Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.638
Filter
Add more filters

Publication year range
1.
Cell ; 184(8): 2135-2150.e13, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33765442

ABSTRACT

Sarcomeres are force-generating and load-bearing devices of muscles. A precise molecular picture of how sarcomeres are built underpins understanding their role in health and disease. Here, we determine the molecular architecture of native vertebrate skeletal sarcomeres by electron cryo-tomography. Our reconstruction reveals molecular details of the three-dimensional organization and interaction of actin and myosin in the A-band, I-band, and Z-disc and demonstrates that α-actinin cross-links antiparallel actin filaments by forming doublets with 6-nm spacing. Structures of myosin, tropomyosin, and actin at ~10 Å further reveal two conformations of the "double-head" myosin, where the flexible orientation of the lever arm and light chains enable myosin not only to interact with the same actin filament, but also to split between two actin filaments. Our results provide unexpected insights into the fundamental organization of vertebrate skeletal muscle and serve as a strong foundation for future investigations of muscle diseases.


Subject(s)
Muscle, Skeletal/metabolism , Sarcomeres/chemistry , Actin Cytoskeleton/chemistry , Actin Cytoskeleton/metabolism , Actinin/chemistry , Actinin/metabolism , Actomyosin/chemistry , Actomyosin/metabolism , Animals , Cryoelectron Microscopy , Female , Mice , Mice, Inbred BALB C , Models, Molecular , Protein Binding , Sarcomeres/metabolism , Sarcomeres/ultrastructure , Tropomyosin/chemistry , Tropomyosin/metabolism
2.
Nature ; 623(7988): 863-871, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37914933

ABSTRACT

The thick filament is a key component of sarcomeres, the basic units of striated muscle1. Alterations in thick filament proteins are associated with familial hypertrophic cardiomyopathy and other heart and muscle diseases2. Despite the central importance of the thick filament, its molecular organization remains unclear. Here we present the molecular architecture of native cardiac sarcomeres in the relaxed state, determined by cryo-electron tomography. Our reconstruction of the thick filament reveals the three-dimensional organization of myosin, titin and myosin-binding protein C (MyBP-C). The arrangement of myosin molecules is dependent on their position along the filament, suggesting specialized capacities in terms of strain susceptibility and force generation. Three pairs of titin-α and titin-ß chains run axially along the filament, intertwining with myosin tails and probably orchestrating the length-dependent activation of the sarcomere. Notably, whereas the three titin-α chains run along the entire length of the thick filament, titin-ß chains do not. The structure also demonstrates that MyBP-C bridges thin and thick filaments, with its carboxy-terminal region binding to the myosin tails and directly stabilizing the OFF state of the myosin heads in an unforeseen manner. These results provide a foundation for future research investigating muscle disorders involving sarcomeric components.


Subject(s)
Cardiac Myosins , Myocardium , Sarcomeres , Connectin/chemistry , Connectin/metabolism , Connectin/ultrastructure , Cryoelectron Microscopy , Electron Microscope Tomography , Myocardium/chemistry , Myocardium/cytology , Myocardium/ultrastructure , Sarcomeres/chemistry , Sarcomeres/metabolism , Sarcomeres/ultrastructure , Cardiac Myosins/chemistry , Cardiac Myosins/metabolism , Cardiac Myosins/ultrastructure
3.
Cell ; 152(1-2): 183-95, 2013 Jan 17.
Article in English | MEDLINE | ID: mdl-23332754

ABSTRACT

The UCS (UNC-45/CRO1/She4) chaperones play an evolutionarily conserved role in promoting myosin-dependent processes, including cytokinesis, endocytosis, RNA transport, and muscle development. To investigate the protein machinery orchestrating myosin folding and assembly, we performed a comprehensive analysis of Caenorhabditis elegans UNC-45. Our structural and biochemical data demonstrate that UNC-45 forms linear protein chains that offer multiple binding sites for cooperating chaperones and client proteins. Accordingly, Hsp70 and Hsp90, which bind to the TPR domain of UNC-45, could act in concert and with defined periodicity on captured myosin molecules. In vivo analyses reveal the elongated canyon of the UCS domain as a myosin-binding site and show that multimeric UNC-45 chains support organization of sarcomeric repeats. In fact, expression of transgenes blocking UNC-45 chain formation induces dominant-negative defects in the sarcomere structure and function of wild-type worms. Together, these findings uncover a filament assembly factor that directly couples myosin folding with myofilament formation.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Molecular Chaperones/metabolism , Myofibrils/metabolism , Amino Acid Sequence , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Models, Molecular , Molecular Chaperones/genetics , Molecular Sequence Data , Promoter Regions, Genetic , Protein Folding , Protein Structure, Tertiary , Sarcomeres/metabolism
4.
Genes Dev ; 34(7-8): 560-579, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32139421

ABSTRACT

Mutations in the nuclear structural protein lamin A produce rare, tissue-specific diseases called laminopathies. The introduction of a human Emery-Dreifuss muscular dystrophy (EDMD)-inducing mutation into the C. elegans lamin (LMN-Y59C), recapitulates many muscular dystrophy phenotypes, and correlates with hyper-sequestration of a heterochromatic array at the nuclear periphery in muscle cells. Using muscle-specific emerin Dam-ID in worms, we monitored the effects of the mutation on endogenous chromatin. An increased contact with the nuclear periphery along chromosome arms, and an enhanced release of chromosomal centers, coincided with the disease phenotypes of reduced locomotion and compromised sarcomere integrity. The coupling of the LMN-Y59C mutation with the ablation of CEC-4, a chromodomain protein that anchors H3K9-methylated chromatin at the nuclear envelope (NE), suppressed the muscle-associated disease phenotypes. Deletion of cec-4 also rescued LMN-Y59C-linked alterations in chromatin organization and some changes in transcription. Sequences that changed position in the LMN-Y59C mutant, are enriched for E2F (EFL-2)-binding sites, consistent with previous studies suggesting that altered Rb-E2F interaction with lamin A may contribute to muscle dysfunction. In summary, we were able to counteract the dominant muscle-specific defects provoked by LMNA mutation by the ablation of a lamin-associated H3K9me anchor, suggesting a novel therapeutic pathway for EDMD.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Cell Nucleus/genetics , Chromosomal Proteins, Non-Histone/genetics , Gene Deletion , Muscular Dystrophy, Emery-Dreifuss/genetics , Animals , Binding Sites/genetics , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Cell Nucleus/pathology , Chromatin/genetics , Disease Models, Animal , Genome, Helminth/genetics , Laminin/genetics , Laminin/metabolism , Muscles/physiopathology , Muscular Dystrophy, Emery-Dreifuss/physiopathology , Mutation , Protein Structure, Tertiary/genetics , Sarcomeres/chemistry , Sarcomeres/genetics , Transcription, Genetic/genetics
5.
Development ; 151(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38869008

ABSTRACT

Cofilin, an actin-severing protein, plays key roles in muscle sarcomere addition and maintenance. Our previous work found that Drosophila cofilin (DmCFL) knockdown in muscle causes progressive deterioration of muscle structure and function and produces features seen in nemaline myopathy caused by cofilin mutations. We hypothesized that disruption of actin cytoskeleton dynamics by DmCFL knockdown would impact other aspects of muscle development, and, thus, conducted an RNA-sequencing analysis that unexpectedly revealed upregulated expression of numerous neuromuscular junction (NMJ) genes. We found that DmCFL is enriched in the muscle postsynaptic compartment and that DmCFL muscle knockdown causes F-actin disorganization in this subcellular domain prior to the sarcomere defects observed later in development. Despite NMJ gene expression changes, we found no significant changes in gross presynaptic Bruchpilot active zones or total postsynaptic glutamate receptor levels. However, DmCFL knockdown resulted in mislocalization of GluRIIA class glutamate receptors in more deteriorated muscles and strongly impaired NMJ transmission strength. These findings expand our understanding of the roles of cofilin in muscle to include NMJ structural development and suggest that NMJ defects may contribute to the pathophysiology of nemaline myopathy.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Neuromuscular Junction , Synaptic Transmission , Animals , Neuromuscular Junction/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Actin Depolymerizing Factors/metabolism , Actin Depolymerizing Factors/genetics , Actins/metabolism , Sarcomeres/metabolism , Gene Knockdown Techniques , Actin Cytoskeleton/metabolism , Myopathies, Nemaline/metabolism , Myopathies, Nemaline/genetics , Myopathies, Nemaline/pathology
6.
PLoS Biol ; 22(4): e3002575, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38683844

ABSTRACT

Muscles undergo developmental transitions in gene expression and alternative splicing that are necessary to refine sarcomere structure and contractility. CUG-BP and ETR-3-like (CELF) family RNA-binding proteins are important regulators of RNA processing during myogenesis that are misregulated in diseases such as Myotonic Dystrophy Type I (DM1). Here, we report a conserved function for Bruno 1 (Bru1, Arrest), a CELF1/2 family homolog in Drosophila, during early muscle myogenesis. Loss of Bru1 in flight muscles results in disorganization of the actin cytoskeleton leading to aberrant myofiber compaction and defects in pre-myofibril formation. Temporally restricted rescue and RNAi knockdown demonstrate that early cytoskeletal defects interfere with subsequent steps in sarcomere growth and maturation. Early defects are distinct from a later requirement for bru1 to regulate sarcomere assembly dynamics during myofiber maturation. We identify an imbalance in growth in sarcomere length and width during later stages of development as the mechanism driving abnormal radial growth, myofibril fusion, and the formation of hollow myofibrils in bru1 mutant muscle. Molecularly, we characterize a genome-wide transition from immature to mature sarcomere gene isoform expression in flight muscle development that is blocked in bru1 mutants. We further demonstrate that temporally restricted Bru1 rescue can partially alleviate hypercontraction in late pupal and adult stages, but it cannot restore myofiber function or correct structural deficits. Our results reveal the conserved nature of CELF function in regulating cytoskeletal dynamics in muscle development and demonstrate that defective RNA processing due to misexpression of CELF proteins causes wide-reaching structural defects and progressive malfunction of affected muscles that cannot be rescued by late-stage gene replacement.


Subject(s)
Cytoskeleton , Flight, Animal , Muscle Development , RNA-Binding Proteins , Sarcomeres , Animals , Alternative Splicing/genetics , Cytoskeleton/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Flight, Animal/physiology , Gene Expression Regulation, Developmental , Muscle Development/genetics , Muscles/metabolism , Myofibrils/metabolism , RNA Splicing/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Sarcomeres/metabolism
7.
Proc Natl Acad Sci U S A ; 121(9): e2311883121, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38386705

ABSTRACT

Heart muscle has the unique property that it can never rest; all cardiomyocytes contract with each heartbeat which requires a complex control mechanism to regulate cardiac output to physiological requirements. Changes in calcium concentration regulate the thin filament activation. A separate but linked mechanism regulates the thick filament activation, which frees sufficient myosin heads to bind the thin filament, thereby producing the required force. Thick filaments contain additional nonmyosin proteins, myosin-binding protein C and titin, the latter being the protein that transmits applied tension to the thick filament. How these three proteins interact to control thick filament activation is poorly understood. Here, we show using 3-D image reconstruction of frozen-hydrated human cardiac muscle myofibrils lacking exogenous drugs that the thick filament is structured to provide three levels of myosin activation corresponding to the three crowns of myosin heads in each 429Å repeat. In one crown, the myosin heads are almost completely activated and disordered. In another crown, many myosin heads are inactive, ordered into a structure called the interacting heads motif. At the third crown, the myosin heads are ordered into the interacting heads motif, but the stability of that motif is affected by myosin-binding protein C. We think that this hierarchy of control explains many of the effects of length-dependent activation as well as stretch activation in cardiac muscle control.


Subject(s)
Benzylamines , Myocardium , Sarcomeres , Uracil/analogs & derivatives , Humans , Myofibrils , Myocytes, Cardiac , Myosins
8.
PLoS Genet ; 20(1): e1011117, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38198522

ABSTRACT

During striated muscle development the first periodically repeated units appear in the premyofibrils, consisting of immature sarcomeres that must undergo a substantial growth both in length and width, to reach their final size. Here we report that, beyond its well established role in sarcomere elongation, the Sarcomere length short (SALS) protein is involved in Z-disc formation and peripheral growth of the sarcomeres. Our protein localization data and loss-of-function studies in the Drosophila indirect flight muscle strongly suggest that radial growth of the sarcomeres is initiated at the Z-disc. As to thin filament elongation, we used a powerful nanoscopy approach to reveal that SALS is subject to a major conformational change during sarcomere development, which might be critical to stop pointed end elongation in the adult muscles. In addition, we demonstrate that the roles of SALS in sarcomere elongation and radial growth are both dependent on formin type of actin assembly factors. Unexpectedly, when SALS is present in excess amounts, it promotes the formation of actin aggregates highly resembling the ones described in nemaline myopathy patients. Collectively, these findings helped to shed light on the complex mechanisms of SALS during the coordinated elongation and thickening of the sarcomeres, and resulted in the discovery of a potential nemaline myopathy model, suitable for the identification of genetic and small molecule inhibitors.


Subject(s)
Myopathies, Nemaline , Sarcomeres , Animals , Humans , Sarcomeres/metabolism , Formins/metabolism , Actins/metabolism , Actin Cytoskeleton/genetics , Actin Cytoskeleton/metabolism , Drosophila/metabolism
9.
PLoS Genet ; 20(6): e1011101, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38905299

ABSTRACT

Filamins are mechanosensitive actin crosslinking proteins that organize the actin cytoskeleton in a variety of shapes and tissues. In muscles, filamin crosslinks actin filaments from opposing sarcomeres, the smallest contractile units of muscles. This happens at the Z-disc, the actin-organizing center of sarcomeres. In flies and vertebrates, filamin mutations lead to fragile muscles that appear ruptured, suggesting filamin helps counteract muscle rupturing during muscle contractions by providing elastic support and/or through signaling. An elastic region at the C-terminus of filamin is called the mechanosensitive region and has been proposed to sense and counteract contractile damage. Here we use molecularly defined mutants and microscopy analysis of the Drosophila indirect flight muscles to investigate the molecular details by which filamin provides cohesion to the Z-disc. We made novel filamin mutations affecting the C-terminal region to interrogate the mechanosensitive region and detected three Z-disc phenotypes: dissociation of actin filaments, Z-disc rupture, and Z-disc enlargement. We tested a constitutively closed filamin mutant, which prevents the elastic changes in the mechanosensitive region and results in ruptured Z-discs, and a constitutively open mutant which has the opposite elastic effect on the mechanosensitive region and gives rise to enlarged Z-discs. Finally, we show that muscle contraction is required for Z-disc rupture. We propose that filamin senses myofibril damage by elastic changes in its mechanosensory region, stabilizes the Z-disc, and counteracts contractile damage at the Z-disc.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Filamins , Muscle Contraction , Mutation , Myofibrils , Animals , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Filamins/metabolism , Filamins/genetics , Mechanotransduction, Cellular/genetics , Muscle Contraction/genetics , Muscle Contraction/physiology , Myofibrils/metabolism , Myofibrils/genetics , Phenotype , Sarcomeres/metabolism , Sarcomeres/genetics
10.
Proc Natl Acad Sci U S A ; 121(35): e2322077121, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39172779

ABSTRACT

2'-deoxy-ATP (dATP) improves cardiac function by increasing the rate of crossbridge cycling and Ca[Formula: see text] transient decay. However, the mechanisms of these effects and how therapeutic responses to dATP are achieved when dATP is only a small fraction of the total ATP pool remain poorly understood. Here, we used a multiscale computational modeling approach to analyze the mechanisms by which dATP improves ventricular function. We integrated atomistic simulations of prepowerstroke myosin and actomyosin association, filament-scale Markov state modeling of sarcomere mechanics, cell-scale analysis of myocyte Ca[Formula: see text] dynamics and contraction, organ-scale modeling of biventricular mechanoenergetics, and systems level modeling of circulatory dynamics. Molecular and Brownian dynamics simulations showed that dATP increases the actomyosin association rate by 1.9 fold. Markov state models predicted that dATP increases the pool of myosin heads available for crossbridge cycling, increasing steady-state force development at low dATP fractions by 1.3 fold due to mechanosensing and nearest-neighbor cooperativity. This was found to be the dominant mechanism by which small amounts of dATP can improve contractile function at myofilament to organ scales. Together with faster myocyte Ca[Formula: see text] handling, this led to improved ventricular contractility, especially in a failing heart model in which dATP increased ejection fraction by 16% and the energy efficiency of cardiac contraction by 1%. This work represents a complete multiscale model analysis of a small molecule myosin modulator from single molecule to organ system biophysics and elucidates how the molecular mechanisms of dATP may improve cardiovascular function in heart failure with reduced ejection fraction.


Subject(s)
Deoxyadenine Nucleotides , Heart Failure , Heart Failure/drug therapy , Heart Failure/physiopathology , Deoxyadenine Nucleotides/metabolism , Animals , Humans , Ventricular Function , Models, Cardiovascular , Myocardial Contraction/drug effects , Myosins/metabolism , Sarcomeres/metabolism , Actomyosin/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Calcium/metabolism , Markov Chains
11.
Physiol Rev ; 99(1): 381-426, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30379622

ABSTRACT

The sarcomeric proteins represent the structural building blocks of heart muscle, which are essential for contraction and relaxation. During recent years, it has become evident that posttranslational modifications of sarcomeric proteins, in particular phosphorylation, tune cardiac pump function at rest and during exercise. This delicate, orchestrated interaction is also influenced by mutations, predominantly in sarcomeric proteins, which cause hypertrophic or dilated cardiomyopathy. In this review, we follow a bottom-up approach starting from a description of the basic components of cardiac muscle at the molecular level up to the various forms of cardiac disorders at the organ level. An overview is given of sarcomere changes in acquired and inherited forms of cardiac disease and the underlying disease mechanisms with particular reference to human tissue. A distinction will be made between the primary defect and maladaptive/adaptive secondary changes. Techniques used to unravel functional consequences of disease-induced protein changes are described, and an overview of current and future treatments targeted at sarcomeric proteins is given. The current evidence presented suggests that sarcomeres not only form the basis of cardiac muscle function but also represent a therapeutic target to combat cardiac disease.


Subject(s)
Carrier Proteins/metabolism , Heart Diseases/metabolism , Heart Diseases/physiopathology , Myocardium/metabolism , Sarcomeres/metabolism , Animals , Heart Diseases/genetics , Humans , Mutation/genetics , Phosphorylation/physiology
12.
Hum Mol Genet ; 33(12): 1036-1054, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38493359

ABSTRACT

Nemaline myopathy (NM) is a rare congenital neuromuscular disorder characterized by muscle weakness and hypotonia, slow gross motor development, and decreased respiratory function. Mutations in at least twelve genes, all of each encode proteins that are either components of the muscle thin filament or regulate its length and stability, have been associated with NM. Mutations in Nebulin (NEB), a giant filamentous protein localized in the sarcomere, account for more than 50% of NM cases. At present, there remains a lack of understanding of whether NEB genotype influences nebulin function and NM-patient phenotypes. In addition, there is a lack of therapeutically tractable models that can enable drug discovery and address the current unmet treatment needs of patients. To begin to address these gaps, here we have characterized five new zebrafish models of NEB-related NM. These mutants recapitulate most aspects of NEB-based NM, showing drastically reduced survival, defective muscle structure, reduced contraction force, shorter thin filaments, presence of electron-dense structures in myofibers, and thickening of the Z-disks. This study represents the first extensive investigation of an allelic series of nebulin mutants, and thus provides an initial examination in pre-clinical models of potential genotype-phenotype correlations in human NEB patients. It also represents the first utilization of a set of comprehensive outcome measures in zebrafish, including correlation between molecular analyses, structural and biophysical investigations, and phenotypic outcomes. Therefore, it provides a rich source of data for future studies exploring the NM pathomechanisms, and an ideal springboard for therapy identification and development for NEB-related NM.


Subject(s)
Alleles , Disease Models, Animal , Muscle Proteins , Muscle, Skeletal , Mutation , Myopathies, Nemaline , Phenotype , Sarcomeres , Zebrafish , Myopathies, Nemaline/genetics , Myopathies, Nemaline/pathology , Myopathies, Nemaline/physiopathology , Zebrafish/genetics , Animals , Muscle Proteins/genetics , Muscle Proteins/metabolism , Sarcomeres/genetics , Sarcomeres/metabolism , Sarcomeres/pathology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Humans , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
13.
Development ; 150(7)2023 04 01.
Article in English | MEDLINE | ID: mdl-36897564

ABSTRACT

During morphogenesis, large-scale changes of tissue primordia are coordinated across an embryo. In Drosophila, several tissue primordia and embryonic regions are bordered or encircled by supracellular actomyosin cables, junctional actomyosin enrichments networked between many neighbouring cells. We show that the single Drosophila Alp/Enigma-family protein Zasp52, which is most prominently found in Z-discs of muscles, is a component of many supracellular actomyosin structures during embryogenesis, including the ventral midline and the boundary of the salivary gland placode. We reveal that Zasp52 contains within its central coiled-coil region a type of actin-binding motif usually found in CapZbeta proteins, and this domain displays actin-binding activity. Using endogenously-tagged lines, we identify that Zasp52 interacts with junctional components, including APC2, Polychaetoid and Sidekick, and actomyosin regulators. Analysis of zasp52 mutant embryos reveals that the severity of the embryonic defects observed scales inversely with the amount of functional protein left. Large tissue deformations occur where actomyosin cables are found during embryogenesis, and in vivo and in silico analyses suggest a model whereby supracellular Zasp52-containing cables aid to insulate morphogenetic changes from one another.


Subject(s)
Actomyosin , Drosophila Proteins , Animals , Actomyosin/metabolism , Actins/metabolism , Drosophila melanogaster/metabolism , Drosophila Proteins/metabolism , Drosophila/metabolism , Sarcomeres/metabolism , Morphogenesis/genetics
14.
Development ; 150(6)2023 03 15.
Article in English | MEDLINE | ID: mdl-36806912

ABSTRACT

Proper muscle contraction requires the assembly and maintenance of sarcomeres and myofibrils. Although the protein components of myofibrils are generally known, less is known about the mechanisms by which they individually function and together synergize for myofibril assembly and maintenance. For example, it is unclear how the disruption of actin filament (F-actin) regulatory proteins leads to the muscle weakness observed in myopathies. Here, we show that knockdown of Drosophila Tropomodulin (Tmod), results in several myopathy-related phenotypes, including reduction of muscle cell (myofiber) size, increased sarcomere length, disorganization and misorientation of myofibrils, ectopic F-actin accumulation, loss of tension-mediating proteins at the myotendinous junction, and misshaped and internalized nuclei. Our findings support and extend the tension-driven self-organizing myofibrillogenesis model. We show that, like its mammalian counterpart, Drosophila Tmod caps F-actin pointed-ends, and we propose that this activity is crucial for cellular processes in different locations within the myofiber that directly and indirectly contribute to the maintenance of muscle function. Our findings provide significant insights to the role of Tmod in muscle development, maintenance and disease.


Subject(s)
Actins , Tropomodulin , Animals , Actins/metabolism , Tropomodulin/genetics , Tropomodulin/metabolism , Microfilament Proteins/metabolism , Drosophila/genetics , Drosophila/metabolism , Myofibrils/metabolism , Actin Cytoskeleton/metabolism , Sarcomeres/metabolism , Mammals/metabolism
15.
Circ Res ; 135(4): 474-487, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-38962864

ABSTRACT

BACKGROUND: How the sarcomeric complex is continuously turned over in long-living cardiomyocytes is unclear. According to the prevailing model of sarcomere maintenance, sarcomeres are maintained by cytoplasmic soluble protein pools with free recycling between pools and sarcomeres. METHODS: We imaged and quantified the turnover of expressed and endogenous sarcomeric proteins, including the giant protein titin, in cardiomyocytes in culture and in vivo, at the single cell and at the single sarcomere level using pulse-chase labeling of Halo-tagged proteins with covalent ligands. RESULTS: We disprove the prevailing protein pool model and instead show an ordered mechanism in which only newly translated proteins enter the sarcomeric complex while older ones are removed and degraded. We also show that degradation is independent of protein age and that proteolytic extraction is a rate-limiting step in the turnover. We show that replacement of sarcomeric proteins occurs at a similar rate within cells and across the heart and is slower in adult cells. CONCLUSIONS: Our findings establish a unidirectional replacement model for cardiac sarcomeres subunit replacement and identify their turnover principles.


Subject(s)
Connectin , Myocytes, Cardiac , Sarcomeres , Sarcomeres/metabolism , Animals , Myocytes, Cardiac/metabolism , Connectin/metabolism , Cells, Cultured , Proteolysis , Mice , Protein Biosynthesis , Muscle Proteins/metabolism , Rats , Male , Mice, Inbred C57BL
16.
Proc Natl Acad Sci U S A ; 120(12): e2219300120, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36913569

ABSTRACT

Despite the elaborate varieties of iridescent colors in biological species, most of them are reflective. Here we show the rainbow-like structural colors found in the ghost catfish (Kryptopterus vitreolus), which exist only in transmission. The fish shows flickering iridescence throughout the transparent body. The iridescence originates from the collective diffraction of light after passing through the periodic band structures of the sarcomeres inside the tightly stacked myofibril sheets, and the muscle fibers thus work as transmission gratings. The length of the sarcomeres varies from ~1 µm from the body neutral plane near the skeleton to ~2 µm next to the skin, and the iridescence of a live fish mainly results from the longer sarcomeres. The length of the sarcomere changes by ~80 nm as it relaxes and contracts, and the fish shows a quickly blinking dynamic diffraction pattern as it swims. While similar diffraction colors are also observed in thin slices of muscles from non-transparent species such as the white crucian carps, a transparent skin is required indeed to have such iridescence in live species. The ghost catfish skin is of a plywood structure of collagen fibrils, which allows more than 90% of the incident light to pass directly into the muscles and the diffracted light to exit the body. Our findings could also potentially explain the iridescence in other transparent aquatic species, including the eel larvae (Leptocephalus) and the icefishes (Salangidae).


Subject(s)
Catfishes , Sarcomeres , Animals , Iridescence , Myofibrils , Swimming
17.
Proc Natl Acad Sci U S A ; 120(9): e2219346120, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36812205

ABSTRACT

Titin is a molecular spring in parallel with myosin motors in each muscle half-sarcomere, responsible for passive force development at sarcomere length (SL) above the physiological range (>2.7 µm). The role of titin at physiological SL is unclear and is investigated here in single intact muscle cells of the frog (Rana esculenta), by combining half-sarcomere mechanics and synchrotron X-ray diffraction in the presence of 20 µM para-nitro-blebbistatin, which abolishes the activity of myosin motors and maintains them in the resting state even during activation of the cell by electrical stimulation. We show that, during cell activation at physiological SL, titin in the I-band switches from an SL-dependent extensible spring (OFF-state) to an SL-independent rectifier (ON-state) that allows free shortening while resisting stretch with an effective stiffness of ~3 pN nm-1 per half-thick filament. In this way, I-band titin efficiently transmits any load increase to the myosin filament in the A-band. Small-angle X-ray diffraction signals reveal that, with I-band titin ON, the periodic interactions of A-band titin with myosin motors alter their resting disposition in a load-dependent manner, biasing the azimuthal orientation of the motors toward actin. This work sets the stage for future investigations on scaffold and mechanosensing-based signaling functions of titin in health and disease.


Subject(s)
Actin Cytoskeleton , Muscle, Skeletal , Connectin , Muscle, Skeletal/physiology , Sarcomeres/physiology , Myosins/physiology , Muscle Contraction
18.
Proc Natl Acad Sci U S A ; 120(47): e2315820120, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37956287

ABSTRACT

Actin is a highly expressed protein in eukaryotic cells and is essential for numerous cellular processes. In particular, efficient striated muscle contraction is dependent upon the precise regulation of actin-based thin filament structure and function. Alterations in the lengths of actin-thin filaments can lead to the development of myopathies. Leiomodins and tropomodulins are members of an actin-binding protein family that fine-tune thin filament lengths, and their dysfunction is implicated in muscle diseases. An Lmod3 mutation [G326R] was previously identified in patients with nemaline myopathy (NM), a severe skeletal muscle disorder; this residue is conserved among Lmod and Tmod isoforms and resides within their homologous leucine-rich repeat (LRR) domain. We mutated this glycine to arginine in Lmod and Tmod to determine the physiological function of this residue and domain. This G-to-R substitution disrupts Lmod and Tmod's LRR domain structure, altering their binding interface with actin and destroying their abilities to regulate thin filament lengths. Additionally, this mutation renders Lmod3 nonfunctional in vivo. We found that one single amino acid is essential for folding of Lmod and Tmod LRR domains, and thus is essential for the opposing actin-regulatory functions of Lmod (filament elongation) and Tmod (filament shortening), revealing a mechanism underlying the development of NM.


Subject(s)
Actins , Myopathies, Nemaline , Humans , Actins/metabolism , Tropomodulin/genetics , Tropomodulin/metabolism , Myopathies, Nemaline/genetics , Myopathies, Nemaline/metabolism , Muscle Proteins/metabolism , Actin Cytoskeleton/genetics , Actin Cytoskeleton/metabolism , Sarcomeres/genetics , Sarcomeres/metabolism , Mutation , Muscle, Skeletal/metabolism
19.
Proc Natl Acad Sci U S A ; 120(51): e2314920120, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38091294

ABSTRACT

Mutations in atrial-enriched genes can cause a primary atrial myopathy that can contribute to overall cardiovascular dysfunction. MYBPHL encodes myosin-binding protein H-like (MyBP-HL), an atrial sarcomere protein that shares domain homology with the carboxy-terminus of cardiac myosin-binding protein-C (cMyBP-C). The function of MyBP-HL and the relationship between MyBP-HL and cMyBP-C is unknown. To decipher the roles of MyBP-HL, we used structured illumination microscopy, immuno-electron microscopy, and mass spectrometry to establish the localization and stoichiometry of MyBP-HL. We found levels of cMyBP-C, a major regulator of myosin function, were half as abundant compared to levels in the ventricle. In genetic mouse models, loss of MyBP-HL doubled cMyBP-C abundance in the atria, and loss of cMyBP-C doubled MyBP-HL abundance in the atria. Structured illumination microscopy showed that both proteins colocalize in the C-zone of the A-band, with MyBP-HL enriched closer to the M-line. Immuno-electron microscopy of mouse atria showed MyBP-HL strongly localized 161 nm from the M-line, consistent with localization to the third 43 nm repeat of myosin heads. Both cMyBP-C and MyBP-HL had less-defined sarcomere localization in the atria compared to ventricle, yet areas with the expected 43 nm repeat distance were observed for both proteins. Isometric force measurements taken from control and Mybphl null single atrial myofibrils revealed that loss of Mybphl accelerated the linear phase of relaxation. These findings support a mechanism where MyBP-HL regulates cMyBP-C abundance to alter the kinetics of sarcomere relaxation in atrial sarcomeres.


Subject(s)
Carrier Proteins , Myocytes, Cardiac , Mice , Animals , Myocytes, Cardiac/metabolism , Carrier Proteins/metabolism , Protein Binding/genetics , Sarcomeres/metabolism , Myosins/genetics , Myosins/metabolism , Myocardium/metabolism
20.
Proc Natl Acad Sci U S A ; 120(19): e2213696120, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37126682

ABSTRACT

To better understand the genetic basis of heart disease, we identified a variant in the Flightless-I homolog (FLII) gene that generates a R1243H missense change and predisposes to cardiac remodeling across multiple previous human genome-wide association studies (GWAS). Since this gene is of unknown function in the mammalian heart we generated gain- and loss-of-function genetically altered mice, as well as knock-in mice with the syntenic R1245H amino acid substitution, which showed that Flii protein binds the sarcomeric actin thin filament and influences its length. Deletion of Flii from the heart, or mice with the R1245H amino acid substitution, show cardiomyopathy due to shortening of the actin thin filaments. Mechanistically, Flii is a known actin binding protein that we show associates with tropomodulin-1 (TMOD1) to regulate sarcomere thin filament length. Indeed, overexpression of leiomodin-2 in the heart, which lengthens the actin-containing thin filaments, partially rescued disease due to heart-specific deletion of Flii. Collectively, the identified FLII human variant likely increases cardiomyopathy risk through an alteration in sarcomere structure and associated contractile dynamics, like other sarcomere gene-based familial cardiomyopathies.


Subject(s)
Actins , Cardiomyopathies , Humans , Animals , Mice , Actins/metabolism , Sarcomeres/metabolism , Genome-Wide Association Study , Actin Cytoskeleton/metabolism , Cardiomyopathies/metabolism , Mammals/genetics , Microfilament Proteins/metabolism , Trans-Activators/metabolism , Tropomodulin/metabolism , Cytoskeletal Proteins/metabolism , Muscle Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL