Aryl Hydrocarbon/metabolism , Rosmarinus/metabolism , Skin Neoplasms/metabolism
10.
Molecules ; 26(19)2021 Oct 07.
Article in English | MEDLINE | ID: mdl-34641608

ABSTRACT

The effect of spontaneous fermentation by lactic acid bacteria on the extraction yield of bioactive compounds and antioxidant activity from rosemary leaf extracts was investigated using high-performance thin-layer chromatography (HPTLC). Brining and spontaneous fermentation with lactic acid bacteria more than doubled extraction of polyphenolics and antioxidants from the rosemary leaves. The results show that lactic acid fermentation enhances antioxidant activity in extracts by increasing the total phenolic content but does not increase extraction of phytosterols. Increased extraction of phenolic oxidants during fermentation assisted extraction, results from the in situ generated natural eutectic solvent from the plant sample. ATR-FTIR spectra from the bioactive bands suggests that this increased antioxidant activity is associated with increased extraction of rosmarinic acid, depolymerised lignin, abietane diterpenoids and 15-hydroxy-7-oxodehydroabietic acid.


Subject(s)
Antioxidants/chemistry , Antioxidants/metabolism , Lactobacillales/metabolism , Plant Extracts/chemistry , Plant Extracts/metabolism , Rosmarinus/chemistry , Rosmarinus/metabolism , Abietanes/chemistry , Abietanes/metabolism , Chromatography, Thin Layer , Cinnamates/chemistry , Cinnamates/metabolism , Depsides/chemistry , Depsides/metabolism , Fermentation , Humans , Lignin/chemistry , Lignin/metabolism , Phenols/chemistry , Phenols/metabolism , Plant Leaves/chemistry , Plant Leaves/metabolism , Spectroscopy, Fourier Transform Infrared , Rosmarinic Acid
11.
Anal Chem ; 92(13): 8793-8801, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32479074

ABSTRACT

Whether chemists or biologists, researchers dealing with metabolomics require tools to decipher complex mixtures. As a part of metabolomics and initially dedicated to identifying bioactive natural products, dereplication aims at reducing the usual time-consuming process of known compounds isolation. Mass spectrometry and nuclear magnetic resonance are the most commonly reported analytical tools during dereplication analysis. Though it has low sensitivity, 13C NMR has many advantages for such a study. Notably, it is nonspecific allowing simultaneous high-resolution analysis of any organic compounds including stereoisomers. Since NMR spectrometers nowadays provide useful data sets in a reasonable time frame, we have embarked upon writing software dedicated to 13C NMR dereplication. The present study describes the development of a freely distributed algorithm, namely MixONat and its ability to help researchers decipher complex mixtures. Based on Python 3.5, MixONat analyses a {1H}-13C NMR spectrum optionally combined with DEPT-135 and 90 data-to distinguish carbon types (i.e., CH3, CH2, CH, and C)-as well as a MW filtering. The software requires predicted or experimental carbon chemical shifts (δc) databases and displays results that can be refined based on user interactions. As a proof of concept, this 13C NMR dereplication strategy was evaluated on mixtures of increasing complexity and exhibiting pharmaceutical (poppy alkaloids), nutritional (rosemary extracts) or cosmetics (mangosteen peel extract) applications. Associated results were compared with other methods commonly used for dereplication. MixONat gave coherent results that rapidly oriented the user toward the correct structural types of secondary metabolites, allowing the user to distinguish between structurally close natural products, including stereoisomers.


Subject(s)
Biological Products/chemistry , Magnetic Resonance Spectroscopy/methods , Software , Algorithms , Alkaloids/chemistry , Carbon Isotopes/chemistry , Databases, Chemical , Garcinia mangostana/chemistry , Garcinia mangostana/metabolism , Papaver/chemistry , Papaver/metabolism , Plant Extracts/chemistry , Rosmarinus/chemistry , Rosmarinus/metabolism
12.
Appl Microbiol Biotechnol ; 103(17): 7029-7039, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31309269

ABSTRACT

Betulinic acid (BA) and its derivatives possess potent pharmacological activity against cancer and HIV. As with many phytochemicals, access to BA is limited by the requirement for laborious extraction from plant biomass where it is found in low amounts. This might be alleviated by metabolically engineering production of BA into an industrially relevant microbe such as Saccharomyces cerevisiae (yeast), which requires complete elucidation of the corresponding biosynthetic pathway. However, while cytochrome P450 enzymes (CYPs) that can oxidize lupeol into BA have been previously identified from the CYP716A subfamily, these generally do not seem to be specific to such biosynthesis and, in any case, have not been shown to enable high-yielding metabolic engineering. Here RoCYP01 (CYP716A155) was identified from the BA-producing plant Rosmarinus officinalis (rosemary) and demonstrated to effectively convert lupeol into BA, with strong correlation of its expression and BA accumulation. This was further utilized to construct a yeast strain that yields > 1 g/L of BA, providing a viable route for biotechnological production of this valuable triterpenoid.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Rosmarinus/enzymology , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Triterpenes/metabolism , Cloning, Molecular , Cytochrome P-450 Enzyme System/classification , Cytochrome P-450 Enzyme System/genetics , Databases, Genetic , Gene Expression , Pentacyclic Triterpenes/metabolism , Phylogeny , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Rosmarinus/genetics , Rosmarinus/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Substrate Specificity , Betulinic Acid
13.
Proc Natl Acad Sci U S A ; 113(13): 3681-6, 2016 Mar 29.
Article in English | MEDLINE | ID: mdl-26976595

ABSTRACT

Synthetic biology approaches achieving the reconstruction of specific plant natural product biosynthetic pathways in dedicated microbial "chassis" have provided access to important industrial compounds (e.g., artemisinin, resveratrol, vanillin). However, the potential of such production systems to facilitate elucidation of plant biosynthetic pathways has been underexplored. Here we report on the application of a modular terpene production platform in the characterization of the biosynthetic pathway leading to the potent antioxidant carnosic acid and related diterpenes in Salvia pomifera and Rosmarinus officinalis.Four cytochrome P450 enzymes are identified (CYP76AH24, CYP71BE52, CYP76AK6, and CYP76AK8), the combined activities of which account for all of the oxidation events leading to the biosynthesis of the major diterpenes produced in these plants. This approach develops yeast as an efficient tool to harness the biotechnological potential of the numerous sequencing datasets that are increasingly becoming available through transcriptomic or genomic studies.


Subject(s)
Abietanes/biosynthesis , Abietanes/chemistry , Antioxidants/chemistry , Antioxidants/metabolism , Biosynthetic Pathways , Biotechnology , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Metabolic Engineering , Plant Proteins/genetics , Plant Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Rosmarinus/genetics , Rosmarinus/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Salvia/genetics , Salvia/metabolism , Synthetic Biology/methods
14.
Ecotoxicol Environ Saf ; 180: 333-347, 2019 Sep 30.
Article in English | MEDLINE | ID: mdl-31102841

ABSTRACT

Arsenic (As) recognized as a group I human carcinogen additionally poses a threat to plants which limit growth, metabolic activity, and productivity. Melatonin (MEL) is a naturally occurring compound in plants that have been recognized to mediate numerous morphological, physiological and molecular processes. Conversely, the role of MEL in inducing As-tolerance remains inexpressible and the plausible mechanisms in inducing As tolerance have remained largely unknown. The present investigation was designed to understand the protective role of MEL concentrations in rosemary herbs cultivated under As contamination. Arsenic evoked a deleterious decline on herb productivity, photosynthetic pigment, ion concentration, water status, ascorbic acid, essential oil (EO) yield and induced malformation of the chloroplast. Alternatively, increased organic osmolytes, oxidative impairment criteria, additionally antioxidant enzymes, phenol, flavonoid, anthocyanin, and EO%. Exogenous application of MEL with or without As, considerably increased growth, photosynthetic pigment, ion concentration, organic osmolytes as well as EO yield regarding polluted or non-polluted treatment respectively. Moreover, MEL treatment stabilized the cell membrane integrity, suppressed oxidative impairment criteria, and enhanced antioxidant capacity, additionally upregulation antioxidant enzymes. Plant treated with As showed a significant increase in As contamination and a bioconcentration factor in both root and shoot system. MEL supplementation under normal or As concentration, reduced As accumulation and bioconcentration factors, in either shoot or root systems. Additionally As decrease transfer factor, however, supplementation of MEL further decreased it. Application of 50 µM MEL might help the herbs to withstand As stress by strengthening their antioxidant machinery and osmoregulation capacity.


Subject(s)
Antioxidants/metabolism , Arsenic/toxicity , Chloroplasts/ultrastructure , Melatonin/pharmacology , Rosmarinus/drug effects , Soil Pollutants/toxicity , Arsenic/metabolism , Drug Tolerance , Oxidative Stress/drug effects , Photosynthesis/drug effects , Rosmarinus/metabolism , Soil Pollutants/metabolism
15.
Plant Physiol ; 175(3): 1381-1394, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28916593

ABSTRACT

Carnosic acid, a phenolic diterpene specific to the Lamiaceae family, is highly abundant in rosemary (Rosmarinus officinalis). Despite numerous industrial and medicinal/pharmaceutical applications of its antioxidative features, this compound in planta and its antioxidant mechanism have received little attention, except a few studies of rosemary plants under natural conditions. In vitro analyses, using high-performance liquid chromatography-ultraviolet and luminescence imaging, revealed that carnosic acid and its major oxidized derivative, carnosol, protect lipids from oxidation. Both compounds preserved linolenic acid and monogalactosyldiacylglycerol from singlet oxygen and from hydroxyl radical. When applied exogenously, they were both able to protect thylakoid membranes prepared from Arabidopsis (Arabidopsis thaliana) leaves against lipid peroxidation. Different levels of carnosic acid and carnosol in two contrasting rosemary varieties correlated with tolerance to lipid peroxidation. Upon reactive oxygen species (ROS) oxidation of lipids, carnosic acid was consumed and oxidized into various derivatives, including into carnosol, while carnosol resisted, suggesting that carnosic acid is a chemical quencher of ROS. The antioxidative function of carnosol relies on another mechanism, occurring directly in the lipid oxidation process. Under oxidative conditions that did not involve ROS generation, carnosol inhibited lipid peroxidation, contrary to carnosic acid. Using spin probes and electron paramagnetic resonance detection, we confirmed that carnosic acid, rather than carnosol, is a ROS quencher. Various oxidized derivatives of carnosic acid were detected in rosemary leaves in low light, indicating chronic oxidation of this compound, and accumulated in plants exposed to stress conditions, in parallel with a loss of carnosic acid, confirming that chemical quenching of ROS by carnosic acid takes place in planta.


Subject(s)
Abietanes/pharmacology , Antioxidants/pharmacology , Rosmarinus/metabolism , Intracellular Membranes/drug effects , Intracellular Membranes/metabolism , Lipid Peroxidation/drug effects , Lipids/chemistry , Oxidation-Reduction , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Leaves/ultrastructure , Reactive Oxygen Species/metabolism , Thylakoids/drug effects , Thylakoids/metabolism , Thylakoids/ultrastructure , Time Factors , alpha-Tocopherol/pharmacology
16.
J Sci Food Agric ; 98(10): 3741-3751, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29327407

ABSTRACT

BACKGROUND: Rosmarinus officinalis is an aromatic plant used in folk medicine as a result of the therapeutic properties associated with its phenolic composition, being rich in rosmarinic acid (RA) and caffeic acid (CA). To better understand the bioactivity of these compounds, their absorption and metabolism were assessed in human Caco-2 and HepG2 cells, as small intestine and liver models, respectively, using RA and CA standards, as well as a rosemary infusion and ferulic acid (FA). RESULTS: Test compounds were partially up-taken and metabolized by Caco-2 and HepG2 cells, although a higher metabolization rate was observed after hepatic incubation compared to intestinal incubation. CA was the compound best absorbed followed by RA and FA, showing metabolites percentages of 30.4%, 11.8% and 4.4% in Caco-2 and 34.3%, 10.3% and 3.2% in HepG2 cells, respectively. RA in the rosemary infusion showed improved bioavailability compared to pure RA. Methyl derivatives were the main metabolites detected for CA and RA after intestinal and hepatic metabolism, followed by methyl-glucuronidates and glucuronidates. RA was also minimally hydrolyzed into CA, whereas FA only was glucuronidated. Rosemary polyphenols followed the same biotransformation pathways as the standards. In addition, phase II derivatives of luteolin were observed. CONCLUSION: Rosemary polyphenols are partially metabolized in both the intestine and liver. © 2018 Society of Chemical Industry.


Subject(s)
Plant Extracts/metabolism , Polyphenols/metabolism , Rosmarinus/chemistry , Caco-2 Cells , Hep G2 Cells , Humans , Intestinal Mucosa/metabolism , Intestines/chemistry , Liver/chemistry , Liver/metabolism , Models, Biological , Plant Extracts/chemistry , Polyphenols/chemistry , Rosmarinus/metabolism
17.
Environ Toxicol ; 31(1): 85-92, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25044495

ABSTRACT

Coal tar is a significant product generated from coal pyrolysis. Coal tar can be utilized as raw materials for various industries. It is also a type of raw material from which phenols, naphthalenes, and anthracene can be extracted. The present study was designed to investigate the possibility of coal tar creosote to induce oxidative stress and biochemical perturbations in rat liver and the role of rosemary (Rosmarinus officinalis) in ameliorating its toxic effects. Male Wister Albino rats were randomly divided into four groups of seven each, group I served as control; group II treated with rosemary (10 mL of water extract/kg BW for 21 days), group III received coal tar creosote (200 mg/4 mL olive oil/kg BW for 3 days), and group IV treated with both rosemary and coal tar creosote. The administration of coal tar creosote significantly caused elevation in lipid peroxidation (LPO) and reduction in the activities of glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST). A significant decrease in reduced glutathione (GSH) content was also observed. Liver aminotransferases aspartate transaminase (AST) and alanine transaminase (ALT)] and alkaline phosphatase (AlP) were significantly decreased while lactate dehydrogenase (LDH) was increased. Rosemary pretreatment to coal tar creosote-treated rats decreased LPO level and normalized GPx, GR, SOD, CAT, and GST activities, while GSH content was increased. Also, liver AST, ALT, AlP, and LDH were maintained near normal level due to rosemary treatment. In conclusion, rosemary has beneficial effects and could be able to antagonize coal tar creosote toxicity.


Subject(s)
Creosote/toxicity , Liver/drug effects , Alanine Transaminase/metabolism , Animals , Antioxidants/metabolism , Aspartate Aminotransferases/metabolism , Catalase/metabolism , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Glutathione Reductase/metabolism , Glutathione Transferase/metabolism , Lipid Peroxidation/drug effects , Liver/enzymology , Liver/metabolism , Male , Oxidative Stress/drug effects , Phenols/chemistry , Phenols/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Rats , Rats, Wistar , Rosmarinus/metabolism , Superoxide Dismutase/metabolism
18.
Appl Microbiol Biotechnol ; 99(5): 2083-92, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25620368

ABSTRACT

Rosmarinic acid (α-o-caffeoyl-3,4-dihydroxyphenyllactic acid; RA) is a naturally occurring hydroxylated compound commonly found in species of the subfamily Nepetoideae of the Lamiaceae and Boraginaceae, such as Rosmarinus officinalis, Salvia officinalis, and Perilla frutescens. RA is biosynthesized from the amino acids L-phenylalanine and L-tyrosine by eight enzymes that include phenylalanine ammonia lyase and cinnamic acid 4-hydroxylase. RA can also be chemically produced by the esterification of caffeic acid and 3,4-dihydroxyphenyllactic acid. RA and its numerous derivatives containing one or two RA with other aromatic moieties are well known and include lithospermic acid, yunnaneic acid, salvianolic acid, and melitric acid. Recently, RA and its derivatives have attracted interest for their biological activities, which include anti-inflammatory, anti-oxidant, anti-angiogenic, anti-tumor, and anti-microbial functions. Clinically, RA attenuates T cell receptor-mediated signaling, attenuates allergic diseases like allergic rhinitis and asthma, and 2,4-dinitrofluorobenzene-induced atopic dermatitis-like symptoms, protects from neurotoxicity, and slows the development of Alzheimer's disease. These attributes have increased the demand for the biotechnological production and application of RA and its derivatives. The present review discusses the function and application of RA and its derivatives including the molecular mechanisms underlying clinical efficacy.


Subject(s)
Biosynthetic Pathways , Biotechnology/methods , Cinnamates/metabolism , Depsides/metabolism , Immunologic Factors/metabolism , Cinnamates/chemical synthesis , Depsides/chemical synthesis , Immunologic Factors/chemistry , Perilla frutescens/metabolism , Rosmarinus/metabolism , Salvia officinalis/metabolism , Technology, Pharmaceutical/methods , Rosmarinic Acid
19.
Cryo Letters ; 34(4): 422-31, 2013.
Article in English | MEDLINE | ID: mdl-23995410

ABSTRACT

The aim was to assess the in vitro effect of pasteurized egg (PE) and rosemary (Rosmarinus officinalis) on frozen-thawed ram semen. Ejaculates from three mature rams of the Rasa Aragonesa breed were cryopreserved using a 2-step dilution method (Fraction 1: F1; Fraction 2: F2). In Experiment 1, semen was frozen in egg yolk (EY) or PE extenders. After thawing, similar results were obtained in terms of total and progressive motility, viability, hypo-osmotic swelling test (HOST) and acrosome integrity after 2 h incubation. In Experiment 2, addition of rosemary to F1, F2 or both fractions to EY extenders was evaluated. Rosemary in F1 decreased progressive motility (p = 0.013) after 2 h incubation. Finally, PE can be used as a substitute for EY to reduce hygienic risks in extenders and is easier to standardize. Supplementation of EY extender with rosemary in F1 reduced progressive motility. Rosemary supplementation in F2 does not affect semen quality.


Subject(s)
Cryopreservation/veterinary , Egg Yolk/metabolism , Plant Extracts/metabolism , Rosmarinus , Semen Preservation/veterinary , Semen/cytology , Animals , Cryopreservation/methods , Cryoprotective Agents/metabolism , Male , Rosmarinus/metabolism , Semen/drug effects , Semen Analysis , Semen Preservation/methods , Sheep/metabolism , Sperm Motility/drug effects
20.
J Sci Food Agric ; 93(12): 2995-3000, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23504582

ABSTRACT

BACKGROUND: Honey contains a variety of polyphenols and represents a good source of antioxidants, while the human diet often contains compounds that can cause DNA damage. The present study investigated the protective effect of three commercial honey samples of different floral origin (rosemary, heather and heterofloral) from Madrid Autonomic Community (Spain) as well as an artificial honey on DNA damage induced by dietary mutagens, using a human hepatoma cell line (HepG2) as in vitro model system and evaluation by the alkaline single-cell gel electrophoresis or comet assay. RESULTS: Rosemary, heather and heterofloral honeys protected against DNA strand breaks induced by N-nitrosopyrrolidine (NPYR), benzo(a)pyrene (BaP) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), but none of the honey samples tested prevented DNA strand breaks induced by N-nitrosodimethylamine (NDMA). Heterofloral and heather (unifloral) honeys with higher phenolic content were most effective in protecting HepG2 cells against DNA damage induced by food mutagens. Heterofloral honey was more protective against NPYR and BaP, while heather honey was more protective against PhIP. Artificial honey did not show a protective effect against DNA damage induced by any of the food mutagens tested, indicating that the protective effects of honeys could not be due to their sugar components. CONCLUSION: The results suggest that the protective effect of three kinds of Spanish honey of different floral origin could be attributed in part to the phenolics present in the samples. Honeys with higher phenolic content, i.e. heather and heterofloral honeys, were most effective in protecting against food mutagen-induced DNA damage in HepG2 cells. In addition, a possible synergistic effect between other minor honey components could also be involved.


Subject(s)
Anticarcinogenic Agents/metabolism , DNA Damage , Food Contamination , Functional Food , Honey , Liver Neoplasms/prevention & control , Mutagens/toxicity , Benzo(a)pyrene/antagonists & inhibitors , Benzo(a)pyrene/toxicity , Cell Survival/drug effects , Comet Assay , DNA Breaks/drug effects , Ericaceae/metabolism , Functional Food/analysis , Hep G2 Cells , Honey/analysis , Humans , Imidazoles/antagonists & inhibitors , Imidazoles/toxicity , Liver Neoplasms/chemically induced , Liver Neoplasms/metabolism , Models, Biological , Mutagens/chemistry , N-Nitrosopyrrolidine/chemistry , N-Nitrosopyrrolidine/toxicity , Phenols/analysis , Phenols/metabolism , Rosmarinus/metabolism , Spain
SELECTION OF CITATIONS
SEARCH DETAIL