Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 369
Filter
Add more filters

Publication year range
1.
Cell ; 184(10): 2649-2664.e18, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33848463

ABSTRACT

Receptor tyrosine kinase (RTK)-mediated activation of downstream effector pathways such as the RAS GTPase/MAP kinase (MAPK) signaling cascade is thought to occur exclusively from lipid membrane compartments in mammalian cells. Here, we uncover a membraneless, protein granule-based subcellular structure that can organize RTK/RAS/MAPK signaling in cancer. Chimeric (fusion) oncoproteins involving certain RTKs including ALK and RET undergo de novo higher-order assembly into membraneless cytoplasmic protein granules that actively signal. These pathogenic biomolecular condensates locally concentrate the RAS activating complex GRB2/SOS1 and activate RAS in a lipid membrane-independent manner. RTK protein granule formation is critical for oncogenic RAS/MAPK signaling output in these cells. We identify a set of protein granule components and establish structural rules that define the formation of membraneless protein granules by RTK oncoproteins. Our findings reveal membraneless, higher-order cytoplasmic protein assembly as a distinct subcellular platform for organizing oncogenic RTK and RAS signaling.


Subject(s)
Biomolecular Condensates/metabolism , Cytoplasmic Granules/metabolism , Neoplasms/metabolism , Oncogene Proteins, Fusion/metabolism , ras Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Enzyme Activation , GRB2 Adaptor Protein/genetics , GRB2 Adaptor Protein/metabolism , HEK293 Cells , Humans , SOS1 Protein/metabolism , Signal Transduction
2.
Cell ; 152(5): 1008-20, 2013 Feb 28.
Article in English | MEDLINE | ID: mdl-23452850

ABSTRACT

Metazoan evolution involves increasing protein domain complexity, but how this relates to control of biological decisions remains uncertain. The Ras guanine nucleotide exchange factor (RasGEF) Sos1 and its adaptor Grb2 are multidomain proteins that couple fibroblast growth factor (FGF) signaling to activation of the Ras-Erk pathway during mammalian development and drive embryonic stem cells toward the primitive endoderm (PrE) lineage. We show that the ability of Sos1/Grb2 to appropriately regulate pluripotency and differentiation factors and to initiate PrE development requires collective binding of multiple Sos1/Grb2 domains to their protein and phospholipid ligands. This provides a cooperative system that only allows lineage commitment when all ligand-binding domains are occupied. Furthermore, our results indicate that the interaction domains of Sos1 and Grb2 have evolved so as to bind ligands not with maximal strength but with specificities and affinities that maintain cooperativity. This optimized system ensures that PrE lineage commitment occurs in a timely and selective manner during embryogenesis.


Subject(s)
Embryo, Mammalian/metabolism , Embryonic Stem Cells/metabolism , GRB2 Adaptor Protein/metabolism , SOS1 Protein/metabolism , Amino Acid Sequence , Animals , Cell Lineage , Endoderm/metabolism , Eukaryota/genetics , Eukaryota/metabolism , Humans , Models, Molecular , Molecular Sequence Data , Protein Structure, Tertiary , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Sequence Alignment , ras Guanine Nucleotide Exchange Factors/metabolism
3.
Biophys J ; 123(19): 3295-3303, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39021073

ABSTRACT

Signaling through the Ras-MAPK pathway can exhibit switch-like activation, which has been attributed to the underlying positive feedback and bimodality in the activation of RasGDP to RasGTP by SOS. SOS contains both catalytic and allosteric Ras binding sites, and a common assumption is that allosteric activation selectively by RasGTP provides the mechanism of positive feedback. However, recent single-molecule studies have revealed that SOS catalytic rates are independent of the nucleotide state of Ras in the allosteric binding site, raising doubt about this as a positive feedback mechanism. Here, we perform detailed kinetic analyses of receptor-mediated recruitment of full-length SOS to the membrane while simultaneously monitoring its catalytic activation of Ras. These results, along with kinetic modeling, expose the autoinhibition release step in SOS, rather than either recruitment or allosteric activation, as the underlying mechanism giving rise to positive feedback in Ras activation.


Subject(s)
Feedback, Physiological , ras Proteins , ras Proteins/metabolism , ras Proteins/chemistry , Kinetics , Allosteric Regulation , SOS1 Protein/metabolism , SOS1 Protein/chemistry , SOS1 Protein/genetics , Enzyme Activation , Cell Membrane/metabolism , Son of Sevenless Proteins/metabolism , Son of Sevenless Proteins/chemistry , Humans
4.
BMC Plant Biol ; 24(1): 805, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39187766

ABSTRACT

BACKGROUND: Salt Overly Sensitive 1 (SOS1), a plasma membrane Na+/H+ exchanger, is essential for plant salt tolerance. Salt damage is a significant abiotic stress that impacts plant species globally. All living organisms require copper (Cu), a necessary micronutrient and a protein cofactor for many biological and physiological processes. High Cu concentrations, however, may result in pollution that inhibits the growth and development of plants. The function and production of mangrove ecosystems are significantly impacted by rising salinity and copper contamination. RESULTS: A genome-wide analysis and bioinformatics techniques were used in this study to identify 20 SOS1 genes in the genome of Kandelia obovata. Most of the SOS1 genes were found on the plasma membrane and dispersed over 11 of the 18 chromosomes. Based on phylogenetic analysis, KoSOS1s can be categorized into four groups, similar to Solanum tuberosum. Kandelia obovata's SOS1 gene family expanded due to tandem and segmental duplication. These SOS1 homologs shared similar protein structures, according to the results of the conserved motif analysis. The coding regions of 20 KoSOS1 genes consist of amino acids ranging from 466 to 1221, while the exons include amino acids ranging from 3 to 23. In addition, we found that the 2.0 kb upstream promoter region of the KoSOS1s gene contains several cis-elements associated with phytohormones and stress responses. According to the expression experiments, seven randomly chosen genes experienced up- and down-regulation of their expression levels in response to copper (CuCl2) and salt stressors. CONCLUSIONS: For the first time, this work systematically identified SOS1 genes in Kandelia obovata. Our investigations also encompassed physicochemical properties, evolution, and expression patterns, thereby furnishing a theoretical framework for subsequent research endeavours aimed at functionally characterizing the Kandelia obovata SOS1 genes throughout the life cycle of plants.


Subject(s)
Copper , Phylogeny , Plant Proteins , Rhizophoraceae , Copper/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Rhizophoraceae/genetics , Rhizophoraceae/physiology , Salt Stress/genetics , Gene Expression Regulation, Plant , Genome, Plant , Multigene Family , Stress, Physiological/genetics , Genes, Plant , Salt Tolerance/genetics , SOS1 Protein/genetics , SOS1 Protein/metabolism
5.
Chembiochem ; 25(12): e202400008, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38622060

ABSTRACT

The RAS-MAPK signaling pathway, crucial for cell proliferation and differentiation, involves key proteins KRAS and SOS1. Mutations in the KRAS and SOS1 genes are implicated in various cancer types, including pancreatic, lung, and juvenile myelomonocytic leukemia. There is considerable interest in identifying inhibitors targeting KRAS and SOS1 to explore potential therapeutic strategies for cancer treatment. In this study, advanced in silico techniques were employed to screen small molecule libraries at this interface, leading to the identification of promising lead compounds as potential SOS1 inhibitors. Comparative analysis of the average binding free energies of these predicted potent compounds with known SOS1 small molecule inhibitors revealed that the identified compounds display similar or even superior predicted binding affinities compared to the known inhibitors. These findings offer valuable insights into the potential of these compounds as candidates for further development as effective anti-cancer agents.


Subject(s)
Proto-Oncogene Proteins p21(ras) , SOS1 Protein , Small Molecule Libraries , SOS1 Protein/metabolism , SOS1 Protein/antagonists & inhibitors , SOS1 Protein/chemistry , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Humans , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Molecular Docking Simulation , Protein Binding , Drug Evaluation, Preclinical
6.
Bioorg Med Chem Lett ; 107: 129780, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38714262

ABSTRACT

Oncogenic KRAS mutations drive an approximately 25 % of all human cancers. Son of Sevenless 1 (SOS1), a critical guanine nucleotide exchange factor, catalyzes the activation of KRAS. Targeting SOS1 degradation has engaged as a promising therapeutic strategy for KRAS-mutant cancers. Herein, we designed and synthesized a series of novel CRBN-recruiting SOS1 PROTACs using the pyrido[2,3-d]pyrimidin-7-one-based SOS1 inhibitor as the warhead. One representative compound 11o effectively induced the degradation of SOS1 in three different KRAS-mutant cancer cell lines with DC50 values ranging from 1.85 to 7.53 nM. Mechanism studies demonstrated that 11o-induced SOS1 degradation was dependent on CRBN and proteasome. Moreover, 11o inhibited the phosphorylation of ERK and displayed potent anti-proliferative activities against SW620, A549 and DLD-1 cells. Further optimization of 11o may provide us promising SOS1 degraders with favorable drug-like properties for developing new chemotherapies targeting KRAS-driven cancers.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Drug Design , SOS1 Protein , Humans , SOS1 Protein/metabolism , SOS1 Protein/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Structure-Activity Relationship , Cell Line, Tumor , Molecular Structure , Drug Screening Assays, Antitumor , Dose-Response Relationship, Drug , Pyrimidines/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Pyrimidinones/pharmacology , Pyrimidinones/chemical synthesis , Pyrimidinones/chemistry , Proteolysis Targeting Chimera
7.
J Pharmacol Exp Ther ; 385(2): 106-116, 2023 05.
Article in English | MEDLINE | ID: mdl-36849412

ABSTRACT

Individuals with neurofibromatosis type 1 develop rat sarcoma virus (RAS)-mitogen-activated protein kinase-mitogen-activated and extracellular signal-regulated kinase (RAS-MAPK-MEK)-driven nerve tumors called neurofibromas. Although MEK inhibitors transiently reduce volumes of most plexiform neurofibromas in mouse models and in neurofibromatosis type 1 (NF1) patients, therapies that increase the efficacy of MEK inhibitors are needed. BI-3406 is a small molecule that prevents Son of Sevenless (SOS)1 interaction with Kirsten rat sarcoma viral oncoprotein (KRAS)-GDP, interfering with the RAS-MAPK cascade upstream of MEK. Single agent SOS1 inhibition had no significant effect in the DhhCre;Nf1 fl/fl mouse model of plexiform neurofibroma, but pharmacokinetics (PK)-driven combination of selumetinib with BI-3406 significantly improved tumor parameters. Tumor volumes and neurofibroma cell proliferation, reduced by MEK inhibition, were further reduced by the combination. Neurofibromas are rich in ionized calcium binding adaptor molecule 1 (Iba1)+ macrophages; combination treatment resulted in small and round macrophages, with altered cytokine expression indicative of altered activation. The significant effects of MEK inhibitor plus SOS1 inhibition in this preclinical study suggest potential clinical benefit of dual targeting of the RAS-MAPK pathway in neurofibromas. SIGNIFICANCE STATEMENT: Interfering with the RAS-mitogen-activated protein kinase (RAS-MAPK) cascade upstream of mitogen activated protein kinase kinase (MEK), together with MEK inhibition, augment effects of MEK inhibition on neurofibroma volume and tumor macrophages in a preclinical model system. This study emphasizes the critical role of the RAS-MAPK pathway in controlling tumor cell proliferation and the tumor microenvironment in benign neurofibromas.


Subject(s)
Neurofibroma, Plexiform , Neurofibroma , Neurofibromatosis 1 , Animals , Mice , Disease Models, Animal , Extracellular Signal-Regulated MAP Kinases/metabolism , Mitogen-Activated Protein Kinase Kinases , Neurofibroma/drug therapy , Neurofibroma, Plexiform/drug therapy , Neurofibromatosis 1/drug therapy , Neurofibromatosis 1/pathology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins p21(ras)/metabolism , Proto-Oncogene Proteins p21(ras)/therapeutic use , Tumor Microenvironment , SOS1 Protein/metabolism
8.
Mol Carcinog ; 62(7): 1025-1037, 2023 07.
Article in English | MEDLINE | ID: mdl-37042566

ABSTRACT

It has been challenging to target mutant KRAS (mKRAS) in colorectal cancer (CRC) and other malignancies. Recent efforts have focused on developing inhibitors blocking molecules essential for KRAS activity. In this regard, SOS1 inhibition has arisen as an attractive approach for mKRAS CRC given its essential role as a guanine nucleotide exchange factor for this GTPase. Here, we demonstrated the translational value of SOS1 blockade in mKRAS CRC. We used CRC patient-derived organoids (PDOs) as preclinical models to evaluate their sensitivity to SOS1 inhibitor BI3406. A combination of in silico analyses and wet lab techniques was utilized to define potential predictive markers for SOS1 sensitivity and potential mechanisms of resistance in CRC. RNA-seq analysis of CRC PDOs revealed two groups of CRC PDOs with differential sensitivities to SOS1 inhibitor BI3406. The resistant group was enriched in gene sets involving cholesterol homeostasis, epithelial-mesenchymal transition, and TNF-α/NFκB signaling. Expression analysis identified a significant correlation between SOS1 and SOS2 mRNA levels (Spearman's ρ 0.56, p < 0.001). SOS1/2 protein expression was universally present with heterogeneous patterns in CRC cells but only minimal to none in surrounding nonmalignant cells. Only SOS1 protein expression was associated with worse survival in patients with RAS/RAF mutant CRC (p = 0.04). We also found that SOS1/SOS2 protein expression ratio >1 by immunohistochemistry (p = 0.03) instead of KRAS mutation (p = 1) was a better predictive marker to BI3406 sensitivity of CRC PDOs, concordant with the significant positive correlation between SOS1/SOS2 protein expression ratio and SOS1 dependency. Finally, we showed that GTP-bound RAS level underwent rebound even in BI3406-sensitive PDOs with no change of KRAS downstream effector genes, thus suggesting upregulation of guanine nucleotide exchange factor as potential cellular adaptation mechanisms to SOS1 inhibition. Taken together, our results show that high SOS1/SOS2 protein expression ratio predicts sensitivity to SOS1 inhibition and support further clinical development of SOS1-targeting agents in CRC.


Subject(s)
Colorectal Neoplasms , Proto-Oncogene Proteins p21(ras) , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Signal Transduction , SOS1 Protein/genetics , SOS1 Protein/metabolism , Guanine Nucleotide Exchange Factors/genetics , Mutation , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics
9.
Bioorg Chem ; 136: 106536, 2023 07.
Article in English | MEDLINE | ID: mdl-37054529

ABSTRACT

KRAS mutations (G12C, G12D, etc.) are implicated in the oncogenesis and progression of many deadliest cancers. Son of sevenless homolog 1 (SOS1) is a crucial regulator of KRAS to modulate KRAS from inactive to active states. We previously discovered tetra-cyclic quinazolines as an improved scaffold for inhibiting SOS1-KRAS interaction. In this work, we report the design of tetra-cyclic phthalazine derivatives for selectively inhibiting SOS1 against EGFR. The lead compound 6c displayed remarkable activity to inhibit the proliferation of KRAS(G12C)-mutant pancreas cells. 6c showed a favorable pharmacokinetic profile in vivo, with a bioavailability of 65.8% and exhibited potent tumor suppression in pancreas tumor xenograft models. These intriguing results suggested that 6c has the potential to be developed as a drug candidate for KRAS-driven tumors.


Subject(s)
Proto-Oncogene Proteins p21(ras) , SOS1 Protein , Humans , SOS1 Protein/genetics , SOS1 Protein/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Mutation , Quinazolines/pharmacology , ErbB Receptors/genetics
10.
Bioorg Chem ; 135: 106500, 2023 06.
Article in English | MEDLINE | ID: mdl-37003134

ABSTRACT

Blocking the interaction between Ras and Son of Sevenless homolog 1 (SOS1) has been an attractive therapeutic strategy for treating cancers involving oncogenic Ras mutations. K-Ras mutation is the most common in Ras-driven cancers, accounting for 86%, with N-Ras mutation and H-Ras mutation accounting for 11% and 3%, respectively. Here, we report the design and synthesis of a series of hydrocarbon-stapled peptides to mimic the alpha-helix of SOS1 as pan-Ras inhibitors. Among these stapled peptides, SSOSH-5 was identified to maintain a well-constrained alpha-helical structure and bind to H-Ras with high affinity. SSOSH-5 was furthermore validated to bind with Ras similarly to the parent linear peptide through structural modeling analysis. This optimized stapled peptide was proven to be capable of effectively inhibiting the proliferation of pan-Ras-mutated cancer cells and inducing apoptosis in a dose-dependent manner by modulating downstream kinase signaling. Of note, SSOSH-5 exhibited a high capability of crossing cell membranes and strong proteolytic resistance. We demonstrated that the peptide stapling strategy is a feasible approach for developing peptide-based pan-Ras inhibitors. Furthermore, we expect that SSOSH-5 can be further characterized and optimized for the treatment of Ras-driven cancers.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , SOS1 Protein/chemistry , SOS1 Protein/genetics , SOS1 Protein/metabolism , Peptides/pharmacology , Signal Transduction , Mutation , Antineoplastic Agents/pharmacology
11.
Biochem Biophys Res Commun ; 637: 161-169, 2022 12 31.
Article in English | MEDLINE | ID: mdl-36403479

ABSTRACT

The influence of son of sevenless homolog 1 (SOS1) on invasion and metastasis of hepatocellular carcinoma (HCC) cells was investigated. HCC cells were transfected with siRNA and lentivirus to achieve SOS1 knock down/overexpression and changes in RNA and protein levels analyzed by q-PCR and Western blotting (WB). Transwell assay was utilized to assess variations in cell invasion and migration in vitro and by a lung metastasis model of liver cancer in vivo. High expression of SOS1 was observed in most human liver cancers, which indicated a worse prognosis. SOS1 knockout in HepG2 cells significantly decreased cell invasion and migration. SOS1 knockout also reduced the number of metastatic foci in a lung metastasis model of HCC established in nude mice. SOS1 knockout inhibited the epithelial-mesenchymal transition (EMT) in HepG2 cells as well as the PI3K/AKT/mTOR pathway. Overexpression of SOS1 in Huh7 cells had the opposite effect. To conclude, SOS1 may induce the EMT by the activation of the PI3K/AKT/mTOR pathway, thereby enhancing invasion, migration and metastasis of HCC cells. These findings may expose SOS1 as a new HCC therapeutic target.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Lung Neoplasms , SOS1 Protein , Animals , Humans , Mice , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Epithelial-Mesenchymal Transition , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Lung Neoplasms/secondary , Mice, Nude , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , RNA, Small Interfering , SOS1 Protein/genetics , TOR Serine-Threonine Kinases
12.
Exp Cell Res ; 400(1): 112508, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33549576

ABSTRACT

Noonan syndrome (NS) is a dominant autosomal genetic disorder, associated with mutations in several genes that exhibit multisystem abnormal development including cardiac defects. NS associated with the Son of Sevenless homolog 1 (SOS1) gene mutation attributes to the development of cardiomyopathy and congenital heart defects. Since the treatment option for NS is very limited, an in vitro disease model with SOS1 gene mutation would be beneficial for exploring therapeutic possibilities for NS. We reprogrammed cardiac fibroblasts obtained from a NS patient and normal control skin fibroblasts (C-SF) into induced pluripotent stem cells (iPSCs). We identified NS-iPSCs carry a heterozygous single nucleotide variation in the SOS1 gene at the c.1654A > G. Furthermore, the control and NS-iPSCs were differentiated into induced cardiomyocytes (iCMCs), and the electron microscopic analysis showed that the sarcomeres of the NS-iCMCs were highly disorganized. FACS analysis showed that 47.5% of the NS-iCMCs co-expressed GATA4 and cardiac troponin T proteins, and the mRNA expression levels of many cardiac related genes, studied by qRT-PCR array, were significantly reduced when compared to the control C-iCMCs. We report for the first time that NS-iPSCs carry a single nucleotide variation in the SOS1 gene at the c.1654A>G were showing significantly reduced cardiac genes and proteins expression as well as structurally and functionally compromised when compared to C-iCMCs. These iPSCs and iCMCs can be used as a modeling platform to unravel the pathologic mechanisms and also the development of novel drug for the cardiomyopathy in patients with NS.


Subject(s)
Induced Pluripotent Stem Cells/pathology , Mutation , Myocytes, Cardiac/pathology , Noonan Syndrome/pathology , SOS1 Protein/genetics , Case-Control Studies , Cells, Cultured , Humans , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Noonan Syndrome/genetics
13.
Biochem J ; 478(14): 2793-2809, 2021 07 30.
Article in English | MEDLINE | ID: mdl-34232285

ABSTRACT

Growth factor receptor-bound protein 2 (GRB2) is a trivalent adaptor protein and a key element in signal transduction. It interacts via its flanking nSH3 and cSH3 domains with the proline-rich domain (PRD) of the RAS activator SOS1 and via its central SH2 domain with phosphorylated tyrosine residues of receptor tyrosine kinases (RTKs; e.g. HER2). The elucidation of structural organization and mechanistic insights into GRB2 interactions, however, remain challenging due to their inherent flexibility. This study represents an important advance in our mechanistic understanding of how GRB2 links RTKs to SOS1. Accordingly, it can be proposed that (1) HER2 pYP-bound SH2 potentiates GRB2 SH3 domain interactions with SOS1 (an allosteric mechanism); (2) the SH2 domain blocks cSH3, enabling nSH3 to bind SOS1 first before cSH3 follows (an avidity-based mechanism); and (3) the allosteric behavior of cSH3 to other domains appears to be unidirectional, although there is an allosteric effect between the SH2 and SH3 domains.


Subject(s)
GRB2 Adaptor Protein/chemistry , Phosphotyrosine/chemistry , Protein Domains , SOS1 Protein/chemistry , src Homology Domains , Amino Acid Sequence , Binding Sites/genetics , GRB2 Adaptor Protein/genetics , GRB2 Adaptor Protein/metabolism , Humans , Kinetics , Ligands , Models, Molecular , Phosphotyrosine/metabolism , Protein Binding , SOS1 Protein/genetics , SOS1 Protein/metabolism
14.
BMC Pediatr ; 22(1): 734, 2022 12 24.
Article in English | MEDLINE | ID: mdl-36566191

ABSTRACT

BACKGROUND: Noonan syndrome (NS) is a clinically and genetically heterogeneous disorder. Since its clinical phenotype is often mild and difficult to differentiate from other syndromes, its diagnosis can be challenging and its prevalence in the pediatric population is most certainly underestimated. The difficulty in identifying Noonan syndrome is also increased by the fact that genetic tests are currently not able to detect an underlying mutation in around 10% of the cases. METHODS: This is a retrospective, observational study conducted at the Institute for Maternal and Child "Burlo Garofolo" in Trieste, Italy. We recruited all the patients with clinical and/or genetic diagnosis of NS who were evaluated at the Department of Pediatrics between October 2015 and October 2020. Statistical analyses were performed with IBM SPSS Statistics software. The association between discrete variables has been evaluated through chi-squared test, indicating statistically significant p with Pearson test or Fischer test for variables less than 5. RESULTS: We recruited a total of 35 patients affected by Noonan syndrome. In 24 patients (75%) we identified an underlying genetic substrate: 17 patients had a mutation on PTPN11 (61%), 2 in SOS1, KRAS and SHOC2 (7% each) and only 1 in RAF1 (4%). 25% of the subjects did not receive a genetic confirm. As for the phenotype of the syndrome, our study identified the presence of some clinical features which were previously unrelated or poorly related to NS. For example, renal and central nervous system abnormalities were found at a higher rate compared to the current literature. On the contrary, some features that are considered very suggestive of NS (such as lymphatic abnormalities and the classical facial features) were not frequently found in our population. CONCLUSIONS: In our analysis, we focused on the main phenotypic features of NS, identifying various clinical manifestation that were not associated with this genetic condition before. This could be helpful in raising the knowledge of NS's clinical spectrum, facilitating its diagnosis.


Subject(s)
Noonan Syndrome , Child , Humans , Genetic Testing , Intracellular Signaling Peptides and Proteins/genetics , Mutation , Noonan Syndrome/diagnosis , Noonan Syndrome/genetics , Phenotype , Retrospective Studies , SOS1 Protein/genetics , Proto-Oncogene Proteins p21(ras)/genetics
15.
Proc Natl Acad Sci U S A ; 116(7): 2551-2560, 2019 02 12.
Article in English | MEDLINE | ID: mdl-30683722

ABSTRACT

Since the late 1980s, mutations in the RAS genes have been recognized as major oncogenes with a high occurrence rate in human cancers. Such mutations reduce the ability of the small GTPase RAS to hydrolyze GTP, keeping this molecular switch in a constitutively active GTP-bound form that drives, unchecked, oncogenic downstream signaling. One strategy to reduce the levels of active RAS is to target guanine nucleotide exchange factors, which allow RAS to cycle from the inactive GDP-bound state to the active GTP-bound form. Here, we describe the identification of potent and cell-active small-molecule inhibitors which efficiently disrupt the interaction between KRAS and its exchange factor SOS1, a mode of action confirmed by a series of biophysical techniques. The binding sites, mode of action, and selectivity were elucidated using crystal structures of KRASG12C-SOS1, SOS1, and SOS2. By preventing formation of the KRAS-SOS1 complex, these inhibitors block reloading of KRAS with GTP, leading to antiproliferative activity. The final compound 23 (BAY-293) selectively inhibits the KRAS-SOS1 interaction with an IC50 of 21 nM and is a valuable chemical probe for future investigations.


Subject(s)
Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , SOS1 Protein/antagonists & inhibitors , Cell Line , Crystallography, X-Ray , Drug Discovery , Fluorescence Resonance Energy Transfer , High-Throughput Screening Assays , Humans , Protein Binding , Proto-Oncogene Proteins p21(ras)/chemistry , Proto-Oncogene Proteins p21(ras)/metabolism , SOS1 Protein/chemistry , SOS1 Protein/metabolism , Signal Transduction
16.
PLoS Genet ; 15(1): e1007798, 2019 01.
Article in English | MEDLINE | ID: mdl-30615606

ABSTRACT

Salt stress is one of the major abiotic factors that affect the metabolism, growth and development of plants, and soybean [Glycine max (L.) Merr.] germination is sensitive to salt stress. Thus, to ensure the successful establishment and productivity of soybeans in saline soil, the genetic mechanisms of salt tolerance at the soybean germination stage need to be explored. In this study, a population of 184 recombinant inbred lines (RILs) was utilized to map quantitative trait loci (QTLs) related to salt tolerance. A major QTL related to salt tolerance at the soybean germination stage named qST-8 was closely linked with the marker Sat_162 and detected on chromosome 8. Interestingly, a genome-wide association study (GWAS) identified several single nucleotide polymorphisms (SNPs) significantly associated with salt tolerance in the same genetic region on chromosome 8. Resequencing, bioinformatics and gene expression analyses were implemented to identify the candidate gene Glyma.08g102000, which belongs to the cation diffusion facilitator (CDF) family and was named GmCDF1. Overexpression and RNA interference of GmCDF1 in soybean hairy roots resulted in increased sensitivity and tolerance to salt stress, respectively. This report provides the first demonstration that GmCDF1 negatively regulates salt tolerance by maintaining K+-Na+ homeostasis in soybean. In addition, GmCDF1 affected the expression of two ion homeostasis-associated genes, salt overly sensitive 1 (GmSOS1) and Na+/H+ exchanger 1 (GmNHX1), in transgenic hairy roots. Moreover, a haplotype analysis detected ten haplotypes of GmCDF1 in 31 soybean genotypes. A candidate-gene association analysis showed that two SNPs in GmCDF1 were significantly associated with salt tolerance and that Hap1 was more sensitive to salt stress than Hap2. The results demonstrated that the expression level of GmCDF1 was negatively correlated with salt tolerance in the 31 soybean accessions (r = -0.56, P < 0.01). Taken together, these results not only indicate that GmCDF1 plays a negative role in soybean salt tolerance but also help elucidate the molecular mechanisms of salt tolerance and accelerate the breeding of salt-tolerant soybean.


Subject(s)
Glycine max/growth & development , Plant Proteins/genetics , Quantitative Trait Loci/genetics , Salt Tolerance/genetics , Alleles , Cations/chemistry , Chromosome Mapping , Genome-Wide Association Study , Genotype , Germination/genetics , Haplotypes , Phenotype , Plant Breeding , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , SOS1 Protein/genetics , Glycine max/genetics
17.
Int J Med Sci ; 18(14): 3097-3105, 2021.
Article in English | MEDLINE | ID: mdl-34400880

ABSTRACT

Emerging evidence revealed that UHRF2 was implicated in a variety of human diseases, especially in cancer. However, the biological function, clinical significance and underly mechanisms of UHRF2 in hepatocellular carcinoma (HCC) is largely unknown. We analyzed the expression of UHRF2 in 371 HCC tissues and 50 para-cancerous tissues of TCGA database. We found that UHRF2 was significantly upregulated in HCC tissues, which was further confirmed in HCC cells and tissues by western blot. More importantly, the level of UHRF2 was correlated with pathological grade and clinical stage, and the patients with high level of UHRF2 had lower overall survival, disease-free survival and higher recurrence rate than those with low UHRF2 level. Univariate and multivariate Cox regression analysis revealed that high level of UHRF2 might be an independent prognostic factor for HCC patients. Functional investigations suggested that ectopic expression of UHRF2 could promote the proliferation, migration and invasion of HCC cell lines, whereas knock down of UHRF2 exhibited an opposite effect. Additionally, gene set enrichment analysis indicated that ERBB signaling pathway was upregulated in patients with high level of UHRF2. Pearson correlation analysis indicated that the expression of UHRF2 was positively correlated with ErbB3 and its downstream targets SOS1, Ras and Raf-1. Furthermore, we found that overexpression of UHRF2 could upregulate the expression of ErbB3, SOS1, Ras and Raf-1. Our findings suggested that UHRF2 might accelerate HCC progression by upregulating ErbB3/Ras/Raf signaling pathway and it might serve as a diagnostic marker and therapeutic target for HCC patients.


Subject(s)
Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Receptor, ErbB-3/genetics , Ubiquitin-Protein Ligases/metabolism , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/surgery , Disease Progression , Female , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Hep G2 Cells , Hepatectomy , Humans , Liver/pathology , Liver/surgery , Liver Neoplasms/diagnosis , Liver Neoplasms/pathology , Liver Neoplasms/surgery , Male , Middle Aged , Neoplasm Grading , Neoplasm Staging , Proto-Oncogene Proteins c-raf/metabolism , Receptor, ErbB-3/metabolism , SOS1 Protein/metabolism , Signal Transduction/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitination/genetics , Up-Regulation , ras Proteins/metabolism
18.
Int J Mol Sci ; 22(12)2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34205562

ABSTRACT

The SOS family of Ras-GEFs encompasses two highly homologous and widely expressed members, SOS1 and SOS2. Despite their similar structures and expression patterns, early studies of constitutive KO mice showing that SOS1-KO mutants were embryonic lethal while SOS2-KO mice were viable led to initially viewing SOS1 as the main Ras-GEF linking external stimuli to downstream RAS signaling, while obviating the functional significance of SOS2. Subsequently, different genetic and/or pharmacological ablation tools defined more precisely the functional specificity/redundancy of the SOS1/2 GEFs. Interestingly, the defective phenotypes observed in concomitantly ablated SOS1/2-DKO contexts are frequently much stronger than in single SOS1-KO scenarios and undetectable in single SOS2-KO cells, demonstrating functional redundancy between them and suggesting an ancillary role of SOS2 in the absence of SOS1. Preferential SOS1 role was also demonstrated in different RASopathies and tumors. Conversely, specific SOS2 functions, including a critical role in regulation of the RAS-PI3K/AKT signaling axis in keratinocytes and KRAS-driven tumor lines or in control of epidermal stem cell homeostasis, were also reported. Specific SOS2 mutations were also identified in some RASopathies and cancer forms. The relevance/specificity of the newly uncovered functional roles suggests that SOS2 should join SOS1 for consideration as a relevant biomarker/therapy target.


Subject(s)
SOS1 Protein/physiology , Son of Sevenless Proteins/physiology , Animals , Humans , Neoplasms/metabolism
19.
Clin Infect Dis ; 71(16): 2052-2060, 2020 11 19.
Article in English | MEDLINE | ID: mdl-32307550

ABSTRACT

BACKGROUND: The World Health Organization characterizes novel coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as a pandemic. Here, we investigated the clinical, cytokine levels; T-cell proportion; and related gene expression occurring in patients with COVID-19 on admission and after initial treatment. METHODS: Eleven patients diagnosed with COVID-19 with similar initial treatment regimens were enrolled in the hospital. Plasma cytokine, peripheral T cell proportions, and microfluidic quantitative polymerase chain reaction analyses for gene expression were conducted. RESULTS: Five patients with mild and 6 with severe disease were included. Cough and fever were the primary symptoms in the 11 COVID-19 cases. Older age, higher neutrophil count, and higher C-reactive protein levels were found in severe cases. IL-10 level significantly varied with disease progression and treatment. Decreased T-cell proportions were observed in patients with COVID-19, especially in severe cases, and all were returned to normal in patients with mild disease after initial treatment, but only CD4+ T cells returned to normal in severe cases. The number of differentially expressed genes (DEGs) increased with the disease progression, and decreased after initial treatment. All downregulated DEGs in severe cases mainly involved Th17-cell differentiation, cytokine-mediated signaling pathways, and T-cell activation. After initial treatment in severe cases, MAP2K7 and SOS1 were upregulated relative to that on admission. CONCLUSIONS: Our findings show that a decreased T-cell proportion with downregulated gene expression related to T-cell activation and differentiation occurred in patients with severe COVID-19, which may help to provide effective treatment strategies for COVID-19.


Subject(s)
COVID-19/immunology , COVID-19/pathology , Aged , CD4-Positive T-Lymphocytes/metabolism , COVID-19/virology , Cell Differentiation/physiology , Computational Biology , Female , Humans , Interleukin-10/metabolism , MAP Kinase Kinase 7/metabolism , Male , Microfluidics , Middle Aged , SOS1 Protein/metabolism , Signal Transduction/physiology , Th17 Cells/metabolism
20.
J Am Chem Soc ; 142(7): 3401-3411, 2020 02 19.
Article in English | MEDLINE | ID: mdl-31970984

ABSTRACT

Grb2 is an adaptor protein that recruits Ras-specific guanine nucleotide exchange factor, Son of Sevenless 1 (SOS1), to the plasma membrane. SOS1 exchanges GDP by GTP, activating Ras. Grb2 consists of an SH2 domain flanked by N- and C-terminal SH3 domains (nSH3/cSH3). Grb2 nSH3/cSH3 domains have strong binding affinity for the SOS1 proline-rich (PR) domain that mediates the Grb2-SOS1 interaction. The nSH3/cSH3 domains have distinct preferred binding motifs: PxxPxR for nSH3 and PxxxRxxKP for cSH3 (x represents any natural amino acid). Several nSH3-binding motifs have been identified in the SOS1 PR domain but none specific for cSH3 binding. Even though both nSH3 and cSH3 exhibit the strongest binding to the SOS1 peptide PVPPPVPPRRRP, this mutually exclusive binding combined with other potential nSH3/cSH3 binding regions in SOS1 makes understanding the Grb2-SOS1 interaction challenging. To identify the SOS1-cSH3 binding sites, we selected seven potential binding segments in SOS1. The synthesized peptides were tested for their binding to nSH3/cSH3. Our NMR data reveal that the PKLPPKTYKREH peptide has strong binding affinity for cSH3, but very weak for nSH3. The binding specificity suggests that the most likely Grb2-SOS1 binding mode is through nSH3-PVPPPVPPRRRP and cSH3-PKLPPKTYKREH interactions, which is supported by replica-exchange simulations for the Grb2-SOS1 complex models. We propose that nSH3/cSH3 binding peptides, which effectively interrupt Grb2-SOS1 association, can serve as tumor suppressors. The Grb2-SOS1 mechanism outlined here offers new venues for future therapeutic strategies for upstream mutations in cancer, such as in EGFR.


Subject(s)
GRB2 Adaptor Protein/metabolism , SOS1 Protein/metabolism , src Homology Domains , Amino Acid Sequence , GRB2 Adaptor Protein/chemistry , Humans , Molecular Dynamics Simulation , Peptides/metabolism , Protein Binding , Protein Multimerization , SOS1 Protein/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL