Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 275
Filter
Add more filters

Publication year range
1.
Exp Cell Res ; 433(2): 113829, 2023 12 15.
Article in English | MEDLINE | ID: mdl-37879548

ABSTRACT

Chronic subdural hematoma (CSDH) remains a neurosurgical condition and a healthy burden especially in elderly patients. This study focuses on the functions of rapamycin and its related molecular mechanisms in CSDH management. A rat model of CSDH was induced, which developed significant hematoma on day 5 after operation. The rats were treated with rapamycin or atorvastatin, a drug with known effect on hematoma alleviation, or treated with rapamycin and atorvastatin in combination. The atorvastatin or rapamycin treatment reduced the hematoma development, blood-brain barrier permeability, neurological dysfunction in CSDH rats, and the combination treatment showed more pronounced effects. Human brain microvascular endothelial cells hCMEC/D3 were stimulated by hematoma samples to mimic a CSDH condition in vitro. The drug treatments elevated the cell junction-related factors and reduced the pro-inflammatory cytokines both in rat hematoma tissues and in hCMEC/D3 cells. Rapamycin suppressed the mTOR and STAT3 signaling pathways. Overexpression of mTOR or the STAT3 agonist suppressed the alleviating effects of rapamycin on CSDH. In summary, this study demonstrates that rapamycin promotes hematoma resorption and enhances endothelial cell function by suppressing the mTOR/STAT3 signaling.


Subject(s)
Hematoma, Subdural, Chronic , Sirolimus , Aged , Animals , Humans , Rats , Atorvastatin/pharmacology , Atorvastatin/therapeutic use , Endothelial Cells/metabolism , Hematoma, Subdural, Chronic/drug therapy , Hematoma, Subdural, Chronic/metabolism , Signal Transduction , STAT3 Transcription Factor/drug effects , STAT3 Transcription Factor/metabolism , TOR Serine-Threonine Kinases/drug effects , TOR Serine-Threonine Kinases/metabolism , Sirolimus/pharmacology , Sirolimus/therapeutic use
2.
Am J Physiol Gastrointest Liver Physiol ; 322(1): G93-G106, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34755534

ABSTRACT

IL22 signaling plays an important role in maintaining gastrointestinal epithelial barrier function, cell proliferation, and protection of intestinal stem cells from genotoxicants. Emerging studies indicate that the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, promotes production of IL22 in gut immune cells. However, it remains to be determined if AhR signaling can also affect the responsiveness of colonic epithelial cells to IL22. Here, we show that IL22 treatment induces the phosphorylation of STAT3, inhibits colonic organoid growth, and promotes colonic cell proliferation in vivo. Notably, intestinal cell-specific AhR knockout (KO) reduces responsiveness to IL22 and compromises DNA damage response after exposure to carcinogen, in part due to the enhancement of suppressor of cytokine signaling 3 (SOCS3) expression. Deletion of SOCS3 increases levels of pSTAT3 in AhR KO organoids, and phenocopies the effects of IL22 treatment on wild-type (WT) organoid growth. In addition, pSTAT3 levels are inversely associated with increased azoxymethane/dextran sulfate sodium (AOM/DSS)-induced colon tumorigenesis in AhR KO mice. These findings indicate that AhR function is required for optimal IL22 signaling in colonic epithelial cells and provide rationale for targeting AhR as a means of reducing colon cancer risk.NEW & NOTEWORTHY AhR is a key transcription factor controlling expression of IL22 in gut immune cells. In this study, we show for the first time that AhR signaling also regulates IL22 response in colonic epithelial cells by modulating SOCS3 expression.


Subject(s)
Colon/drug effects , Colonic Neoplasms/drug therapy , Interleukins/pharmacology , Receptors, Aryl Hydrocarbon/drug effects , STAT3 Transcription Factor/drug effects , Animals , Carcinogenesis/drug effects , Carcinogenesis/metabolism , Colon/metabolism , Colonic Neoplasms/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Mice, Knockout , Organoids/metabolism , Receptors, Aryl Hydrocarbon/genetics , Signal Transduction/physiology , Suppressor of Cytokine Signaling 3 Protein/drug effects , Suppressor of Cytokine Signaling 3 Protein/metabolism , Transcriptional Activation/physiology , Interleukin-22
3.
Toxicol Appl Pharmacol ; 435: 115845, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34953898

ABSTRACT

Chronic exposure to arsenic promotes lung cancer. Human studies have identified immunosuppression as a risk factor for cancer development. The immune checkpoint pathway of Programmed cell death 1 ligand (PD-L1) and its receptor (programmed cell death receptor 1, PD-1) is the most studied mechanism of immunosuppression. We have previously shown that prolonged arsenic exposure induced cell transformation of BEAS-2B cells, a human lung epithelial cell line. More recently our study further showed that arsenic induced PD-L1 up-regulation, inhibited T cell effector function, and enhanced lung tumor formation in the mice. In the current study, using arsenic-induced BEAS-2B transformation as a model system we investigated the mechanism underlying PD-L1 up-regulation by arsenic. Our data suggests that Lnc-DC, a long non-coding RNA, and signal transducer and activator of transcription 3 (STAT3) mediates PD-L1 up-regulation by arsenic.


Subject(s)
Arsenic/toxicity , B7-H1 Antigen/biosynthesis , B7-H1 Antigen/genetics , Animals , Cell Line , Female , Humans , Lung Neoplasms/chemically induced , Lung Neoplasms/pathology , Mice , RNA, Long Noncoding/biosynthesis , RNA, Long Noncoding/genetics , STAT3 Transcription Factor/drug effects , STAT3 Transcription Factor/genetics , Signal Transduction/drug effects , T-Lymphocytes/drug effects , Up-Regulation/drug effects
4.
Anticancer Drugs ; 33(2): 124-131, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34520436

ABSTRACT

Tyrosine kinase inhibitors of anaplastic lymphoma kinase (ALK-TKIs) including alectinib have been the standard therapy against ALK fusion gene-positive non-small cell lung cancers (NSCLCs). Many ALK fusion variants have been identified in NSCLCs, and the predominant variants are echinoderm microtubule-associated protein-like 4-ALK (EML4-ALK) variant 1 (V1), V2 and V3a/b. However, there have been conflicting reports on the clinical responses of these variants to ALK-TKIs, and there are few reports on other less common ALK variants. To examine the influence of ALK variants on the efficacy of ALK-TKIs, we analyzed the sensitivity to alectinib of eight types of ALK variant: three major variants (V1, V2 and V3a) and five less common variants (V4; kinesin family member 5-ALK; kinesin light chain 1-ALK; striatin, calmodulin-binding protein-ALK; and tropomyosin-receptor kinase fused gene-ALK). Analysis was done by cell-free kinase assays using the recombinant proteins and by cell, growth assays using murine Ba/F3 cells expressing ALK variants. The kinase activity of each recombinant protein was significantly inhibited by alectinib. Intracellular ALK phosphorylation levels and its downstream signaling mediators, STAT3 and ERK, were suppressed by alectinib in each ALK variant-expressing Ba/F3 cell. Each cellular proliferation was markedly inhibited by alectinib treatment. There was no significant difference in the IC50 values between cells, with a <3.6-fold difference in responsiveness. In conclusion, these eight ALK variants had similar sensitivity to alectinib in vitro, indicating that it may not be possible to predict the response to alectinib just by determination of the ALK variant type in ALK fusion-positive NSCLCs.


Subject(s)
Anaplastic Lymphoma Kinase/drug effects , Anaplastic Lymphoma Kinase/genetics , Carbazoles/pharmacology , Piperidines/pharmacology , Protein Kinase Inhibitors/pharmacology , Animals , Cell Proliferation/drug effects , DNA, Circular , Extracellular Signal-Regulated MAP Kinases/drug effects , Humans , Mice , Phosphorylation/drug effects , STAT3 Transcription Factor/drug effects , Signal Transduction/drug effects
5.
Acta Pharmacol Sin ; 43(3): 659-671, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34103688

ABSTRACT

Tubulointerstitial inflammation plays an important role in the progression of diabetic nephropathy (DN), and tubular epithelial cells (TECs) are crucial promoters of the inflammatory cascade. Exchange protein activated by cAMP (Epac) has been shown to suppress the angiotensin II (Ang-II)-induced release of inflammatory cytokines in tubular cells. However, the role of Epac in TEC-mediated tubulointerstitial inflammation in DN remains unknown. We found that administering the Epac agonist 8-pCPT-2'-O-Me-cAMP (8-O-cAMP) to db/db mice inhibited tubulointerstitial inflammation characterized by macrophage infiltration and increased inflammatory cytokine release and consequently alleviated tubulointerstitial fibrosis in the kidney. Furthermore, 8-O-cAMP administration restored CCAAT/enhancer binding protein ß (C/EBP-ß) expression and further upregulated the expression of Suppressor of cytokine signaling 3 (SOCS3), while inhibiting p-STAT3, MCP-1, IL-6, and TNF-α expression in the kidney cortex in db/db mice. And in vitro study showed that macrophage migration and MCP-1 expression induced by high glucose (HG, 30 mM) were notably reduced by 8-O-cAMP in human renal proximal tubule epithelial (HK-2) cells. In addition, 8-O-cAMP treatment restored C/EBP-ß expression in HK-2 cells and promoted C/EBP-ß translocation to the nucleus, where it transcriptionally upregulated SOCS3 expression, subsequently inhibiting STAT3 phosphorylation. Under HG conditions, siRNA-mediated knockdown of C/EBP-ß or SOCS3 in HK-2 cells partially blocked the inhibitory effect of Epac activation on the release of MCP-1. In contrast, SOCS3 overexpression inhibited HG-induced activation of STAT3 and MCP-1 expression in HK-2 cells. These findings indicate that Epac activation via 8-O-cAMP ameliorates tubulointerstitial inflammation in DN through the C/EBP-ß/SOCS3/STAT3 pathway.


Subject(s)
Diabetic Nephropathies/pathology , Guanine Nucleotide Exchange Factors/agonists , Inflammation/pathology , Kidney Tubules/drug effects , Animals , CCAAT-Enhancer-Binding Protein-beta/drug effects , Cyclic AMP/analogs & derivatives , Cyclic AMP/pharmacology , Cytokines/drug effects , Humans , Inflammation Mediators/metabolism , Macrophages/drug effects , Mice , Mice, Inbred C57BL , Random Allocation , STAT3 Transcription Factor/drug effects , Signal Transduction/drug effects , Suppressor of Cytokine Signaling 3 Protein/drug effects , Up-Regulation
6.
Hum Mol Genet ; 28(13): 2120-2132, 2019 07 01.
Article in English | MEDLINE | ID: mdl-30806670

ABSTRACT

Duchenne muscular dystrophy (DMD) is a lethal, muscle degenerative disease causing premature death of affected children. DMD is characterized by mutations in the dystrophin gene that result in a loss of the dystrophin protein. Loss of dystrophin causes an associated reduction in proteins of the dystrophin glycoprotein complex, leading to contraction-induced sarcolemmal weakening, muscle tearing, fibrotic infiltration and rounds of degeneration and failed regeneration affecting satellite cell populations. The α7ß1 integrin has been implicated in increasing myogenic capacity of satellite cells, therefore restoring muscle viability, increasing muscle force and preserving muscle function in dystrophic mouse models. In this study, we show that a Food and Drug Administration (FDA)-approved small molecule, Sunitinib, is a potent α7 integrin enhancer capable of promoting myogenic regeneration by stimulating satellite cell activation and increasing myofiber fusion. Sunitinib exerts its regenerative effects via transient inhibition of SHP-2 and subsequent activation of the STAT3 pathway. Treatment of mdx mice with Sunitinib demonstrated decreased membrane leakiness and damage owing to myofiber regeneration and enhanced support at the extracellular matrix. The decreased myofiber damage translated into a significant increase in muscle force production. This study identifies an already FDA-approved compound, Sunitinib, as a possible DMD therapeutic with the potential to treat other muscular dystrophies in which there is defective muscle repair.


Subject(s)
Muscle, Skeletal/drug effects , Muscular Dystrophy, Duchenne/drug therapy , Myoblasts/drug effects , Sunitinib/therapeutic use , Animals , Cell Line , Disease Models, Animal , Disease Progression , Integrins/metabolism , Male , Mice , Mice, Inbred mdx , Muscle Development/drug effects , Muscle, Skeletal/metabolism , MyoD Protein/metabolism , Myoblasts/cytology , Myoblasts/metabolism , Myogenin/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 6/drug effects , Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism , Regeneration , STAT3 Transcription Factor/drug effects , STAT3 Transcription Factor/metabolism , Satellite Cells, Skeletal Muscle/drug effects , Satellite Cells, Skeletal Muscle/metabolism , Sunitinib/pharmacology
7.
Clin Immunol ; 227: 108753, 2021 06.
Article in English | MEDLINE | ID: mdl-33945871

ABSTRACT

Neutrophils are conspicuous components of gastric cancer (GC) tumors, increasing with tumor progression and poor patient survival. However, the phenotype, regulation and clinical relevance of neutrophils in human GC are presently unknown. Most intratumoral neutrophils showed an activated CD54+ phenotype and expressed high level B7-H3. Tumor tissue culture supernatants from GC patients induced the expression of CD54 and B7-H3 on neutrophils in time-dependent and dose-dependent manners. Locally enriched CD54+ neutrophils and B7-H3+ neutrophils positively correlated with increased granulocyte-macrophage colony stimulating factor (GM-CSF) detection ex vivo; and in vitro GM-CSF induced the expression of CD54 and B7-H3 on neutrophils in both time-dependent and dose-dependent manners. Furthermore, GC tumor-derived GM-CSF activated neutrophils and induced neutrophil B7-H3 expression via JAK-STAT3 signaling pathway activation. Finally, intratumoral B7-H3+ neutrophils increased with tumor progression and independently predicted reduced overall survival. Collectively, these results suggest B7-H3+ neutrophils to be potential biomarkers in GC.


Subject(s)
B7 Antigens/metabolism , Carcinoma/metabolism , Lymphocytes, Tumor-Infiltrating/metabolism , Neutrophil Activation , Neutrophils/metabolism , Stomach Neoplasms/metabolism , Adult , Aged , Carcinoma/pathology , Disease Progression , Female , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Humans , In Vitro Techniques , Intercellular Adhesion Molecule-1/metabolism , Janus Kinases/drug effects , Janus Kinases/metabolism , Male , Middle Aged , Neutrophils/drug effects , Prognosis , STAT3 Transcription Factor/drug effects , STAT3 Transcription Factor/metabolism , Signal Transduction , Stomach Neoplasms/pathology , Survival Rate , Young Adult
8.
Clin Immunol ; 227: 108728, 2021 06.
Article in English | MEDLINE | ID: mdl-33878452

ABSTRACT

OBJECTIVE: To investigate the relationship between lncRNA PVT1(PVT1) level and PD-L1 expression and their functions in cisplatin resistant epithelial ovarian cancer (CREOC). METHODS: PVT1 and PD-L1 in ovarian cancer tissues were detected and analyzed. The cells proliferation, apoptosis, invasion abilities and potential mechanism were detected by cell functional experiments and western-blot assay, respectively. RESULTS: The average expressions of PVT1 and PD-L1 in CREOC tissues were significantly higher. The expression of PVT1 is positively associated with PD-L1 in CREOC. Higher expressions of PVT1 and PD-L1 indicated more malignant clinical behavior and shorter PFS and OS. Knockdown of PVT1 inhibited the proliferation and invasion and promote apoptosis for A2780cis cells, which may be related to decrease the expression of PD-L1 via repressing JAK2/STAT3 pathway. CONCLUSIONS: The synergistic therapeutic strategy using LncRNA PVT1-targeted therapy and immune checkpoint blockade of PD-L1 warrant study further for ovarian cancer patients with cisplatin resistant recurrence.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , B7-H1 Antigen/genetics , Carcinoma, Ovarian Epithelial/genetics , Immune Checkpoint Inhibitors/pharmacology , Janus Kinase 2/drug effects , Ovarian Neoplasms/genetics , RNA, Long Noncoding/genetics , STAT3 Transcription Factor/drug effects , Adult , Aged , Antineoplastic Agents , Apoptosis/drug effects , Apoptosis/genetics , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , Carcinoma, Ovarian Epithelial/drug therapy , Carcinoma, Ovarian Epithelial/metabolism , Case-Control Studies , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cisplatin , Drug Resistance, Neoplasm , Female , Gene Knockdown Techniques , Humans , Janus Kinase 2/metabolism , Middle Aged , Neoplasm Invasiveness , Neoplasm Recurrence, Local , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Progression-Free Survival , RNA, Long Noncoding/antagonists & inhibitors , RNA, Long Noncoding/metabolism , RNA, Small Interfering , Real-Time Polymerase Chain Reaction , Retrospective Studies , STAT3 Transcription Factor/metabolism
9.
Rheumatology (Oxford) ; 60(8): 3923-3935, 2021 08 02.
Article in English | MEDLINE | ID: mdl-33237331

ABSTRACT

OBJECTIVE: AS is a rheumatic disease characterized by chronic inflammation and bony ankylosis. This study was to evaluate whether a signal transducer and activator of transcription 3 phosphorylation inhibitor (stat3-p Inh) could treat both chronic inflammation and bone formation in AS. METHODS: Primary AS osteoprogenitor cells and spinal entheseal cells were examined for osteogenic differentiation. SF mononuclear cells (SFMCs) and lamina propria mononuclear cells (LPMCs) were obtained from AS patients. Inflammatory cytokine-producing cells were analysed using flow cytometry and ELISA. Female SKG mice were treated with stat3-p Inh, IL-17A blocker or vehicle. Inflammation and new bone formation were evaluated using immunohistochemistry, PET and micro-CT. RESULTS: In the SKG mouse model, stat3-p Inh significantly suppressed arthritis, enthesitis, spondylitis and ileitis. In experiments culturing SFMCs and LPMCs, the frequencies of IFN-γ-, IL-17A- and TNF-α-producing cells were significantly decreased after stat3-p Inh treatment. When comparing current treatments for AS, stat3-p Inh showed a comparable suppression effect on osteogenesis to Janus kinase inhibitor or IL-17A blocker in AS-osteoprogenitor cells. Stat3-p Inh suppressed differentiation and mineralization of AS-osteoprogenitor cells and entheseal cells toward osteoblasts. Micro-CT analysis of hind paws revealed less new bone formation in stat3-p Inh-treated mice than vehicle-treated mice (P = 0.005). Hind paw and spinal new bone formation were similar between stat3-p Inh- and anti-IL-17A-treated SKG mice (P = 0.874 and P = 0.117, respectively). CONCLUSION: Stat-3p inhibition is a promising treatment for both inflammation and new bone formation in AS.


Subject(s)
Inflammation/metabolism , Osteogenesis/drug effects , STAT3 Transcription Factor/metabolism , Spondylitis, Ankylosing/metabolism , Stem Cells/drug effects , Adult , Animals , Cell Differentiation/drug effects , Disease Models, Animal , Female , Humans , Ileitis/metabolism , Ileitis/pathology , Inflammation/diagnostic imaging , Inflammation/pathology , Male , Mice , Middle Aged , Osteoblasts/drug effects , Phosphorylation/drug effects , Positron-Emission Tomography , STAT3 Transcription Factor/drug effects , Spondylitis, Ankylosing/diagnostic imaging , Spondylitis, Ankylosing/pathology , Thiophenes/pharmacology , X-Ray Microtomography , Young Adult , beta-Glucans/pharmacology
10.
Drug Metab Dispos ; 49(11): 985-994, 2021 11.
Article in English | MEDLINE | ID: mdl-34462267

ABSTRACT

Drug resistance of cancer cells is associated with redox homeostasis. The mechanism of acquired resistance of cancer cells to antitumor drugs is not well understood. Our previous studies revealed that drug resistance and highly expressed P-glycoprotein (P-gp) of MCF-7 breast cancer cells was dependent on intracellular redox homeostasis and declined capacity for scavenging reactive oxygen species (ROS). Recently, we observed that, unlike nontumorigenic cells MCF-10A, three tumorigenic breast cancer cells (MCF-7S, BT474, MDA-MB-231) reprogrammed their metabolism, highly expressed cystathionine-γ-lyase (CTH), and acquired a particular specialty to use methionine (Met) to synthesize glutathione (GSH) through the transsulfuration pathway. Interestingly, doxorubicin (adriamycin) further reprogrammed metabolism of MCF-7 cells sensitive to adriamycin (MCF-7S) and induced them to be another MCF-7 cell line resistant to adriamycin (MCF-7R) with dramatically downregulated CTH. The two MCF-7 cell lines showed distinctly different phenotypes in terms of intracellular GSH, ROS levels, expression and activity of P-gp and CTH, and drug resistance. We showed that CTH modulation or the methionine supply brought about the interconversion between MCF-7S and MCF-7R. Methionine deprivation or CTH silencing induced a resistant MCF-7R and lowered paclitaxel activity, yet methionine supplementation or CTH overexpression reversed the above effects, induced a sensitive phenotype of MCF-7S, and significantly increased the cytotoxicity of paclitaxel both in vitro and in vivo. Interleukin-6 (IL-6)/signal transducer and activator of transcription-3 (STAT3) initiated CTH expression and activity, and the effect on the resistant phenotype was exclusively dependent on CTH and ROS. This study suggests that the IL-6/STAT3/CTH axis plays a key role in the transformation between sensitive and resistant MCF-7 cells. SIGNIFICANCE STATEMENT: Cystathionine γ-lyase (CTH) plays a key role in transformation between the sensitive and resistant phenotypes of MCF-7 cells and is dependent on the interleukin-6 (IL-6)/signal transducer and activator of transcription-3 (STAT3) signaling axis. Modulation of the transsulfuration pathway on CTH or IL-6/STAT3 or methionine supplementation is beneficial for reversing the resistance of MCF-7 cells, which indicates a clinical translation potential.


Subject(s)
Cystathionine gamma-Lyase/drug effects , Drug Resistance, Neoplasm/genetics , Interleukin-6/metabolism , STAT3 Transcription Factor/drug effects , Signal Transduction/drug effects , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Antibiotics, Antineoplastic/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Down-Regulation/drug effects , Doxorubicin/pharmacology , Female , Glutathione/metabolism , Humans , MCF-7 Cells , Methionine/metabolism , Paclitaxel/pharmacology , Phenotype , Reactive Oxygen Species/metabolism
11.
Invest New Drugs ; 39(2): 416-425, 2021 04.
Article in English | MEDLINE | ID: mdl-33128383

ABSTRACT

Tumor microenvironment is a critical participant in the initiation, progression and drug resistance of carcinomas, including osteosarcoma. Notoginsenoside R1 (NGR1) is a proverbial active ingredient of the traditional Chinese medicine Panax notoginseng (PN) and possess undeniable roles in several cancers. Nevertheless, its function in osteosarcoma and tumor microenvironment remains elusive. In the current study, exposure to NGR1 dose-dependently inhibited osteosarcoma cell viability and migration, and induced apoptosis. Furthermore, osteosarcoma cells that were incubated with conditioned medium (CM) from bone marrow mesenchymal stem cells (BMSCs) exhibited greater proliferation, migration capacity and MMP-2 and MMP-9 expression relative to control cells, which was reversed when BMSCs were treated with NGR1. Notably, administration with NGR1 antagonized CM-evoked doxorubicin resistance in osteosarcoma cells by decreasing cell viability and increasing cell apoptosis and caspase-3/9 activity. Mechanically, NGR1 suppressed IL-6 secretion from BMSCs, as well as the subsequent activation of the JAK2/STAT3 signaling in osteosarcoma cells. In addition, blocking the JAK2 pathway by its antagonist AG490 reversed CM-induced osteosarcoma cell proliferation, migration and doxorubicin resistance. Moreover, exogenous supplementation with IL-6 engendered not only the reactivation of the JAK2/STAT3 signaling but also muted NGR1-mediated efficacy against osteosarcoma cell malignancy and doxorubicin resistance. Collectively, NGR1 may directly restrain osteosarcoma cell growth and migration, or indirectly antagonize MSC-evoked malignancy and drug resistance by interdicting IL-6 secretion-evoked activation of the JAK2/STAT3 pathway. Consequently, the current study may highlight a promising therapeutic strategy against osteosarcoma by regulating tumor cells and the tumor microenvironment.


Subject(s)
Carcinogenesis/drug effects , Ginsenosides/pharmacology , Janus Kinase 2/drug effects , Mesenchymal Stem Cells/drug effects , STAT3 Transcription Factor/drug effects , Apoptosis/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Doxorubicin/pharmacology , Drug Resistance, Neoplasm/drug effects , Humans , Interleukin-6 , Osteosarcoma/pathology , Signal Transduction/drug effects
12.
Reprod Biol Endocrinol ; 19(1): 128, 2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34429116

ABSTRACT

BACKGROUND: Endometriosis is a serious reproductive and general health consequences. Recombinant human IL-37 (rhIL-37) is an inhibitor of inflammation. METHODS: ELISA assay was performed to detect the concentration of cytokines. Flow cytometry was used to analyze cell proportion. Besides, qRT-PCR and western blotting assay were used to detect the level of gene and protein, respectively. Transwell co-culture system was used for the co-culture of dendritic cells (DCs) and CD4+T cells. RESULTS: Our data showed that rhIL-37 inhibited the development of ectopic lesions in the mice with endometriosis, increased Th1/Th2 ratio and induced DCs maturation. The co-culture system of DCs and CD4+T cells demonstrated that rhIL-37 increased Th1/Th2 cell ratio through promoting DCs maturation. Moreover, the expression of IL-4 in the DCs derived from healthy mice was inhibited by rhIL-37 treatment. rhIL-37 increased Th1/Th2 cell ratio through inhibiting IL-4 in DCs. Subsequently, our results proved that rhIL-37 promoted the maturation of DCs via inhibiting phosphorylation of STAT3. Activation of STAT3 could reverse rhIL-37-induced maturation of DCs. CONCLUSION: Overall, rhIL-37 could protect against endometriosis through increasing the ratio of Th1/Th2 cells via inducing DCs maturation and inhibiting IL-4 expression in the DCs. Furthermore, rhIL-37 induced DCs maturation by inhibiting STAT3 phosphorylation. Our data confirmed the protective effect of rhIL-37 in endometriosis. These data may provide a novel idea for the treatment of the disease.


Subject(s)
CD4-Positive T-Lymphocytes/drug effects , Dendritic Cells/drug effects , Endometriosis/immunology , Interleukin-1/pharmacology , Th1-Th2 Balance/drug effects , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Cell Differentiation/drug effects , Coculture Techniques , Dendritic Cells/immunology , Dendritic Cells/metabolism , Disease Models, Animal , Endometriosis/metabolism , Endometrium/transplantation , Female , Gene Expression/drug effects , Humans , Interferon-gamma/drug effects , Interferon-gamma/genetics , Interferon-gamma/immunology , Interferon-gamma/metabolism , Interleukin-13/genetics , Interleukin-13/immunology , Interleukin-13/metabolism , Interleukin-4/genetics , Interleukin-4/immunology , Interleukin-4/metabolism , Mice , Phosphorylation , RNA, Messenger/drug effects , RNA, Messenger/metabolism , Recombinant Proteins , STAT3 Transcription Factor/drug effects , STAT3 Transcription Factor/metabolism , Th1 Cells/drug effects , Th1 Cells/immunology , Th1 Cells/metabolism , Th2 Cells/drug effects , Th2 Cells/immunology , Th2 Cells/metabolism , Tumor Necrosis Factor-alpha/drug effects , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/metabolism
13.
Anticancer Drugs ; 32(5): 548-557, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33675610

ABSTRACT

Cancer stem cells (CSCs), a crucial cancer cell subpopulation, possess stemness phenotypic characteristics. Cucurbitacin B (CuB), a tetracyclic triterpenoid isolated from Cucurbitaceae, exerts widely pharmacological activities in many diseases. The aim of this study was to enrich, identify liver CSCs and investigate antitumor effects of CuB as well as explore the underlying molecular mechanisms in these liver CSCs. HepG2 cell lines were used for the enrichment of liver CSCs by serum-free medium culture and magnetic-activated cell sorting. The CSC characteristics were analyzed by immunofluorescent staining, sphere-forming, western blot and xenograft tumorigenicity assay. CuB' antitumor effects and underlying molecular mechanism were measured by cell counting kit-8, colony formation, sphere-forming, cell cycle, xenograft and western blot assay. Our results showed that we could enrich 97.29% CD133+ HepG2 cells, which possessed CSC characteristics including re-renewal capacity, proliferative ability, sorafenib resistance, overexpressed stemness-related molecules and enhanced tumorigenic potential. Furthermore, we also found that CuB inhibited cell viability, sphere formation, colony formation and arrested cell cycle at G2/M phase as well as sensitized CD133+ HepG2 cells to sorafenib in vitro and in vivo. Western blot assay indicated that CuB inhibited expression levels of cyclin B1, CDK1, CD133, p-JAK2 and p-STAT3. In conclusion, our findings indicated that CuB could exhibit antitumor effects on CD133+ HepG2 CSCs by inhibiting the Janus kinase 2/signal transducers and activators of transcription-3 signaling pathway, expanding basic and preclinical investigations on liver CSCs.


Subject(s)
Janus Kinase 2/drug effects , STAT3 Transcription Factor/drug effects , Triterpenes/pharmacology , Animals , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Female , Hep G2 Cells , Humans , Mice , Mice, Inbred BALB C , Neoplastic Stem Cells , Signal Transduction , Tumor Burden , Xenograft Model Antitumor Assays
14.
Cell Biol Int ; 45(11): 2264-2274, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34288236

ABSTRACT

The mammary gland (MG) and female prostate are plastic reproductive organs which are highly responsive to hormones. Thus, endocrine disruptors, such as bisphenol A (BPA) and exogenous estrogens, negatively affect glandular homeostasis. In addition to previously described alterations, changes in inflammatory markers expression also trigger the development of a microenvironment that contributes to tumor progression. The current work aimed to evaluate the inflammatory responses of the MG and prostate gland to BPA (50 µg/kg) and 17-ß estradiol (35 µg/kg) exposure during the perinatal window of susceptibility. The results showed that at 6 months of age there was an increase in the number of phospho-STAT3 (P-STAT3) positive cells in the female prostate from animals perinatally exposed to 50 µg/kg BPA daily. In addition, the number of macrophages increased in these animals in comparison with nonexposed animals, as shown by the F4/80 marker. Despite an increase in the incidence of lobuloalveolar and intraductal hyperplasia, the MG did not show any difference in the expression of the four inflammatory markers evaluated: tumor necrosis factor-α, COX-2, P-STAT3, and F4/80. Analysis of both glands from the same animal led to the conclusion that exposure to endocrine disruptors during the perinatal window of susceptibility leads to different inflammatory responses in different reproductive organs. As the prostate is more susceptible to these inflammatory mechanisms, it is reasonable to affirm that possible neoplastic alterations in this organ are related to changes in the inflammatory pattern of the stroma, a characteristic that is not evident in the MG.


Subject(s)
Endocrine Disruptors/pharmacology , Endocrine Glands/drug effects , Mammary Glands, Animal/metabolism , Animals , Animals, Newborn/metabolism , Benzhydryl Compounds/pharmacology , Endocrine Disruptors/metabolism , Endocrine Glands/metabolism , Estradiol/pharmacology , Female , Genitalia, Female/drug effects , Genitalia, Female/metabolism , Gerbillinae , Humans , Inflammation/metabolism , Mammary Glands, Animal/drug effects , Phenols/pharmacology , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , STAT3 Transcription Factor/drug effects , STAT3 Transcription Factor/metabolism , Steroids/pharmacology
15.
Mol Biol Rep ; 48(6): 5233-5247, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34244887

ABSTRACT

PURPOSE: The constitutive activation of STAT3 through receptor tyrosine kinases triggered breast cancer cell growth and invasion-metastasis. Atiprimod impacts anti-proliferative, anti-carcinogenic effects in hepatocellular carcinoma, lymphoma, multiple myeloma via hindering the biological activity of STAT3. Dose-dependent atiprimod evokes first autophagy as a survival mechanism and then apoptosis due to prolonged ER stress in pituitary adenoma cells. The therapeutic efficiency and mechanistic action of atiprimod in breast cancer cells have not been investigated yet. Thus, we aimed to modulate the pivotal role of ER stress in atiprimod-triggered apoptosis in MDA-MB-231 and MDA-MB-468 breast cancer cells. RESULTS: Dose- and time-dependent atiprimod treatment inhibits cell viability and colony formation in MDA-MB-468 and MDA-MB-231 breast cancer cells. A moderate dose of atiprimod (2 µM) inhibited STAT3 phosphorylation at Tyr705 residue and also suppressed the total expression level of p65. In addition, nuclear localization of STAT1, 3, and NF-κB was prevented by atiprimod exposure in MDA-MB-231 and MDA-MB-468 cells. Atiprimod evokes PERK, BiP, ATF-4, CHOP upregulation, and PERK (Thr980), eIF2α (Ser51) phosphorylation's. However, atiprimod suppressed IRE1α-mediated Atg-3, 5, 7, 12 protein expressions and no alteration was observed on Beclin-1, p62 expression levels. PERK/eIF2α/ATF4/CHOP axis pivotal role in atiprimod-mediated G1/S arrest and apoptosis via Bak, Bax, Bim, and PUMA upregulation in MDA-MB-468 cells. Moreover, atiprimod renders MDA-MB-231 more vulnerable to type I programmed cell death by plasmid-mediated increased STAT3 expression. CONCLUSION: Atiprimod induced prolonged ER stress-mediated apoptosis via both activating PERK/eIF2α/ATF4/CHOP axis and suppressing STAT3/NF-κB transcription factors nuclear migration in TBNC cells.


Subject(s)
Breast Neoplasms/metabolism , STAT3 Transcription Factor/metabolism , Spiro Compounds/pharmacology , Activating Transcription Factor 4/metabolism , Apoptosis/physiology , Autophagy/drug effects , Breast Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress/genetics , Endoplasmic Reticulum Stress/physiology , Eukaryotic Initiation Factor-2/metabolism , Female , Humans , NF-kappa B/metabolism , Reactive Oxygen Species/metabolism , STAT Transcription Factors/drug effects , STAT Transcription Factors/metabolism , STAT3 Transcription Factor/drug effects , Spiro Compounds/metabolism , Transcription Factor CHOP/metabolism , eIF-2 Kinase/metabolism
16.
Int J Mol Sci ; 22(14)2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34299258

ABSTRACT

Mast cells play a critical role as main effector cells in allergic and other inflammatory diseases. Usage of anti-inflammatory nutraceuticals could be of interest for affected patients. Resveratrol, a natural polyphenol found in red grapes, is known for its positive properties. Here, we analyzed the effects of resveratrol on FcεRI-mediated activation of mature human mast cells isolated from intestinal tissue (hiMC). Resveratrol inhibited degranulation and expression of cytokines and chemokines such as CXCL8, CCL2, CCL3, CCL4, and TNF-α in a dose-dependent manner. Further, resveratrol inhibited the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 and signal transducer and activator of transcription (STAT) 3. ERK1/2 is known to be involved in cytokine expression of hiMC and to directly interact with STAT3. Mitochondrial STAT3 is phosphorylated by ERK1/2 and contributes to mast cell degranulation. We were able to isolate mitochondrial fractions from small hiMC numbers and could show that activation of mitochondrial STAT3 and ERK1/2 in hiMC was also inhibited by resveratrol. Our results indicate that resveratrol inhibits hiMC activation by inhibiting the phosphorylation of mitochondrial and nuclear ERK1/2 and STAT3, and it could be considered as an anti-inflammatory nutraceutical in the treatment of mast cell-associated diseases.


Subject(s)
Intestinal Mucosa/metabolism , Mast Cells/metabolism , Resveratrol/pharmacology , Cell Degranulation/drug effects , Chemokines , Cytokines , Humans , Immunoglobulin E/metabolism , Intestinal Mucosa/drug effects , Intestines/physiology , MAP Kinase Signaling System/drug effects , Mast Cells/drug effects , Mitochondria/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Phosphorylation/drug effects , Receptors, IgE/metabolism , Resveratrol/metabolism , STAT3 Transcription Factor/drug effects , STAT3 Transcription Factor/metabolism
17.
Gut ; 69(5): 920-932, 2020 05.
Article in English | MEDLINE | ID: mdl-31530714

ABSTRACT

OBJECTIVE: Liver fibrosis constitutes a major health problem worldwide due to its rapidly increasing prevalence and the lack of specific and effective treatments. Growing evidence suggests that signalling through cytokine-activated Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathways regulates liver fibrosis and regeneration. Rilpivirine (RPV) is a widely used anti-HIV drug not reported to produce hepatotoxicity. We aimed to describe the potential hepatoprotective effects of RPV in different models of chronic liver injury, focusing on JAK-STAT signalling regulation. DESIGN: The effects of RPV on hepatic steatosis, inflammation and fibrogenesis were studied in a nutritional mouse model of non-alcoholic fatty liver disease, carbon tetrachloride-induced fibrosis and bile duct ligation-induced fibrosis. Primary human hepatic stellate cells (hHSC) and human cell lines LX-2 and Hep3B were used to investigate the underlying molecular mechanisms. RESULTS: RPV exerted a clear anti-inflammatory and antifibrotic effect in all the in vivo models of liver injury employed, and enhanced STAT3-dependent proliferation in hepatocytes and apoptosis in HSC through selective STAT1 activation. These results were reproduced in vitro; RPV undermined STAT3 activation and triggered STAT1-mediated pathways and apoptosis in HSC. Interestingly, this selective pro-apoptotic effect completely disappeared when STAT1 was silenced. Conditioned medium experiments showed that HSC apoptosis activated STAT3 in hepatocytes in an interleukin-6-dependent mechanism. CONCLUSION: RPV ameliorates liver fibrosis through selective STAT1-dependent induction of apoptosis in HSC, which exert paracrinal effects in hepatocytes, thus promoting liver regeneration. RPV's actions may represent an effective strategy to treat chronic liver diseases of different aetiologies and help identify novel therapeutic targets.


Subject(s)
Hepatic Stellate Cells/drug effects , Liver Regeneration/drug effects , Non-alcoholic Fatty Liver Disease/drug therapy , Rilpivirine/pharmacology , STAT1 Transcription Factor/drug effects , STAT3 Transcription Factor/drug effects , Animals , Apoptosis/drug effects , Cells, Cultured , Disease Models, Animal , Humans , Liver Cirrhosis/pathology , Mice , Non-alcoholic Fatty Liver Disease/pathology , Risk Assessment , STAT1 Transcription Factor/metabolism , Sensitivity and Specificity , Treatment Outcome
18.
Br J Cancer ; 122(3): 361-371, 2020 02.
Article in English | MEDLINE | ID: mdl-31772325

ABSTRACT

BACKGROUND: ALM201 is a therapeutic peptide derived from FKBPL that has previously undergone preclinical and clinical development for oncology indications and has completed a Phase 1a clinical trial in ovarian cancer patients and other advanced solid tumours. METHODS: In vitro, cancer stem cell (CSC) assays in a range of HGSOC cell lines and patient samples, and in vivo tumour initiation, growth delay and limiting dilution assays, were utilised. Mechanisms were determined by using immunohistochemistry, ELISA, qRT-PCR, RNAseq and western blotting. Endogenous FKBPL protein levels were evaluated using tissue microarrays (TMA). RESULTS: ALM201 reduced CSCs in cell lines and primary samples by inducing differentiation. ALM201 treatment of highly vascularised Kuramochi xenografts resulted in tumour growth delay by disruption of angiogenesis and a ten-fold decrease in the CSC population. In contrast, ALM201 failed to elicit a strong antitumour response in non-vascularised OVCAR3 xenografts, due to high levels of IL-6 and vasculogenic mimicry. High endogenous tumour expression of FKBPL was associated with an increased progression-free interval, supporting the protective role of FKBPL in HGSOC. CONCLUSION: FKBPL-based therapy can (i) dually target angiogenesis and CSCs, (ii) target the CD44/STAT3 pathway in tumours and (iii) is effective in highly vascularised HGSOC tumours with low levels of IL-6.


Subject(s)
Carcinoma, Ovarian Epithelial/pathology , Cell Differentiation/drug effects , Neoplastic Stem Cells/drug effects , Neovascularization, Pathologic/pathology , Ovarian Neoplasms/pathology , Peptides/pharmacology , Tacrolimus Binding Proteins , Animals , Carcinoma, Ovarian Epithelial/blood supply , Carcinoma, Ovarian Epithelial/metabolism , Cell Line, Tumor , Female , Humans , Hyaluronan Receptors/drug effects , Hyaluronan Receptors/metabolism , In Vitro Techniques , Interleukin-6/metabolism , Mice , Mice, SCID , Neovascularization, Pathologic/metabolism , Ovarian Neoplasms/blood supply , Ovarian Neoplasms/metabolism , STAT3 Transcription Factor/drug effects , STAT3 Transcription Factor/metabolism , Signal Transduction , Tacrolimus Binding Proteins/drug effects , Tacrolimus Binding Proteins/metabolism , Xenograft Model Antitumor Assays
19.
Rheumatology (Oxford) ; 59(10): 3058-3069, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32375179

ABSTRACT

OBJECTIVES: To elucidate the molecular mechanisms underlying pathogenic Th17 cells, we investigated the modulation of epigenetic modifications and its association with SLE. METHODS: Naive CD4+ T cells were cultured in Th17 polarizing conditions for 5 days and then treated with various cytokines, including IL-23. Expression of Th17 cell-related markers and phosphorylation of signal transducers and activators of transcription (pSTATs) were analysed using flow cytometry and quantitative PCR. Histone modifications were assessed using chromatin immunoprecipitation PCR. T cell phenotypes and pSTATs were analysed in blood samples of patients with SLE (n = 28). Finally, the effects of baricitinib on memory Th17 cells were investigated in SLE patients (n = 12). RESULTS: Stimulation of resting Th17 cells with IL-23 promoted maturation of these cells (P < 0.0001). IL-23 induced pSTAT3, but not pSTAT4, during Th17 cell maturation (P < 0.05). IL-23-induced STAT3 directly bound the RORγT gene locus. This was accompanied by induction of the H3H4me3 permissive mark and reduction of the H3K27me3 repressive mark, leading to enhanced RORγT gene expression. IL-23-induced expansion of Th17 cells and pSTAT3 were suppressed by the addition of baricitinib in a concentration-dependent manner (P < 0.05). In memory Th17 cells from SLE patients, pSTAT3 was hypersensitized by IL-23 stimulation and inhibited by baricitinib (P < 0.05). CONCLUSION: The results of this study indicate that IL-23/STAT3 signalling plays a fundamental role in Th17 cell maturation through transcriptional and epigenetic modifications in patients with SLE. This mechanism may underlie pathogenic Th17 cell expansion and may lead to identification of novel therapeutic targets for SLE.


Subject(s)
Interleukin-23/pharmacology , Lupus Erythematosus, Systemic/blood , STAT3 Transcription Factor/blood , Th17 Cells/drug effects , Azetidines/pharmacology , CD4-Positive T-Lymphocytes/drug effects , Cell Proliferation/drug effects , Chromatin Immunoprecipitation/methods , Epigenesis, Genetic , Flow Cytometry , Gene Expression , Humans , Interleukin-12/pharmacology , Interleukins/pharmacology , Jumonji Domain-Containing Histone Demethylases/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Phosphorylation , Purines/pharmacology , Pyrazoles/pharmacology , Real-Time Polymerase Chain Reaction/methods , STAT3 Transcription Factor/drug effects , STAT3 Transcription Factor/metabolism , STAT4 Transcription Factor/metabolism , Signal Transduction , Sulfonamides/pharmacology , Th17 Cells/metabolism
20.
Rheumatology (Oxford) ; 59(11): 3435-3442, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32357246

ABSTRACT

OBJECTIVES: SLE is characterized by two pathogenic key signatures, type I IFN and B-cell abnormalities. How these signatures are interrelated is not known. Type I-II IFN trigger activation of Janus kinase (JAK) - signal transducer and activator of transcription (STAT). JAK-STAT inhibition is an attractive therapeutic possibility for SLE. We assess STAT1 and STAT3 expression and phosphorylation at baseline and after IFN type I and II stimulation in B-cell subpopulations of SLE patients compared with other autoimmune diseases and healthy controls (HD) and related it to disease activity. METHODS: Expression of STAT1, pSTAT1, STAT3 and pSTAT3 in B and T cells of 21 HD, 10 rheumatoid arthritis (RA), seven primary Sjögren's (pSS) and 22 SLE patients was analysed by flow cytometry. STAT1 and STAT3 expression and phosphorylation in PBMCs (peripheral blood mononuclear cells) of SLE patients and HD after IFNα and IFNγ incubation were further investigated. RESULTS: SLE patients showed substantially higher STAT1 but not pSTAT1 in B- and T-cell subsets. Increased STAT1 expression in B-cell subsets correlated significantly with SLEDAI and Siglec-1 on monocytes, a type I IFN marker. STAT1 activation in plasmablasts was IFNα dependent while monocytes exhibited dependence on IFNγ. CONCLUSION: Enhanced expression of STAT1 by B-cell candidates as a key node of two immunopathogenic signatures (type I IFN and B-cells) related to important immunopathogenic pathways and lupus activity. We show that STAT1 is activated upon IFNα exposure in SLE plasmablasts. Thus, Jak inhibitors, targeting JAK-STAT pathways, hold a promise to block STAT1 expression and control plasmablast induction in SLE.


Subject(s)
B-Lymphocytes/immunology , Lupus Erythematosus, Systemic/immunology , STAT1 Transcription Factor/metabolism , STAT3 Transcription Factor/metabolism , T-Lymphocytes/immunology , Adult , Aged , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/physiopathology , B-Lymphocytes/drug effects , Case-Control Studies , Cell Differentiation , Female , Humans , Immunologic Factors/pharmacology , In Vitro Techniques , Interferon-alpha/pharmacology , Interferon-gamma/pharmacology , Janus Kinases/metabolism , Lupus Erythematosus, Systemic/metabolism , Lupus Erythematosus, Systemic/physiopathology , Male , Middle Aged , Monocytes/immunology , Phosphorylation/drug effects , Plasma Cells/immunology , STAT1 Transcription Factor/drug effects , STAT3 Transcription Factor/drug effects , Severity of Illness Index , Signal Transduction , Sjogren's Syndrome/immunology , Sjogren's Syndrome/metabolism , Sjogren's Syndrome/physiopathology , T-Lymphocytes/drug effects , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL