Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 585
Filter
Add more filters

Publication year range
1.
Exp Parasitol ; 256: 108626, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37972848

ABSTRACT

Among all the neglected diseases, schistosomiasis is considered the second most important parasitic infection after malaria. Praziquantel is the most widely used drug for this disease, but its exclusive use may result in the development of drug-resistant schistosomiasis. To increase the control of the disease, new drugs have been developed as alternative treatments, among them 2-(-5-bromo-1-h-indole-3-yl-methylene)-N-(naphthalene-1-ylhydrazine-carbothiamide (LQIT/LT-50), which showed promising schistosomicidal activity in nonclinical studies. However, LQIT/LT-50 presents low solubility in water, resulting in reduced bioavailability. To overcome this solubility problem, the present study aimed to develop LQIT/LT-50 solid dispersions for the treatment of schistosomiasis. Solid dispersions were prepared through the solvent method using Soluplus©, polyethylene glycol (PEG) or polyvinylpyrrolidone (PVP K-30) as hydrophilic carriers. The formulations with the best results in the compatibility tests, aqueous solubility and preliminary stability studies have undergone solubility tests and physicochemical characterizations by Fourier-transform infrared spectroscopy (FTIR), x-ray diffractometry (XRD), exploratory differential calorimetry (DSC), thermogravimetry (TG) and Raman spectroscopy. Finally, the schistosomicidal activity was evaluated in vitro. The phycochemical analyzes showed that when using PVP K-30, there was an interaction between the PVP K-30 and LQIT/LT-50, proving the successful development of the solid dispersion. Furthermore, an increase in the solubility of the new system was observed (LQIT/LT-50:PVP K-30) in addition to the improvement in the in vitro shistosomidal activity at 1:4 (w/w) molar ratio (i.e., 20% drug loading) when compared to LQIT/LT-50 alone. The development of the LQIT/LT-50:PVP K-30 1:4 solid dispersion is encouraging for the future development of new pharmaceutical solid formulations, aiming the schistosomicidal treatment.


Subject(s)
Schistosomiasis , Schistosomicides , Humans , Schistosomicides/pharmacology , Chemistry, Pharmaceutical/methods , Povidone/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Naphthalenes , Water , Indoles/pharmacology , X-Ray Diffraction , Drug Carriers/chemistry
2.
Parasitol Res ; 123(5): 215, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771511

ABSTRACT

Schistosomiasis is a neglected tropical disease associated with considerable morbidity. Praziquantel (PZQ) is effective against adult schistosomes, yet, it has little effect on juvenile stages, and PZQ resistance is emerging. Adopting the drug repurposing strategy as well as assuming enhancing the efficacy and lessening the doses and side effects, the present study aimed to investigate the in vivo therapeutic efficacy of the widely used antiarrhythmic, amiodarone, and diuretic, spironolactone, and combinations of them compared to PZQ. Mice were infected by Schistosoma mansoni "S. mansoni" cercariae (Egyptian strain), then they were divided into two major groups: Early- [3 weeks post-infection (wpi)] and late- [6 wpi] treated. Each group was subdivided into seven subgroups: positive control, PZQ, amiodarone, spironolactone, PZQ combined with amiodarone, PZQ combined with spironolactone, and amiodarone combined with spironolactone-treated groups. Among the early-treated groups, spironolactone had the best therapeutic impact indicated by a 69.4% reduction of total worm burden (TWB), 38.6% and 48.4% reduction of liver and intestine egg load, and a significant reduction of liver granuloma number by 49%. Whereas, among the late-treated groups, amiodarone combined with PZQ was superior to PZQ alone evidenced by 96.1% reduction of TWB with the total disappearance of female and copula in the liver and intestine, 53.1% and 84.9% reduction of liver and intestine egg load, and a significant reduction of liver granuloma number by 67.6%. Comparatively, spironolactone was superior to PZQ and amiodarone in the early treatment phase targeting immature stages, while amiodarone had a more potent effect when combined with PZQ in the late treatment phase targeting mature schistosomes.


Subject(s)
Amiodarone , Disease Models, Animal , Praziquantel , Schistosoma mansoni , Schistosomiasis mansoni , Animals , Schistosomiasis mansoni/drug therapy , Schistosomiasis mansoni/parasitology , Mice , Schistosoma mansoni/drug effects , Praziquantel/therapeutic use , Praziquantel/pharmacology , Amiodarone/therapeutic use , Amiodarone/pharmacology , Female , Spironolactone/therapeutic use , Spironolactone/pharmacology , Schistosomicides/therapeutic use , Schistosomicides/pharmacology , Male , Anthelmintics/therapeutic use , Anthelmintics/pharmacology , Treatment Outcome , Drug Therapy, Combination , Liver/parasitology
3.
Chem Biodivers ; 21(5): e202400491, 2024 May.
Article in English | MEDLINE | ID: mdl-38470945

ABSTRACT

We have evaluated eight p-coumaric acid prenylated derivatives in vitro for their antileishmanial activity against Leishmania amazonensis promastigotes and their antischistosomal activity against Schistosoma mansoni adult worms. Compound 7 ((E)-3,4-diprenyl-4-isoprenyloxycinnamic alcohol) was the most active against L. amazonensis (IC50=45.92 µM) and S. mansoni (IC50=64.25 µM). Data indicated that the number of prenyl groups, the presence of hydroxyl at C9, and a single bond between C7 and C8 are important structural features for the antileishmanial activity of p-coumaric acid prenylated derivatives.


Subject(s)
Antiprotozoal Agents , Coumaric Acids , Leishmania , Parasitic Sensitivity Tests , Schistosoma mansoni , Animals , Schistosoma mansoni/drug effects , Coumaric Acids/pharmacology , Coumaric Acids/chemistry , Leishmania/drug effects , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/chemical synthesis , Structure-Activity Relationship , Prenylation , Propionates/pharmacology , Propionates/chemistry , Molecular Structure , Schistosomicides/pharmacology , Schistosomicides/chemistry , Schistosomicides/chemical synthesis , Dose-Response Relationship, Drug
4.
Molecules ; 29(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731401

ABSTRACT

The burden of human schistosomiasis, a known but neglected tropical disease in Sub-Saharan Africa, has been worrisome in recent years. It is becoming increasingly difficult to tackle schistosomiasis with praziquantel, a drug known to be effective against all Schistosoma species, due to reports of reduced efficacy and resistance. Therefore, this study seeks to investigate the antischistosomal potential of phytochemicals from Azadirachta indica against proteins that have been implicated as druggable targets for the treatment of schistosomiasis using computational techniques. In this study, sixty-three (63) previously isolated and characterized phytochemicals from A. indica were identified from the literature and retrieved from the PubChem database. In silico screening was conducted to assess the inhibitory potential of these phytochemicals against three receptors (Schistosoma mansoni Thioredoxin glutathione reductase, dihydroorotate dehydrogenase, and Arginase) that may serve as therapeutic targets for schistosomiasis treatment. Molecular docking, ADMET prediction, ligand interaction, MMGBSA, and molecular dynamics simulation of the hit compounds were conducted using the Schrodinger molecular drug discovery suite. The results show that Andrographolide possesses a satisfactory pharmacokinetic profile, does not violate the Lipinski rule of five, binds with favourable affinity with the receptors, and interacts with key amino acids at the active site. Importantly, its interaction with dihydroorotate dehydrogenase, an enzyme responsible for the catalysis of the de novo pyrimidine nucleotide biosynthetic pathway rate-limiting step, shows a glide score and MMGBSA of -10.19 and -45.75 Kcal/mol, respectively. In addition, the MD simulation shows its stability at the active site of the receptor. Overall, this study revealed that Andrographolide from Azadirachta indica could serve as a potential lead compound for the development of an anti-schistosomal drug.


Subject(s)
Azadirachta , Dihydroorotate Dehydrogenase , Molecular Docking Simulation , Oxidoreductases Acting on CH-CH Group Donors , Schistosomiasis , Azadirachta/chemistry , Animals , Schistosomiasis/drug therapy , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Humans , Phytochemicals/pharmacology , Phytochemicals/chemistry , Molecular Dynamics Simulation , Schistosoma mansoni/drug effects , Schistosoma mansoni/enzymology , NADH, NADPH Oxidoreductases/antagonists & inhibitors , NADH, NADPH Oxidoreductases/metabolism , Plant Extracts/chemistry , Plant Extracts/pharmacology , Computer Simulation , Schistosomicides/pharmacology , Schistosomicides/chemistry , Schistosomicides/therapeutic use , Multienzyme Complexes/antagonists & inhibitors , Multienzyme Complexes/metabolism , Praziquantel/pharmacology , Praziquantel/chemistry , Praziquantel/therapeutic use
5.
Bioorg Med Chem Lett ; 82: 129164, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36736493

ABSTRACT

For the Schistosoma mansoni flatworm pathogen, we report a structure-activity relationship of 25 derivatives of the N-phenylbenzamide compound, 1 (MMV687807), a Medicines for Malaria Venture compound for which bioactivity was originally identified in 2018. Synthesized compounds were cross-screened against the HEK 293 mammalian cells. Compounds 9 and 11 were identified as fast-acting schistosomicidal compounds whereby adult worm integrity was severely compromised within 1 h. Against HEK 293 mammalian cells, both compounds exhibited high CC50 values (9.8 ± 1.6 and 11.1 ± 0.2 µM respectively) which could translate to comfortable selectivity. When evaluated in a concentration-response format, compound 9 was active in the nanomolar range (EC50 = 80 nM), translating to a selectivity index of 123 over HEK 293 cells. The data encourage the further investigation of N-phenylbenzamides as antischistosomals.


Subject(s)
Schistosomiasis mansoni , Schistosomicides , Animals , Humans , HEK293 Cells , Neglected Diseases , Schistosoma mansoni , Schistosomiasis mansoni/drug therapy , Schistosomicides/pharmacology , Schistosomicides/therapeutic use
6.
Exp Parasitol ; 248: 108455, 2023 May.
Article in English | MEDLINE | ID: mdl-36764643

ABSTRACT

Schistosomiasis is an endemic disease in Brazil. It is important to broaden the treatment options to control and containment of the disease. Thiazolidine derivatives appear as important alternatives to treatment. In vitro studies have demonstrated excellent schistosomiasis activity for LPSF/GQ-238. The molecule, however, has poorly water-soluble. This study focused on increasing the aqueous solubility of LPSF/GQ-238 by obtaining solid dispersions. Were prepared by the solvent techniques, using Soluplus®, Polyethylene glycol (PEG), and Polyvinylpyrrolidone (PVP-K30) as carriers. Solubility tests, Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Exploratory Differential Calorimetry (DSC), and Raman Spectroscopy characterized these new intermediate products. The solubility tests showed that the higher the proportion of polymer used in the preparation of the dispersion, the greater the solubility presented. The observation of the morphology by SEM analysis, elucidated, that the new chemical entity (NCE) has a characteristic crystalline structure. The folding of this structure by the polymer was observed in all analyzed dispersions, thus demonstrating the amorphous state of the product. The scales observed in the structures of the dispersions demonstrate the successive wrinkles that occurred. The greater the proportion of the polymer, the greater the number of folds that occurred, which may explain the greater solubility observed in these preparations. The X-ray diffraction profile of the NCE reveals the presence of intense peaks, presenting a crystalline pattern. The polymer, on the other hand, shows amorphous nature, evidenced by the absence of peaks. All the analyzed dispersions did not present the characteristic peaks of the NCE, evidencing the amorphous behavior of the products. The thermal degradation profile of the NCE presents a characteristic crystalline structure endothermic peak. This peak was not observed in any of the obtained dispersions, evidencing the obtaining of a new solid state. Raman spectroscopy showed that peaks in the range 200-400 (cm-1) by NCE were lost when compared to all analyzed dispersions, showing a slight change in the structure of the molecule when dispersed, probably due to the formation of hydrogen bonds with the polymer. The in vitro study showed a significant improvement in the activity of the NCE against the adult worm and to the schistosomulae. It was possible to observe that the obtained solid dispersions were physicochemically and biologically viable for schistosomicidal treatment due to the increase of solubility of the molecule.


Subject(s)
Schistosomiasis , Schistosomicides , Humans , Thiazolidines , Schistosomicides/pharmacology , Spectroscopy, Fourier Transform Infrared , Polymers/chemistry , Povidone , X-Ray Diffraction
7.
Chem Biodivers ; 20(8): e202300154, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37414744

ABSTRACT

Schistosomiasis affects about 260 million people worldwide and the search for new schistosomicidal compounds is urgent. In this study we evaluated the in vitro effect of barbatic acid against schistosomulae and young worms of Schistosoma mansoni. The barbatic acid was evaluated through the bioassay of motility and mortality, cellular viability and ultrastructural analysis of juvenile stages through Scanning Electron Microscopy. Barbatic acid showed a schistosomicidal effect against schistosomulae and young worms of S. mansoni after 3 h of exposure. At the end of 24 h, barbatic acid showed 100 %, 89.5 %, 52 % and 28.5 % of lethality for schistosomulae at the concentrations of 200, 100, 50 and 25 µM, respectively. For young worms, barbatic acid showed 100 % and 31.7 % of lethality at the concentrations of 200 and 100 µM, respectively. Motility changes were observed at all sublethal concentrations. There was a significant reduction in the viability of young worms after exposure to barbatic acid at 50, 100 and 200 µM. Extensive damage to the schistosomulae and young worm's tegument, was observed from 50 µM. This report provides data showing the schistosomicidal effect of barbatic acid on schistosomulae and young worms of S. mansoni, causing death, motility changes and ultrastructural damage to worms.


Subject(s)
Anthelmintics , Phthalic Acids , Schistosomicides , Animals , Schistosoma mansoni , Anthelmintics/pharmacology , Phthalic Acids/pharmacology , Schistosomicides/pharmacology , Microscopy, Electron, Scanning
8.
Arch Pharm (Weinheim) ; 356(3): e2200491, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36482264

ABSTRACT

Schistosomiasis or bilharzia is caused by blood flukes of the genus Schistosoma and represents a considerable health and economic burden in tropical and subtropical regions. The treatment of this infectious disease relies on one single drug: praziquantel (PZQ). Therefore, new and potent antischistosomal compounds need to be developed. In our previous work, starting with the drug disulfiram, we developed dithiocarbamates with in vitro antischistosomal activities in the low micromolar range. Based on these results, we report in this study on the synthesis and biological testing of the structurally related dithiocarbazates against Schistosoma mansoni, one of the major species of schistosomes. In total, three series of dithiocarbazate derivatives were examined, and we found that the antischistosomal activity of N-unbranched dithiocarbazates increased by further N-substitution. Comparable tetra-substituted dithiocarbazates were rarely described in the literature, thus a synthesis route was established. Due to the elaborate synthesis, the branched dithiocarbazates (containing an N-aminopiperazine) were simplified, but the resulting branched dithiocarbamates (containing a 4-aminopiperidine) were considerably less active. Taken together, dithiocarbazate-containing compounds with an in vitro antischistosomal activity of 5 µM were obtained.


Subject(s)
Schistosomiasis , Schistosomicides , Humans , Animals , Schistosomicides/pharmacology , Structure-Activity Relationship , Schistosomiasis/drug therapy , Praziquantel/pharmacology , Praziquantel/therapeutic use , Schistosoma mansoni
9.
Molecules ; 28(13)2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37446846

ABSTRACT

Malaria and schistosomiasis are two of the neglected tropical diseases that persistently wreak havoc worldwide. Although many antimalarial drugs such as chloroquine are readily available, the emergence of drug resistance necessitates the development of new therapies to combat this disease. Conversely, Praziquantel (PZQ) remains the sole effective drug against schistosomiasis, but its extensive use raises concerns about the potential for drug resistance to develop. In this project, the concept of molecular hybridization was used as a strategy to design the synthesis of new molecular hybrids with potential antimalarial and antischistosomal activity. A total of seventeen molecular hybrids and two PZQ analogues were prepared by coupling 6-alkylpraziquanamines with cinnamic acids and cyclohexane carboxylic acid, respectively. The synthesised compounds were evaluated for their antimalarial and antischistosomal activity; while all of the above compounds were inactive against Plasmodium falciparum (IC50 > 6 µM), many were active against schistosomiasis with four particular compounds exhibiting up to 100% activity against newly transformed schistosomula and adult worms at 50 µM. Compared to PZQ, the reference drug, the activity of which is 91.7% at 1 µM, one particular molecular hybrid, compound 32, which bears a para-isopropyl group on the cinnamic acid moiety, exhibited a notable activity at 10 µM (78.2% activity). This compound has emerged as the front runner candidate that might, after further optimization, hold promise as a potential lead compound in the fight against schistosomiasis.


Subject(s)
Antimalarials , Schistosomiasis , Schistosomicides , Animals , Praziquantel/pharmacology , Praziquantel/therapeutic use , Antimalarials/pharmacology , Antimalarials/therapeutic use , Schistosoma mansoni , Schistosomicides/pharmacology , Schistosomicides/therapeutic use , Schistosomiasis/drug therapy
10.
Exp Parasitol ; 241: 108357, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35998724

ABSTRACT

Schistosomiasis mansoni is an infectious parasitic disease caused by worms of the genus Schistosoma, and praziquantel (PZQ) is the medication available for the treatment of schistosomiasis. However, the existence of resistant strains reinforces the need to develop new schistosomicidal drugs safely and effectively. Thus, the (±)-licarin A neolignan incorporated into poly-Ɛ-caprolactone (PCL) nanoparticles and not incorporated were evaluated for their in vivo schistosomicidal activity. The (±)-licarin A -loaded poly(ε-caprolactone) nanoparticles and the pure (±)-licarin A showed a reduction in the number of worm eggs present in spleens of mice infected with Schistosoma mansoni. In addition, the (±)-licarin A incorporated in the concentration of 20 mg/kg and 200 mg/kg reduced the number of worms, presenting percentages of 56.3% and 41.7%, respectively.


Subject(s)
Nanoparticles , Schistosomiasis mansoni , Schistosomicides , Animals , Caproates , Lactones , Lignans , Mice , Polyesters , Schistosoma mansoni , Schistosomiasis mansoni/drug therapy , Schistosomiasis mansoni/parasitology , Schistosomicides/pharmacology , Schistosomicides/therapeutic use
11.
Exp Parasitol ; 238: 108260, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35447136

ABSTRACT

OBJECTIVE: This study aimed to evaluate the efficacy of gamma-aminobutyric acid (GABA) alone or combined with praziquantel (PZQ) against Schistosoma (S) mansoni infection in a murine model. METHODS: Five groups, 8 mice each, were studied; GI served as normal controls; GII: S. mansoni-infected control group and the other three S. mansoni-infected groups received drug regimens for 5 consecutive days as follows GIII: Infected-PZQ treated group (200 mg/kg/day); GIV: Infected-GABA treated group (300 mg/kg/day) and GV: Infected-PZQ-GABA treated group (100 mg/kg/day for each drug). All animal groups were sacrificed two weeks later and different parasitological, histopathological and biochemical parameters were assessed. RESULTS: Combined GABA-PZQ treated group recorded the highest significant reduction in all parasitological, histopathological and biochemical parameters followed by PZQ and finally GABA groups. Combined GABA-PZQ treatment led to the complete disappearance of immature eggs and marked reduction of deposited eggs in liver tissues and improved liver pathology. Significant improvement in hepatic oxidative stress levels, serum albumin and total protein in response to GABA treatment alone or combined with PZQ. CONCLUSION: GABA had schistosomicidal, hepatoprotective and antioxidant activities against S. mansoni infection, GABA disrupted parasite pairing and activity, reduced the total number of worms recovered and the number of ova in the tissues. GABA may be considered an adjuvant therapy to potentiate PZQ antiparasitic activity and eradicate infection-induced liver damage and oxidative stress.


Subject(s)
Anthelmintics , Schistosomiasis mansoni , Schistosomicides , Animals , Anthelmintics/pharmacology , Anthelmintics/therapeutic use , Disease Models, Animal , Liver/parasitology , Mice , Praziquantel/pharmacology , Praziquantel/therapeutic use , Schistosoma mansoni , Schistosomiasis mansoni/pathology , Schistosomicides/pharmacology , Schistosomicides/therapeutic use , gamma-Aminobutyric Acid/therapeutic use
12.
J Enzyme Inhib Med Chem ; 37(1): 1479-1494, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35635137

ABSTRACT

The almost empty armamentarium to treat schistosomiasis, a neglected parasitic disorder caused by trematode flatworms of the genus Schistosoma, except Praziquantel (PZQ), urged to find new alternatives to fight this infection. Carbonic Anhydrase from Schistosoma mansoni (SmCA) is a possible new target against this nematode. Here, we propose new PZQ derivatives bearing a primary sulphonamide group in order to obtain hybrid drugs. All compounds were evaluated for their inhibition profiles on both humans and Schistosoma CAs, X-ray crystal data of SmCA and hCA II in adduct with some inhibitors were obtained allowing the understanding of the main structural factors responsible of activity. The compounds showed in vitro inhibition of immature and adult S. mansoni, but further optimisation is required for improved activity.


Subject(s)
Carbonic Anhydrases , Schistosomicides , Animals , Humans , Praziquantel/chemistry , Praziquantel/pharmacology , Schistosoma mansoni , Schistosomicides/pharmacology , Sulfanilamide , Sulfonamides/pharmacology
13.
Chem Biodivers ; 19(2): e202100909, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35020262

ABSTRACT

This review article covers literature on the antischistosomal activity of essential oils (EOs) between 2011 and 2021. Criteria for classifying results from in vitro schistosomicidal assays are proposed for the first time. Parameters to evaluate the in vitro antischistosomal potential of EOs other than their ability to cause the death of Schistosoma mansoni adult worms (e. g., couple separation, egg laying, and egg development inhibition) are also addressed and discussed.


Subject(s)
Oils, Volatile , Schistosomicides , Animals , Oils, Volatile/pharmacology , Schistosoma mansoni , Schistosomicides/pharmacology
14.
Chem Biodivers ; 19(2): e202100948, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34882967

ABSTRACT

Schistosomiasis, a tropical disease caused by flatworms, may affect the liver, spleen, bladder, and intestine. Casearia sylvestris Swartz, a medicinal plant, displays antiprotozoal, antimicrobial, antifungal, and antiulcer activities. We have evaluated the in vitro schistosomicidal activity of two C. sylvestris varieties against Schistosoma mansoni adult worms at concentrations between 12.5 and 200 µg/mL. At 100 and 200 µg/mL, the ethanolic C. sylvestris var. sylvestris leaf extract enriched in casearin-like diterpenes eliminated 100 % of the parasites after incubation for 72 h and 48 h, respectively, whilst the same extract at 200 µg/mL eliminated 96 %, 100 %, and 100 % of the parasites after incubation for 24, 48, and 72 h, respectively. On the other hand, the hydroalcoholic C. sylvestris var. lingua leaf extract at 200 µg/mL eliminated 60.4 and 66.7 % of the parasites after incubation for 48 and 72 h, respectively. The presence of casearin-like diterpenes and glycosylated flavonoids was confirmed based on chromatographic techniques and mass spectrometry data.


Subject(s)
Casearia , Diterpenes , Plants, Medicinal , Schistosomicides , Casearia/chemistry , Plant Extracts/chemistry , Schistosomicides/pharmacology
15.
Article in English | MEDLINE | ID: mdl-33361311

ABSTRACT

Schistosomiasis poses a serious threat to human health and remains a major tropical and parasitic disease in more than 70 countries. Praziquantel (PZQ) has been the primary treatment for schistosomiasis for nearly 4 decades. However, its efficacy against migratory-stage schistosomula is limited. Radicicol (RAD), a ß-resorcylic acid lactone derived from Paecilomyces sp. strain SC0924, was investigated as an alternative treatment for Schistosoma japonicumIn vitro tests showed that within 72 h, RAD (10 µmol/liter) completely killed schistosomula of both skin and liver stages with an efficacy significantly higher than that of PZQ, although it was less potent against adult worms than PZQ. In vivo, RAD reduced worm burdens and liver eggs by 91.18% and 86.01%, respectively, by killing migratory-stage schistosomula. Optical microscopy and scanning electron microscopy revealed that RAD damaged the epiderm and tegument morphology of S. japonicum worms at various stages and altered their motility to different degrees. RAD exhibited schistosomicidal effects at different stages in vitro and in vivo, especially at the migratory stage, implying that its mechanism could be different from that of PZQ. Collectively, these results showed that RAD is promising as a lead for the development of drugs to control the migratory-stage schistosomula of S. japonicum.


Subject(s)
Schistosoma japonicum , Schistosomicides , Animals , Humans , Lead , Macrolides , Praziquantel/pharmacology , Schistosoma mansoni , Schistosomicides/pharmacology
16.
Antimicrob Agents Chemother ; 65(10): e0061521, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34310210

ABSTRACT

In recent years, N,N'-diarylureas have emerged as a promising chemotype for the treatment of schistosomiasis, a parasite-caused disease that poses a considerable health burden to millions of people worldwide. Here, we report a novel series of N,N'-diarylureas featuring the scarcely explored pentafluorosulfanyl group (SF5). Low 50% inhibitory concentration (IC50) values for Schistosoma mansoni newly transformed schistosomula (0.6 to 7.7 µM) and adult worms (0.1 to 1.6 µM) were observed. Four selected compounds that were highly active in the presence of albumin (>70% at 10 µM), endowed with decent cytotoxicity profiles (selectivity index [SI] against L6 cells >8.5), and good microsomal hepatic stability (>62.5% of drug remaining after 60 min) were tested in S. mansoni-infected mice. Despite the promising in vitro worm-killing potency, none of them showed significant activity in vivo. Pharmacokinetic data showed a slow absorption, with maximal drug concentrations reached after 24 h of exposure. Finally, no direct correlation between drug exposure and in vivo activity was found. Thus, further investigations are needed to better understand the underlying mechanisms of SF5-containing N,N'-diarylureas.


Subject(s)
Schistosomiasis mansoni , Schistosomicides , Animals , Liver , Mice , Schistosoma mansoni , Schistosomiasis mansoni/drug therapy , Schistosomicides/pharmacology , Schistosomicides/therapeutic use
17.
Mar Drugs ; 19(5)2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33922065

ABSTRACT

Schistosomiasis is a parasitic disease that affects more than 250 million people. The treatment is limited to praziquantel and the control of the intermediate host with the highly toxic molluscicidal niclosamide. Marine algae are a poorly explored and promising alternative that can provide lead compounds, and the use of multivariate analysis could contribute to quicker discovery. As part of our search for new natural compounds with which to control schistosomiasis, we screened 45 crude extracts obtained from 37 Brazilian seaweed species for their molluscicidal activity against Biomphalaria glabrata embryos and schistosomicidal activities against Schistosoma mansoni. Two sets of extracts were taxonomically grouped for metabolomic analysis. The extracts were analyzed by GC-MS, and the data were subjected to Pattern Hunter and Pearson correlation tests. Overall, 22 species (60%) showed activity in at least one of the two models. Multivariate analysis pointed towards 3 hits against B. glabrata veliger embryos in the Laurencia/Laurenciella set, 5 hits against B. glabrata blastula embryos, and 31 against S. mansoni in the Ochrophyta set. Preliminary annotations suggested some compounds such as triquinane alcohols, prenylated guaianes, dichotomanes, and xenianes. Despite the putative identification, this work presents potential candidates and can guide future isolation and identification.


Subject(s)
Biomphalaria/drug effects , Bioprospecting , Drug Discovery , Molluscacides/pharmacology , Schistosoma mansoni/drug effects , Schistosomiasis mansoni/prevention & control , Schistosomicides/pharmacology , Seaweed/metabolism , Animals , Biomphalaria/parasitology , Brazil , Metabolome , Metabolomics , Molluscacides/isolation & purification , Schistosoma mansoni/growth & development , Schistosomiasis mansoni/parasitology , Schistosomicides/isolation & purification
18.
Parasitol Res ; 120(4): 1321-1333, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33164156

ABSTRACT

Schistosomiasis, caused by a blood fluke of the genus Schistosoma, afflicts over 230 million people worldwide. Treatment of the disease relies on just one drug, praziquantel. Cnicin (Cn) is the sesquiterpene lactone found in blessed thistle (Centaurea benedicta) that showed antiparasitic activities but has not been evaluated against Schistosoma. However, cnicin has poor water solubility, which may limit its antiparasitic activities. To overcome these restrictions, inclusion complexes with cyclodextrins may be used. In this work, we evaluated the in vitro and in vivo antischistosomal activities of cnicin and its complexes with ß-cyclodextrin (ßCD) and 2-hydroxypropyl-ß-cyclodextrin (HPßCD) against Schistosoma mansoni. Cnicin were isolated from C. benedicta by chromatographic fractionation. Complexes formed by cnicin and ßCD (Cn/ßCD), as well as by cnicin and HPßCD (Cn/HPßCD), were prepared by coprecipitation and characterized. In vitro schistosomicidal assays were used to evaluate the effects of cnicin and its complexes on adult schistosomes, while the in vivo antischistosomal assays were evaluated by oral and intraperitoneal routes. Results showed that cnicin caused mortality and tegumental alterations in adult schistosomes in vitro, also showing in vivo efficacy after intraperitoneal administration. The oral treatment with cnicin or Cn/ßCD showed no significant worm reductions in a mouse model of schistosomiasis. In contrast, Cn/HPßCD complex, when orally or intraperitoneally administered to S. mansoni-infected mice, decreased the total worm load, and markedly reduced the number of eggs, showing high in vivo antischistosomal effectiveness. Permeability studies, using Nile red, indicated that HPßCD complex may reach the tegument of adult schistosomes in vivo. These results demonstrated the antischistosomal potential of cnicin in preparations with HPßCD.


Subject(s)
Schistosoma mansoni/drug effects , Schistosomiasis mansoni/drug therapy , Schistosomicides/pharmacology , Sesquiterpenes/pharmacology , 2-Hydroxypropyl-beta-cyclodextrin , Administration, Oral , Animals , Centaurea/chemistry , Disease Models, Animal , Drug Compounding , Feces/parasitology , Female , Injections, Intraperitoneal , Male , Mice , Parasite Egg Count , Parasite Load , Permeability , Praziquantel/pharmacology , Praziquantel/therapeutic use , Schistosomiasis mansoni/parasitology , Schistosomicides/administration & dosage , Schistosomicides/chemistry , Schistosomicides/pharmacokinetics , Sesquiterpenes/administration & dosage , Sesquiterpenes/chemistry , Sesquiterpenes/pharmacokinetics , Solubility , beta-Cyclodextrins
19.
Arch Pharm (Weinheim) ; 354(12): e2100259, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34523746

ABSTRACT

Schistosomiasis is a neglected tropical disease caused by blood flukes of the genus Schistosoma and causes severe morbidity in infected patients. In 2018, 290.8 million people required treatment, and 200,000 deaths are reported per year. Treatment of this disease depends on a single drug, praziquantel (PZQ). However, in the past few years, reduced sensitivity of the parasites toward PZQ has been reported. Therefore, there is an urgent need for new drugs against this disease. In the past few years, we have focused on a new substance class called biaryl alkyl carboxylic acid derivatives, which showed promising antischistosomal activity in vitro. Structure-activity relationship (SAR) studies of the carboxylic acid moiety led to three promising carboxylic amides (morpholine, thiomorpholine, and methyl sulfonyl piperazine) with an antischistosomal activity down to 10 µM (morpholine derivative) and no cytotoxicity up to 100 µM. Here, we show our continued work on this substance class. We investigated, in extended SAR studies, whether modification of the linker and the thiophene ring could improve the antischistosomal activity. We found that the exchange of the alkyl linker by a pentadienyl or benzyl linker was tolerated and led to similar antischistosomal effects, whereas the exchange of the thiophene ring was not tolerated. Our data suggest that the thiophene ring is important for the antischistosomal activity of this compound class.


Subject(s)
Carboxylic Acids/pharmacology , Schistosoma/drug effects , Schistosomicides/pharmacology , Amides/chemical synthesis , Amides/chemistry , Amides/pharmacology , Animals , Carboxylic Acids/chemical synthesis , Carboxylic Acids/chemistry , Female , Male , Schistosomiasis/drug therapy , Schistosomicides/chemical synthesis , Schistosomicides/chemistry , Structure-Activity Relationship , Thiophenes/chemical synthesis , Thiophenes/chemistry , Thiophenes/pharmacology
20.
Drug Dev Ind Pharm ; 47(4): 663-672, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33826458

ABSTRACT

WHO considers praziquantel (PZQ) as the drug of choice for treatment of Schistosoma mansoni infection but this requires high dose due to poor solubility and first pass metabolism. The aim of this work was to optimize nanostructured lipid carriers (NLCs) for enhanced PZQ oral delivery. The optimization involved testing the effect of surface charge of NLCs. NLCs comprised precirol ATO as solid lipid with oleic acid, Span 60 and Tween 80 as liquid components. Dicetyl phosphate and stearyl amine were the negative and positive charging agents, respectively. NLCs were prepared by microemulsification technique and were characterized. The schistosomicidal activity of PZQ loaded NLCs was monitored in vitro and in vivo using infected mice. PZQ showed high entrapment efficiency in all types of NLCs (ranged from 93.97 to 96.29%) with better PZQ loading in standard NLCs. This was clarified by thermal analysis which reflected displacement of PZQ by charging agents. In vitro schistosomicidal study revealed the superiority of PZQ loaded positively charged NLCs (LC50 and LC95 equal 0.147 and 0.193 µg/ml respectively) with traditional and negatively charged NLCs being inferior to simple PZQ solution after short incubation period. Scanning electron micrographs showed that PZQ loaded positively charged NLCs resulted in more intense ultrastructural changes in worms. The superiority of positively charged NLCs was confirmed by in vivo assessment as they showed better improvement in histopathological features of the liver of the infected mice compared with other formulations. The study introduced positively charged NLCs as promising carriers for oral delivery of PZQ.


Subject(s)
Nanostructures , Schistosomicides , Animals , Drug Carriers , Lipids , Mice , Praziquantel/pharmacology , Schistosomicides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL