Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.111
Filter
Add more filters

Publication year range
1.
PLoS Genet ; 19(5): e1010751, 2023 05.
Article in English | MEDLINE | ID: mdl-37141297

ABSTRACT

Methyl salicylate is an important inter- and intra-plant signaling molecule, but is deemed undesirable by humans when it accumulates to high levels in ripe fruits. Balancing the tradeoff between consumer satisfaction and overall plant health is challenging as the mechanisms regulating volatile levels have not yet been fully elucidated. In this study, we investigated the accumulation of methyl salicylate in ripe fruits of tomatoes that belong to the red-fruited clade. We determine the genetic diversity and the interaction of four known loci controlling methyl salicylate levels in ripe fruits. In addition to Non-Smoky Glucosyl Transferase 1 (NSGT1), we uncovered extensive genome structural variation (SV) at the Methylesterase (MES) locus. This locus contains four tandemly duplicated Methylesterase genes and genome sequence investigations at the locus identified nine distinct haplotypes. Based on gene expression and results from biparental crosses, functional and non-functional haplotypes for MES were identified. The combination of the non-functional MES haplotype 2 and the non-functional NSGT1 haplotype IV or V in a GWAS panel showed high methyl salicylate levels in ripe fruits, particularly in accessions from Ecuador, demonstrating a strong interaction between these two loci and suggesting an ecological advantage. The genetic variation at the other two known loci, Salicylic Acid Methyl Transferase 1 (SAMT1) and tomato UDP Glycosyl Transferase 5 (SlUGT5), did not explain volatile variation in the red-fruited tomato germplasm, suggesting a minor role in methyl salicylate production in red-fruited tomato. Lastly, we found that most heirloom and modern tomato accessions carried a functional MES and a non-functional NSGT1 haplotype, ensuring acceptable levels of methyl salicylate in fruits. Yet, future selection of the functional NSGT1 allele could potentially improve flavor in the modern germplasm.


Subject(s)
Solanum lycopersicum , Humans , Solanum lycopersicum/genetics , Salicylates/analysis , Salicylates/chemistry , Salicylates/metabolism , Glycosyltransferases , Ecuador , Fruit/genetics
2.
Mol Pharm ; 21(9): 4634-4647, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39141824

ABSTRACT

This study is focused on the utilization of naturally occurring salicylic acid and nicotinamide (vitamin B3) in the development of novel sustainable Active Pharmaceutical Ingredients (APIs) with significant potential for treating acne vulgaris. The study highlights how the chemical structure of the cation significantly influences surface activity, lipophilicity, and solubility in aqueous media. Furthermore, the new ionic forms of APIs, the synthesis of which was assessed with Green Chemistry metrics, exhibited very good antibacterial properties against common pathogens that contribute to the development of acne, resulting in remarkable enhancement of biological activity ranging from 200 to as much as 2000 times when compared to salicylic acid alone. The molecular docking studies also revealed the excellent anti-inflammatory activity of N-alkylnicotinamide salicylates comparable to commonly used drugs (indomethacin, ibuprofen, and acetylsalicylic acid) and were even characterized by better IC50 values than common anti-inflammatory drugs in some cases. The derivative, featuring a decyl substituent in the pyridinium ring of nicotinamide, exhibited efficacy against Cutibacterium acnes while displaying favorable water solubility and improved wettability on hydrophobic surfaces, marking it as particularly promising. To investigate the impact of the APIs on the biosphere, the EC50 parameter was determined against a model representative of crustaceans─Artemia franciscana. The majority of compounds (with the exception of the salt containing the dodecyl substituent) could be classified as "Relatively Harmless" or "Practically Nontoxic", indicating their potential low environmental impact, which is essential in the context of modern drug development.


Subject(s)
Acne Vulgaris , Anti-Bacterial Agents , Molecular Docking Simulation , Niacinamide , Acne Vulgaris/drug therapy , Niacinamide/chemistry , Niacinamide/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Humans , Solubility , Salicylates/chemistry , Salicylates/pharmacology , Microbial Sensitivity Tests , Salts/chemistry , Propionibacteriaceae/drug effects , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anions/chemistry , Salicylic Acid/chemistry , Salicylic Acid/pharmacology
3.
J Chem Phys ; 161(3)2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39007395

ABSTRACT

Electron transfer plays a crucial role in living systems, including the generation of reactive oxygen species (ROS). Oxygen acts as the terminal electron acceptor in the respiratory chains of aerobic organisms as well as in some photoinduced processes followed by the formation of ROS. This is why the participation of exogenous antioxidants in electron transfer processes in living systems is of particular interest. In the present study, using chemically induced dynamic nuclear polarization (CIDNP) and dissociative electron attachment (DEA) techniques, we have elucidated the affinity of solvated and free electrons to glycyrrhetinic acid (GA)-the aglicon of glycyrrhizin (the main active component of Licorice root). CIDNP is a powerful instrument to study the mechanisms of electron transfer reactions in solution, but the DEA technique shows its effectiveness in gas phase processes. For CIDNP experiments, the photoionization of the dianion of 5-sulfosalicylic acid (HSSA2-) was used as a model reaction of solvated electron generation. DEA experiments testify that GA molecules are even better electron acceptors than molecular oxygen, at least under gas-phase conditions. In addition, the effect of the solvent on the energetics of the reactants is discussed.


Subject(s)
Electrons , Glycyrrhetinic Acid , Glycyrrhetinic Acid/chemistry , Solvents/chemistry , Electron Transport , Salicylates/chemistry
4.
J Appl Toxicol ; 44(7): 1067-1083, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38539266

ABSTRACT

Case studies are needed to demonstrate the use of human-relevant New Approach Methodologies in cosmetics ingredient safety assessments. For read-across assessments, it is crucial to compare the target chemical with the most appropriate analog; therefore, reliable analog selection should consider physicochemical properties, bioavailability, metabolism, as well as the bioactivity of potential analogs. To complement in vitro bioactivity assays, we evaluated the suitability of three potential analogs for the UV filters, homosalate and octisalate, according to their in vitro ADME properties. We describe how technical aspects of conducting assays for these highly lipophilic chemicals were addressed and interpreted. There were several properties that were common to all five chemicals: they all had similar stability in gastrointestinal fluids (in which no hydrolysis to salicylic occurred); were not substrates of the P-glycoprotein efflux transporter; were highly protein bound; and were hydrolyzed to salicylic acid (which was also a major metabolite). The main properties differentiating the chemicals were their permeability in Caco-2 cells, plasma stability, clearance in hepatic models, and the extent of hydrolysis to salicylic acid. Cyclohexyl salicylate, octisalate, and homosalate were identified suitable analogs for each other, whereas butyloctyl salicylate exhibited ADME properties that were markedly different, indicating it is unsuitable. Isoamyl salicylate can be a suitable analog with interpretation for octisalate. In conclusion, in vitro ADME properties of five chemicals were measured and used to pair target and potential analogs. This study demonstrates the importance of robust ADME data for the selection of analogs in a read-across safety assessment.


Subject(s)
Salicylates , Humans , Salicylates/toxicity , Salicylates/pharmacokinetics , Salicylates/chemistry , Caco-2 Cells , Risk Assessment , Sunscreening Agents/toxicity , Sunscreening Agents/pharmacokinetics , Sunscreening Agents/chemistry , Biological Availability , Salicylic Acid/pharmacokinetics , Salicylic Acid/chemistry , Salicylic Acid/toxicity , Cosmetics/toxicity , Cosmetics/chemistry
5.
Luminescence ; 39(9): e4869, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39192755

ABSTRACT

In the present study, the drug delivery by albumin protein and antiproliferetaive activity of new transition metal complex i.e., [Pd (phen)(SSA)] (where phen and SSA represent 1, 10 phenanthroline and sulfosalicylic acid, respectively) was investigated. DFT (density functional theory) calculations were conducted at B3LYP level with 6-311G(d,p)/aug-ccpVTZ-PP basis set for the purpose of geometry optimization, frontier molecular orbital (FMO) analysis, molecular electrostatic potential (MEP), and natural bond orbital (NBO) analysis. Experimental tests were conducted to preliminarily assess the lipophilicity and antitumor activity of the metal complex, resulting in promising findings. In-silico prediction was accomplished to assess its toxicity and bioavailability. To evaluate the binding of the newly formed complex with DNA (which results in halting the cell cycle) or serum albumin protein (drug transporter to the tissues), in-silico molecular modeling was employed. Experimental results (spectroscopic and non-spectroscopic) showed that the new compound interacts with each biomolecule via hydrogen bond and van der Waals interactions. Molecular docking demonstrated the binding of this complex to the DNA groove and site I of BSA occurs mainly through hydrogen bonds. Molecular dynamics simulation confirmed the interactions between [Pd (phen)(SSA)] with DNA or BSA through stable hydrogen bonds.


Subject(s)
Antineoplastic Agents , Molecular Docking Simulation , Salicylates , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Salicylates/chemistry , Salicylates/pharmacology , Humans , Density Functional Theory , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , Molecular Structure , Drug Screening Assays, Antitumor , Phenanthrolines/chemistry , Phenanthrolines/pharmacology , Animals , Cell Proliferation/drug effects , Cell Line, Tumor , DNA/chemistry , DNA/metabolism , Benzenesulfonates
6.
Drug Dev Ind Pharm ; 50(7): 628-638, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39030701

ABSTRACT

OBJECTIVE: This study was to prepare solid dispersions of lidocaine (Lid) with 5-sulfosalicylic acid dihydrate (SSA) by freeze-drying (freeze-dried [FD] Lid/SSA = 1/1) and to evaluate their physical properties. METHODS: Here, we evaluated the physicochemical properties and solubility of solid dispersions of Lid and SSA prepared by freeze-drying (freeze-dried [FD] Lid/SSA = 1/1). RESULTS: Differential scanning calorimetry measurements showed that after freeze-drying, the endothermic peak due to Lid melting, the dehydration peak, and the endothermic peak due to SSA melting disappeared. Powder X-ray diffraction results showed that the characteristic Lid and SSA peaks disappeared after freeze-drying, indicating a halo pattern. The near-infrared spectroscopy results suggested that Lid-derived -NH and -CH groups and the Lid-derived -OH and -CH groups from the SSA peak shifted and broadened after freeze-drying, suggesting their involvement in complex formation through Lid/SSA intermolecular interactions. Nuclear Overhauser effect spectroscopy-nuclear magnetic resonance (NMR) measurements showed a cross-peak due to the interaction between the Lid-derived -CH group and the SSA-derived -OH group, suggesting hydrogen bonding. Diffusion-ordered spectroscopy NMR measurements showed that the diffusion coefficients of Lid and SSA aggregated in FD Lid/SSA, suggesting a change in Lid dispersibility in the solvent owing to the formation of a complex with SSA. The solubility of FD Lid/SSA was approximately 88 mg/mL (∼20-fold higher than that of Lid). CONCLUSIONS: These findings suggest that complex formation occurred in FD Lid/SSA; this enhanced the solubility of this dispersion.


Subject(s)
Calorimetry, Differential Scanning , Freeze Drying , Lidocaine , Salicylates , Solubility , Lidocaine/chemistry , Salicylates/chemistry , X-Ray Diffraction/methods , Chemistry, Pharmaceutical/methods , Magnetic Resonance Spectroscopy/methods , Benzenesulfonates
7.
Environ Toxicol ; 38(6): 1384-1394, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36891644

ABSTRACT

In the present study, we investigated the antitumor effect and associated molecular mechanisms of the copper (II) complex of salicylate phenanthroline [Cu(sal)(phen)] against hepatocellular carcinoma (HCC). Cu(sal)(phen) inhibited the proliferation of HCC cells (HepG2 and HCC-LM9) and induced apoptosis of HCC cells in a dose-dependent manner by upregulating mitochondrial reactive oxygen species (ROS) production. The expression of the antiapoptotic proteins survivin and Bcl-2 was decreased, while the expression of the DNA damage marker γ-H2 AX and the apoptotic marker cleaved PARP was upregulated with Cu(sal)(phen) treatment. In vivo, the growth of HepG2 subcutaneous xenograft tumors was greatly attenuated by Cu(sal)(phen) treatment. Immunohistochemistry staining showed that the expression of survivin, Bcl-2, and Ki67 in the tumor was downregulated by Cu(sal)(phen). Toxicity experiments with BALB/c mice revealed that Cu(sal)(phen) is a relatively safe drug. Our results indicate that Cu(sal)(phen) possesses great potential as a therapeutic drug for HCC.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Liver Neoplasms , Mice , Animals , Humans , Carcinoma, Hepatocellular/pathology , Survivin/pharmacology , Survivin/therapeutic use , Copper/toxicity , Copper/chemistry , Phenanthrolines/pharmacology , Phenanthrolines/chemistry , Phenanthrolines/therapeutic use , Liver Neoplasms/pathology , Salicylates/pharmacology , Salicylates/chemistry , Salicylates/therapeutic use , Apoptosis , Proto-Oncogene Proteins c-bcl-2 , Cell Proliferation , Cell Line, Tumor , Antineoplastic Agents/therapeutic use , Hep G2 Cells
8.
Photochem Photobiol Sci ; 21(6): 923-934, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35088368

ABSTRACT

Zn-salophen complexes are a promising class of fluorescent chemosensors for nucleotides and nucleic acids. We have investigated, by means of steady state UV-Vis, ultrafast transient absorption, fluorescence emission and time dependent density functional theory (TD-DFT) the behavior of the excited states of a salicylidene tetradentate Schiff base (Sal), its Zn(II) coordination compound (Zn-Sal) and the effect of the interaction between Zn-Sal and adenosine diphosphate (ADP). TD-DFT shows that the deactivation of the excited state of Sal occurs through torsional motion, due to its rotatable bonds and twistable angles. Complexation with Zn(II) causes rigidity so that the geometry changes in the excited states with respect to the ground state structure are minimal. By addition of ADP to a freshly prepared Zn-Sal ethanol solution, a longer relaxation constant, in comparison to Zn-Sal, was measured, indicative of the interaction between Zn-Sal and ADP. After a few days, the Zn-Sal-ADP solution displayed the same static and dynamic behavior of a solution containing only the Sal ligand, demonstrating that the coordination of the ADP anion to Zn(II)leads to the demetallation of the Sal ligand. Fluorescence measurements also revealed an enhanced fluorescence at 375 nm following the addition of ADP to the solution, caused by the presence of 2,3-diamino naphthalene that is formed by demetallation and partial decomposition of the Sal ligand. The efficient fluorescence of this species at 375 nm could be selectively detected and used as a probe for the detection of ADP in solution.


Subject(s)
Salicylates , Zinc , Adenosine Diphosphate , Ligands , Salicylates/chemistry , Zinc/chemistry
9.
Int J Mol Sci ; 23(3)2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35163434

ABSTRACT

Pigeon Pea (Cajanus cajan (L.) Millsp.) is a common food crop used in many parts of the world for nutritional purposes. One of its chemical constituents is cajanin stilbene acid (CSA), which exerts anticancer activity in vitro and in vivo. In an effort to identify molecular targets of CSA, we performed a kinome-wide approach based on the measurement of the enzymatic activities of 252 human kinases. The serine-threonine kinase WNK3 (also known as protein kinase lysine-deficient 3) was identified as the most promising target of CSA with the strongest enzymatic activity inhibition in vitro and the highest binding affinity in molecular docking in silico. The lowest binding affinity and the predicted binding constant pKi of CSA (-9.65 kcal/mol and 0.084 µM) were comparable or even better than those of the known WNK3 inhibitor PP-121 (-9.42 kcal/mol and 0.123 µM). The statistically significant association between WNK3 mRNA expression and cellular responsiveness to several clinically established anticancer drugs in a panel of 60 tumor cell lines and the prognostic value of WNK3 mRNA expression in sarcoma biopsies for the survival time of 230 patients can be taken as clues that CSA-based inhibition of WNK3 may improve treatment outcomes of cancer patients and that CSA may serve as a valuable supplement to the currently used combination therapy protocols in oncology.


Subject(s)
Cajanus/chemistry , Neoplasms/mortality , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Salicylates/pharmacology , Stilbenes/pharmacology , Binding Sites , Cell Line, Tumor , Down-Regulation , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Kaplan-Meier Estimate , Models, Molecular , Molecular Docking Simulation , Neoplasms/drug therapy , Neoplasms/genetics , Protein Binding , Protein Conformation , Protein Kinases/analysis , Protein Serine-Threonine Kinases/chemistry , Salicylates/chemistry , Stilbenes/chemistry , Survival Analysis
10.
Molecules ; 27(22)2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36431878

ABSTRACT

Ginkgols are active constituents from Ginkgo biloba L. (GB) and have pharmacological activities, such as antibacterial and antioxidant activities. In our previous report, only five ginkgols were separated. However, ginkgol C17:1 had two isomers, for which their separation, identification, and bioactivities have not yet been investigated. Hence, this research reports the successful isolation of six ginkgol homologs with alkyl substituents-C17:1-Δ12, C15:1-Δ8, C13:0, C17:2, C17:1-Δ10, and C15:0-for the first time using HPLC. This was followed by the identification of their chemical structures using Fourier transform infrared (FTIR), ultraviolet (UV), gas chromatography and mass spectrometry (GC-MS), carbon-13 nuclear magnetic resonance (13C-NMR), and proton nuclear magnetic resonance (1H-NMR) analysis. The results showed that two ginkgol isomers, C17:1-Δ12 and C17:1-Δ10, were obtained simultaneously from the ginkgol C17:1 mixture and identified entirely for the first time. That aside, the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay showed that the six ginkgol homologs possessed significant antiproliferation effects against HGC and HepG2 cells. Furthermore, the ginkgols with unsaturated side chains (C17:2, C15:1-Δ8, C17:1-Δ12, and C17:1-Δ10) exhibited more potent inhibitory effects than ginkgols with saturated side chains (C13:0, C15:0). In addition, unsaturated ginkgol C15:1-Δ8 showed the most potent cytotoxicity on HepG2 and HGC cells, of which the half-maximal inhibition concentrations (IC50) were 18.84 ± 2.58 and 13.15 ± 2.91 µM, respectively. The IC50 for HepG2 and HGC cells for the three unsaturated ginkgols (C17:1-Δ10, C17:2 and C17:1-Δ12) were ~59.97, ~60.82, and ~68.97 µM for HepG2 and ~30.97, ~33.81, and ~34.55 µM for HGC cells, respectively. Comparing the ginkgols' structure-activity relations, the findings revealed that the position and number of the double bonds of the ginkgols with 17 side chain carbons in length had no significant difference in anticancer activity.


Subject(s)
Ginkgo biloba , Salicylates , Ginkgo biloba/chemistry , Salicylates/chemistry , Gas Chromatography-Mass Spectrometry , Chromatography, High Pressure Liquid , Chemical Phenomena
11.
Appl Environ Microbiol ; 87(6)2021 02 26.
Article in English | MEDLINE | ID: mdl-33452034

ABSTRACT

Rieske nonheme iron oxygenases (ROs) catalyze the oxidation of a wide variety of substrates and play important roles in aromatic compound degradation and polycyclic aromatic hydrocarbon degradation. Those Rieske dioxygenases that usually act on hydrophobic substrates have been extensively studied and structurally characterized. Here, we report the crystal structure of a novel Rieske monooxygenase, NagGH, the oxygenase component of a salicylate 5-monooxygenase from Ralstonia sp. strain U2 that catalyzes the hydroxylation of a hydrophilic substrate salicylate (2-hydroxybenzoate), forming gentisate (2, 5-dihydroxybenzoate). The large subunit NagG and small subunit NagH share the same fold as that for their counterparts of Rieske dioxygenases and assemble the same α3ß3 hexamer, despite that they share low (or no identity for NagH) sequence identities with these dioxygenase counterparts. A potential substrate-binding pocket was observed in the vicinity of the nonheme iron site. It featured a positively charged residue Arg323 that was surrounded by hydrophobic residues. The shift of nonheme iron atom caused by residue Leu228 disrupted the usual substrate pocket observed in other ROs. Residue Asn218 at the usual substrate pocket observed in other ROs was likewise involved in substrate binding and oxidation, yet residues Gln316 and Ser367, away from the usual substrate pocket of other ROs, were shown to play a more important role in substrate oxidation than Asn218. The unique binding pocket and unusual substrate-protein hydrophilic interaction provide new insights into Rieske monooxygenases.IMPORTANCE Rieske oxygenases are involved in the degradation of various aromatic compounds. These dioxygenases usually carry out hydroxylation of hydrophobic aromatic compounds and supply substrates with hydroxyl groups for extradiol/intradiol dioxygenases to cleave rings, and have been extensively studied. Salicylate 5-hydroxylase NagGH is a novel Rieske monooxygenase with high similarity to Rieske dioxygenases, and also shares reductase and ferredoxin similarity with a Rieske dioxygenase naphthalene 1,2-dioxygenase (NagAcAd) in Ralstonia sp. strain U2. The structure of NagGH, the oxygenase component of salicylate 5-monooxygenase, gives a representative of those monooxygenases and will help us understand the mechanism of their substrate binding and product regio-selectivity.


Subject(s)
Mixed Function Oxygenases/chemistry , Ralstonia/enzymology , Catalytic Domain , Crystallization , Mixed Function Oxygenases/genetics , Salicylates/chemistry
12.
Chem Biodivers ; 18(5): e2100080, 2021 May.
Article in English | MEDLINE | ID: mdl-33773025

ABSTRACT

This study reports the in vitro anticoagulation activity of acetonic extract (AE) of 42 lichen species and the identification of potential bioavailable anticoagulant compounds from Umbilicaria decussata as a competent anticoagulant lichen species. Lichens' AEs were evaluated for their anticoagulant activity by monitoring activated partial thromboplastin time (APTT) and prothrombin time (PT) assays. A strong, positive correlation was observed between total phenolics concentration (TPC) of species and blood coagulation parameters. U. decussata was the only species with the longest clotting time in both APTT and PT assays. The research was moved forward by performing in vivo assays using rats. The results corroborated the dose-dependent impact of U. decussata's AE on rats' clotting time. Major secondary metabolites of U. decussata and their plasma-related bioavailability were also investigated using LC-ESI-MS/MS. Atranol, orsellinic acid, D-mannitol, lecanoric acid, and evernic acid were detected as possible bioavailable anticoagulants of U. decussata. Our findings suggest that U. decussata might be a potential anticoagulant lichen species that can be used for the prevention or treatment of coagulation-related issues such as cardiovascular diseases (CVDs).


Subject(s)
Anticoagulants/pharmacology , Lichens/chemistry , Plant Extracts/pharmacology , Anticoagulants/chemistry , Anticoagulants/isolation & purification , Benzaldehydes/chemistry , Benzaldehydes/isolation & purification , Benzaldehydes/pharmacology , Blood Coagulation/drug effects , Blood Coagulation Tests , Dose-Response Relationship, Drug , Hydroxybenzoates/chemistry , Hydroxybenzoates/isolation & purification , Hydroxybenzoates/pharmacology , Mannitol/chemistry , Mannitol/isolation & purification , Mannitol/pharmacology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Resorcinols/chemistry , Resorcinols/isolation & purification , Resorcinols/pharmacology , Salicylates/chemistry , Salicylates/isolation & purification , Salicylates/pharmacology
13.
Molecules ; 26(5)2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33803102

ABSTRACT

In this short review, we attempt to unfold various aspects of excited-state intramolecular proton transfer (ESIPT) from the studies that are available up to date. Since Weller's discovery of ESIPT in salicylic acid (SA) and its derivative methyl salicylate (MS), numerous studies have emerged on the topic and it has become an attractive field of research because of its manifold applications. Here, we discuss some critical aspects of ESIPT and tautomerization from the mechanistic viewpoint. We address excitation wavelength dependence, anti-Kasha ESIPT, fast and slow ESIPT, reversibility and irreversibility of ESIPT, hydrogen bonding and geometrical factors, excited-state double proton transfer (ESDPT), concerted and stepwise ESDPT.


Subject(s)
Hydrogen/chemistry , Ions/chemistry , Protons , Electrons , Hydrogen Bonding , Models, Molecular , Quantum Theory , Salicylates/chemistry , Salicylic Acid/chemistry , Thermodynamics
14.
Molecules ; 26(21)2021 Oct 30.
Article in English | MEDLINE | ID: mdl-34770993

ABSTRACT

Ginkgo biloba L. has been used in traditional Chinese medicine (TCM) for thousands of years. However, the anti-cancer properties of ginkgolic acids (GAS) isolated from G. biloba have not been investigated in human nasopharyngeal carcinoma cells. In this study, GAS exhibited an inhibitory effect on the ATPase activity of heat shock protein 90 (Hsp90) and anti-proliferative activities against four human cancer cell lines, with IC50 values ranging from 14.91 to 23.81 µg·mL-1. In vivo experiments confirmed that GAS inhibited tumor growth in CNE-2Z cell-xenografted nude mice with low hepatotoxicity. We further demonstrated that GAS suppressed migration and invasion and induced the apoptosis of CNE-2Z cells by inducing the degradation of Hsp90 client proteins (MMP-2, MMP-9, Her-2, c-Raf, Akt, and Bcl-2). Together, GAS are new Hsp90 inhibitors by binding to Hsp90 (hydrogen bond and hydrophobic interaction). Thus, GAS from G. biloba might represent promising Hsp90 inhibitors for the development of anti-nasopharyngeal carcinoma agents.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Ginkgo biloba/chemistry , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Neoplasms/drug therapy , Salicylates/pharmacology , Animals , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , HSP90 Heat-Shock Proteins/metabolism , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Neoplasms/pathology , Salicylates/chemistry , Salicylates/isolation & purification , Tumor Cells, Cultured
15.
Planta ; 252(6): 103, 2020 Nov 13.
Article in English | MEDLINE | ID: mdl-33185761

ABSTRACT

MAIN CONCLUSION: Nicotiana tabacum overexpressing CrSAMT from Citrus reticulata increased production of MeSA, which works as an airborne signal in neighboring wild-type plants, inducing PR1 and increasing resistance to the pathogen Xylella fastidiosa. Xylella fastidiosa is one of the major threats to plant health worldwide, affecting yield in many crops. Despite many efforts, the development of highly productive resistant varieties has been challenging. In studying host plant resistance, the S-adenosyl-L-methionine: salicylic acid carboxyl methyltransferase gene (SAMT) from Citrus reticulata, a X. fastidiosa resistant species, was upregulated in response to pathogen infection. SAMT is involved with the catalysis and production of methyl salicylate (MeSA), an airborne signal responsible for triggering systemic acquired resistance. Here we used tobacco as a model system and generated transgenic plants overexpressing C. reticulata SAMT (CrSAMT). We performed an in silico structural characterization of CrSAMT and investigated its biotechnological potential in modulating the immune system in transgenic plants. The increase of MeSA production in transgenic lines was confirmed by gas chromatography (GC-MS). The transgenic lines showed upregulation of PR1, and their incubation with neighboring wild-type plants activated PR1 expression, indicating that MeSA worked as an airborne signal. In addition, transgenic plants showed significantly fewer symptoms when challenged with X. fastidiosa. Altogether, these data suggest that CrSAMT plays a role in host defense response and can be used in biotechnology approaches to confer resistance against X. fastidiosa.


Subject(s)
Citrus , Gene Expression , Methyltransferases , Salicylates , Xylella , Citrus/genetics , Citrus/microbiology , Methyltransferases/genetics , Methyltransferases/metabolism , Plant Diseases , Recombinant Proteins/genetics , Salicylates/chemistry , Nicotiana/genetics , Volatilization , Xylella/physiology
16.
Anal Biochem ; 590: 113536, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31821804

ABSTRACT

This work depicts the novel chromogenic system for the assay of glucose in blood samples connected with the chelate formation of sulfosalicylic acid (SSA) with iron (Fe(III)) using glucose oxidase (GOD) presented. The purple-colored Fe-SSA chelate compound formed, maintain a strong absorption at 500 nm in the acidic buffer of pH 3.8. The Beer's law limit for the assay of glucose by rate, and a one-time method is in the range of 46-1295 µmol/L and 9-1110 µmol/L sequentially. Inter and Intraday precision fluctuated amid 0.98-1.4% (n = 10), and 1.33-2.89% (n = 15) sequentially. The recovery of glucose varied from 96.6 to 102%, registering trifling interference by common interferants in blood samples. The accuracy of the outcome, LOD, and LOQ of glucose were within 90-102%, 2.376, and 7.923 µmol/L individually. The introduced method has a coefficient of correlation 0.999 with the standard kit system, and easy to ascertain serum glucose with excellent recovery and insignificant interruption. Nevertheless, the system can be recognized for selection by the biochemical laboratories.


Subject(s)
Blood Glucose/analysis , Spectrophotometry/methods , Benzenesulfonates/chemistry , Ferric Compounds/chemistry , Glucose Oxidase/chemistry , Humans , Salicylates/chemistry
17.
Mol Pharm ; 17(12): 4704-4708, 2020 12 07.
Article in English | MEDLINE | ID: mdl-33118829

ABSTRACT

Controlling physicochemical properties of light-unresponsive drugs, by light, prima facie, a paradox approach. We expanded light control by ion pairing light-unresponsive salicylate or ibuprofen to photoswitchable azobenzene counterions, thereby reversibly controlling supramolecular structures, hence the drugs' physicochemical and kinetic properties. The resulting ion pairs photoliquefied into room-temperature ionic liquids under ultraviolet light. Aqueous solutions showed trans-cis-dependent supramolecular structures under a light with wormlike aggregates decomposing into small micelles and vice versa. Light control allowed for permeation through membranes of cis-ibuprofen ion pairs within 12 h in contrast to the trans ion pairs requiring 72 h. In conclusion, azobenzene ion-pairing expands light control of physicochemical and kinetic properties to otherwise light-unresponsive drugs.


Subject(s)
Ionic Liquids/radiation effects , Ultraviolet Rays , Azo Compounds/chemistry , Azo Compounds/pharmacokinetics , Azo Compounds/radiation effects , Chemistry, Pharmaceutical , Ibuprofen/chemistry , Ibuprofen/pharmacokinetics , Ibuprofen/radiation effects , Ionic Liquids/chemistry , Ionic Liquids/pharmacokinetics , Molecular Structure , Permeability , Salicylates/chemistry , Salicylates/pharmacokinetics , Salicylates/radiation effects , Water/chemistry
18.
Phys Chem Chem Phys ; 22(27): 15509-15519, 2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32602867

ABSTRACT

Homosalate (HMS) is a salicylate molecule that is commonly included within commercial sunscreen formulations to provide protection from the adverse effects of ultraviolet (UV) radiation exposure. In the present work, the mechanisms by which HMS provides UV photoprotection are unravelled, using a multi-pronged approach involving a combination of time-resolved ultrafast laser spectroscopy in the gas-phase and in solution, laser-induced fluorescence, steady-state absorption spectroscopy, and computational methods. The unique combination of these techniques allow us to show that the enol tautomer of HMS undergoes ultrafast excited state intramolecular proton transfer (ESIPT) upon photoexcitation in the UVB (290-320 nm) region; once in the keto tautomer, the excess energy is predominantly dissipated non-radiatively. Sharp transitions are observed in the LIF spectrum at close-to-origin excitation energies, which points towards the potential presence of a second conformer that does not undergo ESIPT. These studies demonstrate that, overall, HMS exhibits mostly favourable photophysical characteristics of a UV filter for inclusion in sunscreen formulations.


Subject(s)
Salicylates/chemistry , Ultraviolet Rays , Molecular Structure , Photochemical Processes
19.
J Nat Prod ; 83(10): 3173-3180, 2020 10 23.
Article in English | MEDLINE | ID: mdl-33008263

ABSTRACT

Herein is reported the first total synthesis of benzyl salicylate and benzyl gentisate glucosides present in various plant species, in particular the Salix genus, such as Populus balsamifera and P. trichocarpa. The method permits the synthesis of several natural phenolic acid derivatives and their glucosides starting from salicylic or gentisic acid. The divergent approach afforded access to three different acetylated glucosides from a common synthetic intermediate. The key step in the total synthesis of naturally occurring glycosides-the selective deacetylation of the sugar moiety-was achieved in the presence of a labile benzyl ester group by employing mild deacetylation conditions. The protocol permitted synthesis of trichocarpine (4 steps, 40% overall yield), isotrichocarpine (3 steps, 51% overall yield), trichoside (6 steps, 40% overall yield), and deoxytrichocarpine (3 steps, 42% overall yield) for the first time (>95% purity). Also, the optimized mild deacetylation conditions allowed synthesis of 2-O-acetylated derivatives of all four glycosides (5-17% overall yield, 90-95% purity), which are rare plant metabolites.


Subject(s)
Benzyl Compounds/chemical synthesis , Gentisates/chemical synthesis , Glycosides/chemistry , Populus/chemistry , Salicylates/chemistry , Molecular Structure
20.
J Chem Ecol ; 46(11-12): 1090-1104, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33106972

ABSTRACT

The glasshouse whitefly (Trialeurodes vaporariorum Westwood) is a polyphagous arthropod pest that is of particular detriment to glasshouse grown tomato (Solanum lycopersicum) across temperate regions of the world. Control of whiteflies with synthetic pesticides has resulted in the evolution of resistant genotypes and a reduction in natural enemies, thus highlighting the need for environmentally sound control strategies. Volatile organic compounds (VOCs) offer an environmentally benign alternative to synthetic chemical sprays and this study explored the use of VOCs as insect repellents and plant defence elicitors to control whiteflies on tomato in a commercial glasshouse setting. Limonene in the form of a volatile dispenser system was found to successfully repel whitefly from the target crop and increased fruit yield by 32% during a heavy whitefly infestation. Analysis of tomato herbivore induced plant volatiles (HIPVs) led us to select methyl salicylate (MeSA) as the plant elicitor and application of MeSA to un-infested tomato plants was found to successfully reduce whitefly population development and increase yield by 11%, although this difference was marginally statistically significant. Combination of these two methods was also effective but whitefly abundance in combined plots was similar to the standalone limonene treatment across the course of the experiment. All of the VOC based control methods we used had a negative impact on whitefly performance, with more pronounced effects during the first few weeks of infestation. In subsequent laboratory experiments, we found elevated peroxidase (POD) activity and a significant increase in TPX1 and PR1 transcripts in MeSA treated plants. This led us to deduce that MeSA immediately induced plant defences, rather than priming them. We did however see evidence for residual priming, as plants treated with MeSA and infested with whiteflies produced significantly higher levels of POD activity than whitefly infestation alone. Despite the fact that our treatments failed to synergise, our methods can be optimised further, and the effectiveness of the standalone treatments is promising for future studies. In particular, our repellent limonene dispensers were extremely effective at deterring whiteflies and offer a low economic cost and easy to implement whitefly control option. The methods we have used here could be incorporated into current integrated pest management (IPM) systems, a sustainable approach to pest control which will be central to our efforts to manage whitefly populations under glass in the future.


Subject(s)
Hemiptera/drug effects , Insect Control/methods , Insect Repellents/chemistry , Solanum lycopersicum/chemistry , Volatile Organic Compounds/chemistry , Animals , Arabidopsis Proteins/metabolism , Cell Adhesion Molecules/metabolism , Gene Expression Regulation/drug effects , Herbivory/drug effects , Insect Repellents/metabolism , Limonene/metabolism , Solanum lycopersicum/metabolism , Peroxidase/metabolism , Salicylates/chemistry , Salicylates/metabolism , Scavenger Receptors, Class E , Volatile Organic Compounds/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL