Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 603
Filter
Add more filters

Publication year range
1.
J Biol Chem ; 299(11): 105325, 2023 11.
Article in English | MEDLINE | ID: mdl-37805141

ABSTRACT

In multicellular organisms, a variety of lipid-protein particles control the systemic flow of triacylglycerides, cholesterol, and fatty acids between cells in different tissues. The chemical modification by oxidation of these particles can trigger pathological responses, mediated by a group of membrane proteins termed scavenger receptors. The lectin-like oxidized low-density lipoprotein (LOX-1) scavenger receptor binds to oxidized low-density lipoprotein (oxLDL) and mediates both signaling and trafficking outcomes. Here, we identified five synthetic proteins termed Affimers from a phage display library, each capable of binding recombinant LOX-1 extracellular (oxLDL-binding) domain with high specificity. These Affimers, based on a phytocystatin scaffold with loop regions of variable sequence, were able to bind to the plasma membrane of HEK293T cells exclusively when human LOX-1 was expressed. Binding and uptake of fluorescently labeled oxLDL by the LOX-1-expressing cell model was inhibited with subnanomolar potency by all 5 Affimers. ERK1/2 activation, stimulated by oxLDL binding to LOX-1, was also significantly inhibited (p < 0.01) by preincubation with LOX-1-specific Affimers, but these Affimers had no direct agonistic effect. Molecular modeling indicated that the LOX-1-specific Affimers bound predominantly via their variable loop regions to the surface of the LOX-1 lectin-like domain that contains a distinctive arrangement of arginine residues previously implicated in oxLDL binding, involving interactions with both subunits of the native, stable scavenger receptor homodimer. These data provide a new class of synthetic tools to probe and potentially modulate the oxLDL/LOX-1 interaction that plays an important role in vascular disease.


Subject(s)
MAP Kinase Signaling System , Scavenger Receptors, Class E , Humans , Scavenger Receptors, Class E/genetics , Scavenger Receptors, Class E/chemistry , Scavenger Receptors, Class E/metabolism , HEK293 Cells , Lipoproteins, LDL/metabolism , Receptors, Scavenger/metabolism , Lectins/metabolism
2.
Arch Biochem Biophys ; 752: 109870, 2024 02.
Article in English | MEDLINE | ID: mdl-38141905

ABSTRACT

Our previous studies have shown that lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1) is expressed in liver sinusoidal endothelial cells, and oxidized low-density lipoprotein induces liver sinusoidal dysfunction and defenestration through the LOX-1/ROS/NF-kB pathway, revealing that LOX-1 can mediate liver sinusoidal barrier function, involved in the regulation of non-alcoholic fatty liver disease. Here, we investigated whether, in the context of bone metabolic diseases, LOX-1 could affect bone quality and type H blood vessels in diabetic mice. We used db/db mice as model and found that LOX-1 knockdown can ameliorate bone quality and type H blood vessel generation in db/db mice. This further verifies our hypothesis that LOX-1 is involved in the regulation of bone quality and type H blood vessel homeostasis, thus inhibiting osteoporosis progression in db/db mice.


Subject(s)
Diabetes Mellitus, Experimental , Animals , Mice , Diabetes Mellitus, Experimental/metabolism , Endothelial Cells/metabolism , Lipoproteins, LDL/metabolism , NF-kappa B/metabolism , Scavenger Receptors, Class E/genetics , Scavenger Receptors, Class E/metabolism
3.
Exp Eye Res ; 238: 109727, 2024 01.
Article in English | MEDLINE | ID: mdl-37972749

ABSTRACT

Obesity is a significant health concern that leads to impaired vascular function and subsequent abnormalities in various organs. The impact of obesity on ocular blood vessels, however, remains largely unclear. In this study, we examined the hypothesis that obesity induced by high-fat diet produces vascular endothelial dysfunction in the ophthalmic artery. Mice were subjected to a high-fat diet for 20 weeks, while age-matched controls were maintained on a standard diet. Reactivity of isolated ophthalmic artery segments was assessed in vitro. Reactive oxygen species (ROS) were quantified in cryosections by dihydroethidium (DHE) staining. Redox gene expression was determined in ophthalmic artery explants by real-time PCR. Furthermore, the expression of nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2), the receptor for advanced glycation end products (RAGE), and of the lectin-like oxidized low-density-lipoprotein receptor-1 (LOX-1) was determined in cryosections using immunofluorescence microscopy. Ophthalmic artery segments from mice on a high-fat diet exhibited impaired vasodilation responses to the endothelium-dependent vasodilator acetylcholine, while endothelium-independent responses to nitroprusside remained preserved. DHE staining intensity in the vascular wall was notably stronger in mice on a high-fat diet. Messenger RNA expression for NOX2 was elevated in the ophthalmic artery of mice subjected to high fat diet. Likewise, immunostainings revealed increased expression of NOX2 and of RAGE, but not of LOX-1. These findings suggest that a high-fat diet triggers endothelial dysfunction by inducing oxidative stress in the ophthalmic artery via involvement of RAGE and NOX2.


Subject(s)
Diet, High-Fat , Ophthalmic Artery , Vascular Diseases , Animals , Mice , Diet, High-Fat/adverse effects , Endothelium, Vascular/metabolism , Obesity , Ophthalmic Artery/metabolism , Oxidative Stress/physiology , Reactive Oxygen Species/metabolism , Scavenger Receptors, Class E/genetics , Scavenger Receptors, Class E/metabolism , Vascular Diseases/metabolism , Vasodilation
4.
Bioorg Med Chem Lett ; 106: 129762, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38649117

ABSTRACT

Lipids play an important role in varying vital cellular processes including cell growth and division. Elevated levels of low-density lipoprotein (LDL) and oxidized-LDL (ox-LDL), and overexpression of the corresponding receptors including LDL receptor (LDLR), lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), and cluster of differentiation 36 (CD36), have shown strong correlations with different facets of carcinogenesis including proliferation, invasion, and angiogenesis. Furthermore, a high serum level of LOX-1 is considered as a poor prognostic factor in many types of cancer including colorectal cancer. Ox-LDL could contribute to cancer progression and metastasis through endothelial-to-mesenchymal transition (EMT) and autophagy. Thus, many studies have shed light on the significant role of ox-LDL as a potential therapeutic target for cancer therapy. In various repurposing approaches, anti-dyslipidemia agents, phytochemicals, autophagy modulators as well as recently developed ldl-like nanoparticles have been investigated as potential tumor therapeutic agents by targeting oxidized-LDL/LOX-1 pathways. Herein, we reviewed the role of oxidized-LDL and LOX-1 in cancer progression, invasion, metastasis, and also cancer-associated angiogenesis. Moreover, we addressed therapeutic utility of several compounds that proved to be capable of targeting the metabolic moieties in cancer. This review provides insights on the potential impact of targeting LDL and ox-LDL in cancer therapy and their future biomedical implementations.


Subject(s)
Lipoproteins, LDL , Neoplasms , Humans , Lipoproteins, LDL/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Scavenger Receptors, Class E/metabolism , Scavenger Receptors, Class E/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Animals
5.
BMC Cardiovasc Disord ; 24(1): 231, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38679696

ABSTRACT

BACKGROUND: Oxidized low-density lipoprotein (ox-LDL) can initiate and affect almost all atherosclerotic events including endothelial dysfunction. In this text, the role and underlying molecular basis of procyanidin B2 (PCB2) with potential anti-oxidant and anti-inflammatory activities in ox-LDL-induced HUVEC injury were examined. METHODS: HUVECs were treated with ox-LDL in the presence or absence of PCB2. Cell viability and apoptotic rate were examined by CCK-8 assay and flow cytometry, respectively. The mRNA and protein levels of genes were tested by RT-qPCR and western blot assays, respectively. Potential downstream targets and pathways of apple procyanidin oligomers were examined by bioinformatics analysis for the GSE9647 dataset. The effect of PCB2 on THP-1 cell migration was examined by recruitment assay. The effect of PCB2 on oxidative stress was assessed by reactive oxygen species (ROS) level, malondialdehyde (MDA) content, and mitochondrial membrane potential (MMP). RESULTS: ox-LDL reduced cell viability, induced cell apoptosis, and facilitated the expression of oxidized low-density lipoprotein receptor 1 (LOX-1), C-C motif chemokine ligand 2 (MCP-1), vascular cell adhesion protein 1 (VCAM-1) in HUVECs. PCB2 alleviated ox-LDL-induced cell injury in HUVECs. Apple procyanidin oligomers triggered the differential expression of 592 genes in HUVECs (|log2fold-change| > 0.58 and adjusted p-value < 0.05). These dysregulated genes might be implicated in apoptosis, endothelial cell proliferation, inflammation, and monocyte chemotaxis. PCB2 inhibited C-X-C motif chemokine ligand 1/8 (CXCL1/8) expression and THP-1 cell recruitment in ox-LDL-stimulated HUVECs. PCB2 inhibited ox-LDL-induced oxidative stress and nuclear factor kappa-B (NF-κB) activation in HUVECs. CONCLUSION: PCB2 weakened ox-LDL-induced cell injury, inflammation, monocyte recruitment, and oxidative stress by inhibiting the NF-κB pathway in HUVECs.


Subject(s)
Anti-Inflammatory Agents , Apoptosis , Biflavonoids , Catechin , Human Umbilical Vein Endothelial Cells , Lipoproteins, LDL , NF-kappa B , Oxidative Stress , Proanthocyanidins , Signal Transduction , Humans , Lipoproteins, LDL/toxicity , Catechin/pharmacology , Proanthocyanidins/pharmacology , Oxidative Stress/drug effects , Biflavonoids/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/pathology , Signal Transduction/drug effects , NF-kappa B/metabolism , Apoptosis/drug effects , Anti-Inflammatory Agents/pharmacology , Monocytes/drug effects , Monocytes/metabolism , Monocytes/pathology , Antioxidants/pharmacology , THP-1 Cells , Chemotaxis, Leukocyte/drug effects , Reactive Oxygen Species/metabolism , Scavenger Receptors, Class E/metabolism , Scavenger Receptors, Class E/genetics
6.
Int J Mol Sci ; 25(10)2024 May 12.
Article in English | MEDLINE | ID: mdl-38791315

ABSTRACT

LOX-1, ORL-1, or lectin-like oxidized low-density lipoprotein receptor 1 is a transmembrane glycoprotein that binds and internalizes ox-LDL in foam cells. LOX-1 is the main receptor for oxidized low-density lipoproteins (ox-LDL). The LDL comes from food intake and circulates through the bloodstream. LOX-1 belongs to scavenger receptors (SR), which are associated with various cardiovascular diseases. The most important and severe of these is the formation of atherosclerotic plaques in the intimal layer of the endothelium. These plaques can evolve into complicated thrombi with the participation of fibroblasts, activated platelets, apoptotic muscle cells, and macrophages transformed into foam cells. This process causes changes in vascular endothelial homeostasis, leading to partial or total obstruction in the lumen of blood vessels. This obstruction can result in oxygen deprivation to the heart. Recently, LOX-1 has been involved in other pathologies, such as obesity and diabetes mellitus. However, the development of atherosclerosis has been the most relevant due to its relationship with cerebrovascular accidents and heart attacks. In this review, we will summarize findings related to the physiologic and pathophysiological processes of LOX-1 to support the detection, diagnosis, and prevention of those diseases.


Subject(s)
Cardiovascular Diseases , Scavenger Receptors, Class E , Humans , Scavenger Receptors, Class E/metabolism , Scavenger Receptors, Class E/genetics , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/etiology , Animals , Lipoproteins, LDL/metabolism , Atherosclerosis/metabolism , Atherosclerosis/pathology
7.
Curr Opin Lipidol ; 34(4): 147-155, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37171285

ABSTRACT

PURPOSE OF REVIEW: LDL in its oxidized form, or 'oxLDL', is now generally acknowledged to be highly proatherogenic and to play a significant role in atherosclerotic plaque formation. Therefore, there has been increasing interest in understanding the significance of oxLDL and its receptors in different phases of atherosclerosis, leading to the accumulation of additional data at the cellular, structural, and physiological levels. This review focuses on the most recent discoveries about these receptors and how they influence lipid absorption, metabolism, and inflammation in various cell types. RECENT FINDINGS: Two crystal structures of lectin-like oxLDL receptor-1 (LOX-1), one with a small molecule inhibitor and the other with a monoclonal antibody have been published. We recently demonstrated that the 'surface site' of LOX1, adjacent to the positively charged 'basic spine region' that facilitates oxLDL binding, is a targetable site for drug development. Further, recent human studies showed that soluble LOX-1 holds potential as a biomarker for cardiovascular disease diagnosis, prognosis, and assessing the efficacy of therapy. SUMMARY: Receptor-mediated oxLDL uptake results in cellular dysfunction of various cell types involved in atherogenesis and plaque development. The current advancements clearly demonstrate that targeting oxLDL-LOX-1 axis may lead to development of future therapeutics for the treatment of atherosclerotic cardiovascular and cerebrovascular diseases.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Humans , Receptors, Oxidized LDL , Scavenger Receptors, Class E/metabolism , Atherosclerosis/metabolism , Lipoproteins, LDL/metabolism , Inflammation , Receptors, LDL
8.
Cardiovasc Diabetol ; 22(1): 293, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37891556

ABSTRACT

OBJECTIVE: Diabetic kidney disease (DKD) is characterized by the abnormal deposition of oxidized low-density lipoprotein (ox-LDL), which contributes to podocyte damage. Klotho, an aging suppressor that plays a critical role in protecting podocytes in DKD, is mainly expressed in kidney tubular epithelium and secreted in the blood. However, it has not been established whether Klotho can alleviate podocyte injury by inhibiting renal ox-LDL deposition, and the potential molecular mechanisms require further investigation. METHODS: We conducted a comprehensive analysis of serum and kidney biopsy samples obtained from patients diagnosed with DKD. Additionally, to explore the underlying mechanism of Klotho in the deposition of ox-LDL in the kidneys, we employed a mouse model of DKD with the Klotho genotype induced by streptozotocin (STZ). Furthermore, we conducted meticulous in vitro experiments on podocytes to gain further insights into the specific role of Klotho in the deposition of ox-LDL within the kidney. RESULTS: Our groundbreaking study unveiled the remarkable ability of the soluble form of Klotho to effectively inhibit high glucose-induced ox-LDL deposition in podocytes affected by DKD. Subsequent investigations elucidated that Klotho achieved this inhibition by reducing the expression of the insulin/insulin-like growth factor 1 receptor (IGF-1R), consequently leading to a decrease in the expression of Ras-related C3 botulinum toxin substrate 1 (RAC1) and an enhancement of mitochondrial function. Ultimately, this series of events culminated in a significant reduction in the expression of the oxidized low-density lipoprotein receptor (OLR1), thereby resulting in a notable decrease in renal ox-LDL deposition in DKD. CONCLUSION: Our findings suggested that Klotho had the potential to mitigate podocyte injury and reduced high glucose-induced ox-LDL deposition in glomerulus by modulating the IGF-1R/RAC1/OLR1 signaling. These results provided valuable insights that could inform the development of novel strategies for diagnosing and treating DKD.


Subject(s)
Diabetic Nephropathies , Klotho Proteins , Podocytes , Animals , Humans , Mice , Diabetes Mellitus/metabolism , Diabetic Nephropathies/etiology , Diabetic Nephropathies/prevention & control , Glucose/metabolism , Kidney/metabolism , Lipoproteins, LDL/metabolism , Podocytes/metabolism , Podocytes/pathology , rac1 GTP-Binding Protein/metabolism , rac1 GTP-Binding Protein/pharmacology , Scavenger Receptors, Class E/metabolism , Klotho Proteins/metabolism , Signal Transduction
9.
Inflamm Res ; 72(12): 2145-2153, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37874359

ABSTRACT

OBJECTIVE AND DESIGN: 15-Lipoxygenase-1 (15-LOX-1) catalyzes the biosynthesis of many anti-inflammatory and immunomodulatory lipid mediators and was reported to have protective properties in several inflammatory conditions, including osteoarthritis (OA). This study was designed to evaluate the expression of 15-LOX-1 in cartilage from normal donors and patients with OA, and to determine whether it is regulated by DNA methylation. METHODS: Cartilage samples were obtained at autopsy from normal knee joints and from OA-affected joints at the time of total knee joint replacement surgery. The expression of 15-LOX-1 was evaluated using real-time polymerase chain reaction (PCR). The role of DNA methylation in 15-LOX-1 expression was assessed using the DNA methyltransferase inhibitor 5-Aza-2'-desoxycytidine (5-Aza-dC). The effect of CpG methylation on 15-LOX-1 promoter activity was evaluated using a CpG-free luciferase vector. The DNA methylation status of the 15-LOX-1 promoter was determined by pyrosequencing. RESULTS: Expression of 15-LOX-1 was upregulated in OA compared to normal cartilage. Treatment with 5-Aza-dC increased 15-LOX-1 mRNA levels in chondrocytes, and in vitro methylation decreased 15-LOX-1 promoter activity. There was no difference in the methylation status of the 15-LOX-1 gene promoter between normal and OA cartilage. CONCLUSION: The expression level of 15-LOX-1 was elevated in OA cartilage, which may be part of a repair process. The upregulation of 15-LOX-1 in OA cartilage was not associated with the methylation status of its promoter, suggesting that other mechanisms are involved in its upregulation.


Subject(s)
Arachidonate 15-Lipoxygenase , Osteoarthritis , Humans , Arachidonate 15-Lipoxygenase/genetics , Arachidonate 15-Lipoxygenase/metabolism , Chondrocytes/metabolism , DNA Methylation , Epigenesis, Genetic , Osteoarthritis/genetics , Osteoarthritis/metabolism , Scavenger Receptors, Class E/genetics , Scavenger Receptors, Class E/metabolism
10.
Biochemistry (Mosc) ; 88(12): 2125-2136, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38462455

ABSTRACT

Expression of LOX-1 and NOX1 genes in the human umbilical vein endotheliocytes (HUVECs) cultured in the presence of low-density lipoproteins (LDL) modified with various natural dicarbonyls was investigated for the first time. It was found that among the investigated dicarbonyl-modified LDLs (malondialdehyde (MDA)-modified LDLs, glyoxal-modified LDLs, and methylglyoxal-modified LDLs), the MDA-modified LDLs caused the greatest induction of the LOX-1 and NOX1 genes, as well as of the genes of antioxidant enzymes and genes of proapoptotic factors in HUVECs. Key role of the dicarbonyl-modified LDLs in the molecular mechanisms of vascular wall damage and endothelial dysfunction is discussed.


Subject(s)
Endothelial Cells , Lipoproteins, LDL , Humans , Lipoproteins, LDL/metabolism , Umbilical Veins/metabolism , Endothelial Cells/metabolism , Scavenger Receptors, Class E/genetics , Scavenger Receptors, Class E/metabolism , Gene Expression , Cells, Cultured , NADPH Oxidase 1/genetics , NADPH Oxidase 1/metabolism
11.
J Orthop Sci ; 28(3): 669-676, 2023 May.
Article in English | MEDLINE | ID: mdl-35123844

ABSTRACT

BACKGROUND: Patients with lumbar spinal canal stenosis (LSS) often have peripheral arterial disease and aortic disease based on atherosclerosis. Oxidized LDL, which is clinically involved in the development of atherosclerosis, may also influence LF hypertrophy, but the function of the oxidized low-density lipoprotein (LDL)/lectin-type oxidized LDL receptor 1 (LOX-1) system in LF hypertrophy is unknown. We aimed to elucidate the potential involvement of oxidized LDL/LOX-1 system in ligamentum flavum (LF) hypertrophy. METHODS: A total of 43 samples were collected from LF tissues of the patients who underwent posterior lumbar spinal surgery. Immunohistochemistry for LOX-1 was performed using human LF samples. We treated the cells in vitro with inflammatory cytokines TNF-α and IL-1ß, oxidized LDL, and simvastatin. The expressions of LOX-1 and LF hypertrophy markers including type I collagen, Type III collagen, and COX-2 were assessed by real-time RT-PCR and immunocytochemistry. Phosphorylation of MAPKs and NF-κb was evaluated by Western blot after treatment with TNF-α, IL-1ß, oxidized LDL, and simvastatin. RESULTS: A significant weak correlation was observed between the number of positive cells of LOX-1 and cross-sectional area of LF on preoperative axial magnetic resonance imaging. In functional analysis, simvastatin treatment neutralized the oxidized LDL-mediated induction of mRNA expressions of LF hypertrophy markers. Western blot analysis showed that oxidized LDL as well as TNF-α and IL-1ß activated the signaling of MAPKs and NF-κb in LF cells, and that simvastatin treatment reduced the phosphorylation of all signaling. The TNF-α and IL-1ß treatments increased both mRNA and protein expression of LOX-1 in LF cells. CONCLUSION: We found a link between the oxidized LDL/LOX-1 system and LF hypertrophy. In addition, our in vitro analysis indicate that oxidized LDL may affect LF hypertrophy through signaling of MAPKs. Our results suggest that the oxidized LDL/LOX-1 system may be a potential therapeutic target for LSS.


Subject(s)
Ligamentum Flavum , Spinal Stenosis , Humans , NF-kappa B/metabolism , Ligamentum Flavum/pathology , Tumor Necrosis Factor-alpha/metabolism , Lipoproteins, LDL/metabolism , Spinal Stenosis/pathology , Hypertrophy/pathology , RNA, Messenger/metabolism , Scavenger Receptors, Class E/metabolism , Lumbar Vertebrae/pathology
12.
Int J Mol Sci ; 24(6)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36982155

ABSTRACT

The oxidized low-density lipoprotein receptor 1 (LOX-1) is one of the most important receptors for modified LDLs, such as oxidated (oxLDL) and acetylated (acLDL) low-density lipoprotein. LOX-1 and oxLDL are fundamental in atherosclerosis, where oxLDL/LOX1 promotes ROS generation and NF-κB activation inducing the expression of IL-6, a STAT3 activator. Furthermore, LOX-1/oxLDL function has been associated with other diseases, such as obesity, hypertension, and cancer. In prostate cancer (CaP), LOX-1 overexpression is associated with advanced stages, and its activation by oxLDL induces an epithelial-mesenchymal transition, increasing angiogenesis and proliferation. Interestingly, enzalutamide-resistant CaP cells increase the uptake of acLDL. Enzalutamide is an androgen receptor (AR) antagonist for castration-resistant prostate cancer (CRPC) treatment, and a high percentage of patients develop a resistance to this drug. The decreased cytotoxicity is promoted in part by STAT3 and NF-κB activation that induces the secretion of the pro-inflammatory program and the expression of AR and its splicing variant AR-V7. Here, we demonstrate for the first time that oxLDL/LOX-1 increases ROS levels and activates NF-κB, inducing IL-6 secretion and the activation of STAT3 in CRPC cells. Furthermore, oxLDL/LOX1 increases AR and AR-V7 expression and decreases enzalutamide cytotoxicity in CRPC. Thus, our investigation suggests that new factors associated with cardiovascular pathologies, such as LOX-1/oxLDL, may also promote important signaling axes for the progression of CRPC and its resistance to drugs used for its treatment.


Subject(s)
Antineoplastic Agents , Prostatic Neoplasms, Castration-Resistant , Male , Humans , NF-kappa B/metabolism , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Receptors, Androgen/metabolism , Reactive Oxygen Species/pharmacology , Interleukin-6/genetics , Interleukin-6/pharmacology , Antineoplastic Agents/pharmacology , Nitriles/pharmacology , Lipoproteins, LDL/pharmacology , Signal Transduction , Androgen Receptor Antagonists/pharmacology , Scavenger Receptors, Class E/genetics , Scavenger Receptors, Class E/metabolism , Cell Line, Tumor
13.
J Mol Cell Cardiol ; 162: 110-118, 2022 01.
Article in English | MEDLINE | ID: mdl-34555408

ABSTRACT

It is well known that lectin-like oxidized low-density lipoprotein (ox-LDL) and its receptor LOX-1, angiotensin II (AngII) and its type 1 receptor (AT1-R) play an important role in the development of cardiac hypertrophy. However, the molecular mechanism is not clear. In this study, we found that ox-LDL-induced cardiac hypertrophy was suppressed by inhibition of LOX-1 or AT1-R but not by AngII inhibition. These results suggest that the receptors LOX-1 and AT1-R, rather than AngII, play a key role in the role of ox-LDL. The same results were obtained in mice lacking endogenous AngII and their isolated cardiomyocytes. Ox-LDL but not AngII could induce the binding of LOX-1 and AT1-R; inhibition of LOX-1 or AT1-R but not AngII could abolish the binding of these two receptors. Overexpression of wild type LOX-1 with AT1-R enhanced ox-LDL-induced binding of two receptors and phosphorylation of ERKs, however, transfection of LOX-1 dominant negative mutant (lys266ala / lys267ala) or an AT1-R mutant (glu257ala) not only reduced the binding of two receptors but also inhibited the ERKs phosphorylation. Phosphorylation of ERKs induced by ox-LDL in LOX-1 and AT1-R-overexpression cells was abrogated by an inhibitor of Gq protein rather than Jak2, Rac1 or RhoA. Genetically, an AT1-R mutant lacking Gq protein coupling ability inhibited ox-LDL induced ERKs phosphorylation. Furthermore, through bimolecular fluorescence complementation analysis, we confirmed that ox-LDL rather than AngII stimulation induced the direct binding of LOX-1 and AT1-R. We conclude that direct binding of LOX-1 and AT1-R and the activation of downstream Gq protein are important mechanisms of ox-LDL-induced cardiomyocyte hypertrophy.


Subject(s)
Angiotensin II , Scavenger Receptors, Class E , Angiotensin II/metabolism , Angiotensin II/pharmacology , Animals , Cells, Cultured , Lipoproteins, LDL/metabolism , Mice , Myocytes, Cardiac/metabolism , Receptors, LDL/metabolism , Receptors, Oxidized LDL/metabolism , Scavenger Receptors, Class E/genetics , Scavenger Receptors, Class E/metabolism
14.
Int J Cancer ; 151(6): 944-956, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35608341

ABSTRACT

Epidemiological relationships between cancer and cardiovascular diseases have been reported, but a molecular basis remains unclear. Some proteoglycans that strongly bind low-density-lipoprotein (LDL) are abundant both in atherosclerotic regions and in high metastatic-tumor tissue. LDL retention is crucial for the initiation of atherosclerosis, although its contribution to malignancy of cancer is not known. In our study, we show the importance of the accumulation of LDL in tumor metastasis. We demonstrated that high metastatic-tumor tissue contains high amounts of LDL and forms more oxidized LDL (ox-LDL). Interestingly, lectin-like ox-LDL receptor 1 (LOX-1), a receptor for ox-LDL and a recognized key molecule for cardiovascular diseases, was highly expressed in tumor endothelial cells (TECs). Neutrophils are important for ox-LDL formation. Since we observed the accumulation and activation of neutrophils in HM-tumors, we evaluated the involvement of LOX-1 in neutrophil migration and activation. LOX-1 induced neutrophil migration via CCL2 secretion from TECs, which was enhanced by ox-LDL. Finally, we show genetic manipulation of LOX-1 expression in TECs or tumor stroma tended to reduce lung metastasis. Thus, the LOX-1/ox-LDL axis in TECs may lead to the formation of a high metastatic-tumor microenvironment via attracting neutrophils.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Endothelial Cells , Lipoproteins, LDL , Neoplasms , Neutrophils , Scavenger Receptors, Class E , Cells, Cultured , Endothelial Cells/metabolism , Endothelial Cells/pathology , Humans , Lipoproteins, LDL/metabolism , Neoplasms/metabolism , Neutrophils/metabolism , Scavenger Receptors, Class E/genetics , Scavenger Receptors, Class E/metabolism , Tumor Microenvironment
15.
Mol Med ; 28(1): 26, 2022 03 02.
Article in English | MEDLINE | ID: mdl-35236285

ABSTRACT

OBJECTIVE: Oxidized Low-Density-Lipoprotein (Ox-LDL) is the core factor in the development of atherosclerosis. However, there are few therapies aimed at eliminating Ox-LDL. Here in this study, we investigate whether the ectopically expression of the lectin-like oxidized low density lipoprotein receptor (LOX-1) in the liver could lead to the elimination of circulating Ox-LDL and prevent the deposition in the vascular wall, thereby alleviating the progression of atherosclerosis. METHODS: Apolipoprotein E-deficient (ApoE-/-) mice were randomly divided into three groups, the control group, the AAV8-TBG-eGFP group (eGFP group) and AAV8-TBG-LOX-1 group (LOX-1 group). In the LOX-1 group, mice received an injection of virus dilution AAV8-TBG-LOX-1 (1.16 × 1011 virus genome (v.g)/animal/100 µl). The mice in the control group and eGFP group received the same amount of sterile saline and AAV8-TBG-eGFP virus dilution injections. The expression of LOX-1 in the liver was detected by immunofluorescent, western blot and immunohistochemistry. The safety of the virus was assessed by hematoxylin-eosin (H&E) staining, blood biochemical analyses and immunofluorescent. The function of LOX-1 in the liver was detected by the co-localization of LOX-1 and Dil-labeled Ox-LDL (Dil-Ox-LDL) under laser scanning confocal microscope. The extent of Ox-LDL in plasma was detected by ELISA. Changes in blood lipids were assessed through blood biochemical analysis. The progression of atherosclerotic lesions was detected by Oil red O staining. And the expression of Vascular Cell Adhesion Molecule-1 (VCAM-1) in endothelial cells and the extent and migration of macrophages in atherosclerotic plaque were detected by immunofluorescence staining. The protein expression in liver was assessed by qRT-PCR and western blot. RESULTS: The expression of LOX-1 was stable in liver within 4 weeks. Ectopically expressed LOX-1 in the liver phagocytosed and degraded Ox-LDL and reduced Ox-LDL from circulation but did not have a significant effect on blood lipid levels. After the expression of LOX-1 in liver, Ox-LDL can be cleared by the hepatocytes, thereby reducing VCAM-1 expression in vascular endothelium and the migration of macrophages in plaques, and eventually alleviating the progression of atherosclerosis. Functional expression of LOX-1 in hepatocytes may facilitate the metabolic clearance of Ox-LDL by upregulating the expression of ATP-binding cassette G5 and G8 (ABCG5/G8), which is the primary neutral sterol transporter in hepatobiliary and transintestinal cholesterol excretion. CONCLUSION: Ectopic liver-specific expression of LOX-1 receptor alleviates the progression of atherosclerosis by clearing Ox-LDL from circulation.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Animals , Atherosclerosis/metabolism , Endothelial Cells/metabolism , Lipids , Lipoproteins, LDL/metabolism , Liver/metabolism , Mice , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/pathology , Scavenger Receptors, Class E/genetics , Scavenger Receptors, Class E/metabolism , Vascular Cell Adhesion Molecule-1/metabolism
16.
Biochem Biophys Res Commun ; 623: 59-65, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35872543

ABSTRACT

Lectin-like oxidized low-density lipoprotein (ox-LDL) receptor 1 (LOX-1) is a vital scavenger receptor involved in ox-LDL binding, internalization, and subsequent proatherogenic signaling leading to cellular dysfunction and atherosclerotic plaque formation. Existing data suggest that modulation of ox-LDL - LOX-1 interaction can prevent or slow down atherosclerosis. Therefore, we utilized computational methods such as multi-solvent simulation and characterized two top-ranked druggable sites. Using systematic molecular docking followed by atomistic molecular dynamics simulation, we have identified and shortlisted small molecules from the NCI library that target two key binding sites. We demonstrate, using surface plasmon resonance (SPR), that four of the shortlisted molecules bind one-on-one to the purified C-terminal domain (CTLD) of LOX-1 receptor with high affinity (KD), ranging from 4.9 nM to 20.1 µM. Further, we performed WaterMap analysis to understand the role of individual water molecules in small molecule binding and the LOX-1-ligand complex stability. Our data clearly show that LOX-1 is druggable with small molecules. Our study provides strategies to identify novel inhibitors to attenuate ox-LDL - LOX-1 interaction.


Subject(s)
Atherosclerosis , Lipoproteins, LDL , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Humans , Lipoproteins, LDL/metabolism , Molecular Docking Simulation , Scavenger Receptors, Class E/metabolism
17.
Am J Pathol ; 191(7): 1303-1313, 2021 07.
Article in English | MEDLINE | ID: mdl-33964218

ABSTRACT

Neonatal hypoxic-ischemic encephalopathy (nHIE) is a major neonatal brain injury. Despite therapeutic hypothermia, mortality and sequelae remain severe. The lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is associated with the pathophysiology of nHIE. In this study, morphologic change and microglial activation under the nHIE condition and LOX-1 treatment were investigated. The microglial activity and proliferation were assessed with a novel morphologic method, immunostaining, and quantitative PCR in the rat brains of both nHIE model and anti-LOX-1 treatment. Circumference ratio, the long diameter ratio, the cell area ratio, and the roundness of microglia were calculated. The correlation of the morphologic metrics and microglial activation in nHIE model and anti-LOX-1 treated brains was evaluated. LOX-1 was expressed in activated ameboid and round microglia in the nHIE model rat brain. In the evaluation of microglial activation, the novel morphologic metrics correlated with all scales of the nHIE-damaged and treated brains. While the circumference and long diameter ratios had a positive correlation, the cell area ratio and roundness had a negative correlation. Anti-LOX-1 treatment attenuated morphologic microglial activation and proliferation, and suppressed the subsequent production of inflammatory mediators by microglia. In human nHIE, round microglia and endothelial cells expressed LOX-1. The results indicate that LOX-1 regulates microglial activation in nHIE and anti-LOX-1 treatment attenuates brain injury by suppressing microglial activation.


Subject(s)
Hypoxia-Ischemia, Brain/metabolism , Hypoxia-Ischemia, Brain/pathology , Microglia/metabolism , Scavenger Receptors, Class E/metabolism , Animals , Animals, Newborn , Brain/metabolism , Brain/pathology , Humans , Rats , Rats, Sprague-Dawley
18.
J Cardiovasc Pharmacol ; 79(3): 368-374, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34861664

ABSTRACT

ABSTRACT: Atherosclerosis is a cardiovascular disease that affects a majority of people around the world at old age. Atherosclerosis is slow to develop and challenging to treat. Endothelial dysfunction caused by oxidative stress, inflammation, and other pathological factors drives the process of atherogenesis. LOX-1 is one of the main scavenging receptors for oxidized low-density lipoprotein (ox-LDL) and contributes to atherogenesis by inducing overproduction of reactive oxygen species, increased expression of proinflammatory cytokines, and secretion of cellular adhesion molecules. In addition, activation of LOX-1 inhibits the expression of KLF2, a key protective factor against atherosclerosis. In this study, we investigated the effects of pinitol, and naturally occurring cyclic polyol, on endothelial dysfunction induced by ox-LDL. Our findings show that pinitol revealed a good safety profile, as evidenced by reducing lactate dehydrogenase release in human aortic endothelial cells. In our experiments, pinitol reduced the production of reactive oxygen species and expression of IL-6 and monocyte chemoattractant protein-1 induced by ox-LDL. Pinitol also significantly reduced the attachment of THP-1 monocytes to endothelial cells via downregulation of vascular cellular adhesion molecule-1 and E-selectin. Importantly, we found that pinitol reduced the expression of LOX-1 induced by ox-LDL and rescued the expression of KLF2, which is dependent on ERK5 expression. Together, our findings provide notable evidence that pinitol may have potential implication in the prevention and treatment of atherosclerosis.


Subject(s)
Atherosclerosis , Monocytes , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Atherosclerosis/prevention & control , Cell Adhesion , Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/prevention & control , Inositol/analogs & derivatives , Lipoproteins, LDL/metabolism , Monocytes/metabolism , Reactive Oxygen Species/metabolism , Scavenger Receptors, Class E/metabolism
19.
Surg Endosc ; 36(4): 2643-2652, 2022 04.
Article in English | MEDLINE | ID: mdl-35044516

ABSTRACT

BACKGROUND: Early diagnosis of subclinical cardiovascular disease (CVD) in patients with morbid obesity is important. We investigated the effects of sleeve gastrectomy (SG) on serum soluble lectin-like oxidized low-density lipoprotein receptor-1 (sLOX-1), oxidized LDL (oxLDL), and other metabolic and inflammatory parameters associated with atherosclerosis in patients with morbid obesity. METHODS: Body mass index (BMI) measurements and assays of metabolic and inflammatory markers were taken in patients in an SG surgery group and a healthy control group and compared at baseline and 12 months after SG. Correlations with changes in these parameters and variations in sLOX-1 were analyzed. RESULTS: Metabolic and inflammatory marker values in the surgery (n = 20) and control (n = 20) groups were significantly different at baseline (p < 0.001). The majority of surgery group biomarker levels significantly decreased with mean BMI loss (- 11.8 ± 9.0, p < 0.001) at 12 months, trending toward control group values. Baseline albumin level as well as percentage reductions in oxLDL and the cholesterol retention fraction (CRF) were found to be significantly correlated with percentage reduction in sLOX-1 at 12 months following SG. CONCLUSION: Metabolic and inflammatory biomarkers elevated at baseline significantly decreased after SG weight loss. Weight loss induced by SG may limit endothelial damage by reducing levels of oxLDL and LOX-1 as assessed by sLOX-1. These findings suggest that sLOX-1 may function as a marker of atherosclerotic disease states in patients with morbid obesity and that metabolic/bariatric surgery can play a meaningful role in CVD prevention.


Subject(s)
Cardiovascular Diseases , Obesity, Morbid , Biomarkers , Gastrectomy , Humans , Obesity, Morbid/complications , Obesity, Morbid/surgery , Scavenger Receptors, Class E/metabolism , Weight Loss
20.
Cell Mol Life Sci ; 78(4): 1523-1544, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32666307

ABSTRACT

Naturally occurring point mutations in apolipoprotein A-I (apoA-I), the major protein component of high-density lipoprotein (HDL), may affect plasma HDL-cholesterol levels and cardiovascular risk. Here, we evaluated the effect of human apoA-I mutations L144R (associated with low HDL-cholesterol), L178P (associated with low HDL-cholesterol and increased cardiovascular risk) and A164S (associated with increased cardiovascular risk and mortality without low HDL-cholesterol) on the structural integrity and functions of lipid-free and lipoprotein-associated apoA-I in an effort to explain the phenotypes of subjects carrying these mutations. All three mutants, in lipid-free form, presented structural and thermodynamic aberrations, with apoA-I[L178P] presenting the greatest thermodynamic destabilization. Additionally, apoA-I[L178P] displayed reduced ABCA1-mediated cholesterol efflux capacity. When in reconstituted HDL (rHDL), apoA-I[L144R] and apoA-I[L178P] were more thermodynamically destabilized compared to wild-type apoA-I, both displayed reduced SR-BI-mediated cholesterol efflux capacity and apoA-I[L144R] showed severe LCAT activation defect. ApoA-I[A164S] was thermodynamically unaffected when in rHDL, but exhibited a series of functional defects. Specifically, it had reduced ABCG1-mediated cholesterol and 7-ketocholesterol efflux capacity, failed to reduce ROS formation in endothelial cells and had reduced capacity to induce endothelial cell migration. Mechanistically, the latter was due to decreased capacity of rHDL-apoA-I[A164S] to activate Akt kinase possibly by interacting with endothelial LOX-1 receptor. The impaired capacity of rHDL-apoA-I[A164S] to preserve endothelial function may be related to the increased cardiovascular risk for this mutation. Overall, our structure-function analysis of L144R, A164S and L178P apoA-I mutants provides insights on how HDL-cholesterol levels and/or atheroprotective properties of apoA-I/HDL are impaired in carriers of these mutations.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 1/genetics , Apolipoprotein A-I/genetics , Cardiovascular Diseases/genetics , Cholesterol, HDL/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 1/metabolism , Apolipoprotein A-I/metabolism , Apolipoprotein A-I/ultrastructure , Cardiovascular Diseases/pathology , Cell Movement/genetics , Cholesterol, HDL/metabolism , Cholesterol, HDL/ultrastructure , Endothelial Cells/metabolism , Endothelial Cells/pathology , Heart Disease Risk Factors , Humans , Ketocholesterols/genetics , Ketocholesterols/metabolism , Lipoproteins, HDL/genetics , Lipoproteins, HDL/metabolism , Lipoproteins, HDL/ultrastructure , Mutant Proteins/genetics , Mutant Proteins/metabolism , Mutant Proteins/ultrastructure , Mutation/genetics , Scavenger Receptors, Class E/genetics , Scavenger Receptors, Class E/metabolism , Structure-Activity Relationship , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL