ABSTRACT
Behaviors are inextricably linked to internal state. We have identified a neural mechanism that links female sexual behavior with the estrus, the ovulatory phase of the estrous cycle. We find that progesterone-receptor (PR)-expressing neurons in the ventromedial hypothalamus (VMH) are active and required during this behavior. Activating these neurons, however, does not elicit sexual behavior in non-estrus females. We show that projections of PR+ VMH neurons to the anteroventral periventricular (AVPV) nucleus change across the 5-day mouse estrous cycle, with â¼3-fold more termini and functional connections during estrus. This cyclic increase in connectivity is found in adult females, but not males, and regulated by estrogen signaling in PR+ VMH neurons. We further show that these connections are essential for sexual behavior in receptive females. Thus, estrogen-regulated structural plasticity of behaviorally salient connections in the adult female brain links sexual behavior to the estrus phase of the estrous cycle.
Subject(s)
Nerve Net/physiology , Sexual Behavior, Animal/physiology , Animals , Estrogens/metabolism , Estrous Cycle/drug effects , Female , Gonadal Steroid Hormones/pharmacology , Hypothalamus, Anterior/physiology , Male , Mice, Inbred C57BL , Nerve Net/drug effects , Neuronal Plasticity/drug effects , Neurons/drug effects , Neurons/metabolism , Ovary/metabolism , Presynaptic Terminals/drug effects , Presynaptic Terminals/metabolism , Receptors, Progesterone/metabolism , Sexual Behavior, Animal/drug effects , Signal Transduction/drug effects , Time FactorsABSTRACT
BACKGROUND: Accurate detection of pheromones is crucial for chemical communication and reproduction in insects. In holometabolous flies and moths, the sensory neuron membrane protein 1 (SNMP1) is essential for detecting long-chain aliphatic pheromones by olfactory neurons. However, its function in hemimetabolous insects and its role for detecting pheromones of a different chemical nature remain elusive. Therefore, we investigated the relevance of SNMP1 for pheromone detection in a hemimetabolous insect pest of considerable economic importance, the desert locust Schistocerca gregaria, which moreover employs the aromatic pheromone phenylacetonitrile (PAN) to govern reproductive behaviors. RESULTS: Employing CRISPR/Cas-mediated gene editing, a mutant locust line lacking functional SNMP1 was established. In electroantennography experiments and single sensillum recordings, we found significantly decreased electrical responses to PAN in SNMP1-deficient (SNMP1-/-) locusts. Moreover, calcium imaging in the antennal lobe of the brain revealed a substantially reduced activation of projection neurons in SNMP1-/- individuals upon exposure to PAN, indicating that the diminished antennal responsiveness to PAN in mutants affects pheromone-evoked neuronal activity in the brain. Furthermore, in behavioral experiments, PAN-induced effects on pairing and mate choice were altered in SNMP1-/- locusts. CONCLUSIONS: Our findings emphasize the importance of SNMP1 for chemical communication in a hemimetabolous insect pest. Moreover, they show that SNMP1 plays a crucial role in pheromone detection that goes beyond long-chain aliphatic substances and includes aromatic compounds controlling reproductive behaviors.
Subject(s)
Grasshoppers , Membrane Proteins , Animals , Grasshoppers/physiology , Grasshoppers/drug effects , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Pheromones/pharmacology , Sexual Behavior, Animal/physiology , Sexual Behavior, Animal/drug effects , Female , Courtship , Acetonitriles/pharmacology , Insect Proteins/genetics , Insect Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolismABSTRACT
Estrogen receptor (ER) α is involved in male sexual function. Here, we aim to investigate how ERα activation influences sexual satiety and the Coolidge effect (i.e., when a rat, that has reached sexual satiety, experiences an increased arousal after exposure to a novel sexual partner) in estrogen-deprived male rats. Male rats (8 per group) were treated daily for 29 days with either saline (Control group) or fadrozole dissolved in saline (1 mg/kg/day) 1 h before mating. On Days 13 and 29, rats treated with fadrozole received either no additional treatment (fadrozole group) or a single injection of propyl-pyrazole-triol (ERα-agonist group, dissolved in sesame oil, 1 mg/kg). Rats mated until reaching sexual satiety on Days 13 and 29. In these sessions, the Control group displayed higher frequency of intromission and ejaculation than the other groups. The ERα-agonist group mounted more frequently but reached sexual satiety sooner than the Control group. On Day 29, when exposed to a new sexual partner, the fadrozole-treated rats were less likely to display intromission than the other groups, or ejaculation than the Control group, or mounting than the ERα-agonist group. The Control group showed more ejaculatory behavior and shorter ejaculation latency than the other groups. Body weights, testosterone levels, estradiol levels, and ERα-immunoreactive cell counts in brain regions for sexual behavior were comparable between groups after 29 days of treatments. Our data suggest that estrogen helps regulate sexual satiety and the Coolidge effect in male rats.
Subject(s)
Estrogen Receptor alpha , Fadrozole , Phenols , Pyrazoles , Sexual Behavior, Animal , Animals , Male , Pyrazoles/pharmacology , Rats , Estrogen Receptor alpha/agonists , Estrogen Receptor alpha/metabolism , Sexual Behavior, Animal/drug effects , Sexual Behavior, Animal/physiology , Fadrozole/pharmacology , Female , Rats, WistarABSTRACT
The timing of exposure to the steroid hormone, testosterone, produces activational and organizational effects in vertebrates. These activational and organizational effects are hypothesized to relate with the number of female mating partners and reproductive success in males. We tested this hypothesis by examining 151 wild degu (Octodon degus) males across a 10-year study. We quantified the association between adult serum testosterone levels (i.e., an indirect index of adult activational effects) and anogenital distance (AGD) length (i.e., a direct index of fetal organizational effects), and their interaction on the number of female mating partners and reproductive success. We found no evidence of an association between adult male serum testosterone levels and the number of female mating partners, or between adult male serum testosterone levels and reproductive success. However, male AGD was positively associated with reproductive success, but not so with the number of female mating partners. Additionally, the positive association between male AGD and male reproductive success was mediated by the number of mates. Our findings do not support major roles of activational or organizational effects of testosterone on the number of female mating partners and its consequences on male reproductive success. Instead, our results suggest that compared with individual male attributes, the female social environment plays a more important role in driving male reproductive success.
Subject(s)
Reproduction , Sexual Behavior, Animal , Testosterone , Male , Animals , Testosterone/pharmacology , Testosterone/blood , Female , Sexual Behavior, Animal/drug effects , Sexual Behavior, Animal/physiology , Reproduction/physiology , Reproduction/drug effects , Octodon/physiology , Sexual Partners , Social BehaviorABSTRACT
Teleost fishes show an extraordinary diversity of sexual patterns, social structures, and sociosexual behaviors. Sex steroid hormones are key modulators of social behaviors in teleosts as in other vertebrates and act on sex steroid receptor-containing brain nuclei that form the evolutionarily conserved vertebrate social behavior network (SBN). Fishes also display important differences relative to tetrapod vertebrates that make them particularly well-suited to study the physiological mechanisms modulating social behavior. Specifically, fishes exhibit high levels of brain aromatization and have what has been proposed to be a lifelong, steroid hormone dependent plasticity in the neural substrates mediating sociosexual behavior. In this review, we examine how estrogenic signaling modulates sociosexual behaviors in teleosts with a particular focus on agonistic behavior. Estrogens have been shown to mediate agonistic behaviors in a broad range of fishes, from sexually monomorphic gonochoristic species to highly dimorphic sex changers with alternate reproductive phenotypes. These similarities across such diverse taxa contribute to a growing body of evidence that estrogens play a crucial role in the modulation of aggression in vertebrates. As analytical techniques and genomic tools rapidly advance, methods such as LC-MS/MS, snRNAseq, and CRISPR-based mutagenesis show great promise to further elucidate the mechanistic basis of estrogenic effects on social behavior in the diverse teleost lineage.
Subject(s)
Estrogens , Fishes , Animals , Fishes/physiology , Estrogens/pharmacology , Agonistic Behavior/physiology , Agonistic Behavior/drug effects , Social Behavior , Female , Male , Sexual Behavior, Animal/physiology , Sexual Behavior, Animal/drug effects , Behavior, Animal/drug effects , Behavior, Animal/physiologyABSTRACT
Olfactory communication is triggered by pheromones that profoundly influence neuroendocrine responses to drive social interactions. Two principal olfactory systems process pheromones: the main and the vomeronasal or accessory system. Prolactin receptors are expressed in both systems suggesting a participation in the processing of olfactory information. We previously reported that prolactin participates in the sexual and olfactory bulb maturation of females. Therefore, we explored the expression of prolactin receptors within the olfactory bulb during sexual maturation and the direct responses of prolactin upon pheromonal exposure. Additionally, we assessed the behavioral response of adult females exposed to male sawdust after prolactin administration and the consequent activation of main and accessory olfactory bulb and their first central relays, the piriform cortex and the medial amygdala. Last, we investigated the intracellular pathway activated by prolactin within the olfactory bulb. Here, prolactin receptor expression remained constant during all maturation stages within the main olfactory bulb but decreased in adulthood in the accessory olfactory bulb. Behaviorally, females that received prolactin actively explored the male stimulus. An increased cFos activation in the amygdala and in the glomerular cells of the whole olfactory bulb was observed, but an augmented response in the mitral cells was only found within the main olfactory bulb after prolactin administration and the exposure to male stimulus. Interestingly, the ERK pathway was upregulated in the main olfactory bulb after exposure to a male stimulus. Overall, our results suggest that, in female mice, prolactin participates in the processing of chemosignals and behavioral responses by activating the main olfactory system and diminishing the classical vomeronasal response to pheromones.
Subject(s)
Olfactory Bulb , Prolactin , Sexual Behavior, Animal , Animals , Olfactory Bulb/drug effects , Olfactory Bulb/metabolism , Olfactory Bulb/physiology , Female , Prolactin/metabolism , Prolactin/pharmacology , Mice , Male , Sexual Behavior, Animal/physiology , Sexual Behavior, Animal/drug effects , Receptors, Prolactin/metabolism , Sexual Maturation/physiology , Social Behavior , Pheromones/pharmacology , Amygdala/drug effects , Amygdala/metabolismABSTRACT
Plants and insects often use the same compounds for chemical communication, but not much is known about the genetics of convergent evolution of chemical signals. The terpene (E)-ß-ocimene is a common component of floral scent and is also used by the butterfly Heliconius melpomene as an anti-aphrodisiac pheromone. While the biosynthesis of terpenes has been described in plants and microorganisms, few terpene synthases (TPSs) have been identified in insects. Here, we study the recent divergence of 2 species, H. melpomene and Heliconius cydno, which differ in the presence of (E)-ß-ocimene; combining linkage mapping, gene expression, and functional analyses, we identify 2 novel TPSs. Furthermore, we demonstrate that one, HmelOS, is able to synthesise (E)-ß-ocimene in vitro. We find no evidence for TPS activity in HcydOS (HmelOS ortholog of H. cydno), suggesting that the loss of (E)-ß-ocimene in this species is the result of coding, not regulatory, differences. The TPS enzymes we discovered are unrelated to previously described plant and insect TPSs, demonstrating that chemical convergence has independent evolutionary origins.
Subject(s)
Alkyl and Aryl Transferases/metabolism , Aphrodisiacs/antagonists & inhibitors , Butterflies , Pheromones/metabolism , Alkyl and Aryl Transferases/genetics , Animals , Avoidance Learning/drug effects , Butterflies/genetics , Butterflies/metabolism , Evolution, Molecular , Female , Genes, Insect , Male , Pheromones/pharmacology , Phylogeny , Sexual Behavior, Animal/drug effects , Species SpecificityABSTRACT
Ocean acidification affects species populations and biodiversity through direct negative effects on physiology and behaviour. The indirect effects of elevated CO2 are less well known and can sometimes be counterintuitive. Reproduction lies at the crux of species population replenishment, but we do not know how ocean acidification affects reproduction in the wild. Here, we use natural CO2 vents at a temperate rocky reef and show that even though ocean acidification acts as a direct stressor, it can indirectly increase energy budgets of fish to stimulate reproduction at no cost to physiological homeostasis. Female fish maintained energy levels by compensation: They reduced activity (foraging and aggression) to increase reproduction. In male fish, increased reproductive investment was linked to increased energy intake as mediated by intensified foraging on more abundant prey. Greater biomass of prey at the vents was linked to greater biomass of algae, as mediated by a fertilisation effect of elevated CO2 on primary production. Additionally, the abundance and aggression of paternal carers were elevated at the CO2 vents, which may further boost reproductive success. These positive indirect effects of elevated CO2 were only observed for the species of fish that was generalistic and competitively dominant, but not for 3 species of subordinate and more specialised fishes. Hence, species that capitalise on future resource enrichment can accelerate their reproduction and increase their populations, thereby altering species communities in a future ocean.
Subject(s)
Acids/pharmacology , Fishes/physiology , Reproduction/drug effects , Acids/metabolism , Animals , Biodiversity , Carbon Dioxide/metabolism , Carbon Dioxide/pharmacology , Climate Change , Ecosystem , Female , Hydrogen-Ion Concentration , Male , New Zealand , Oceans and Seas , Population Growth , Seawater/chemistry , Sexual Behavior, Animal/drug effects , Stress, Physiological/drug effectsABSTRACT
INTRODUCTION: A method for delivering vaporized nicotine to animals has been developed using e-cigarette devices. The present experiment was designed to measure the effects of e-cigarette nicotine on pubertal onset and development of reproductive behavior in female and male Long-Evans rats. AIM AND METHODS: Rats received daily 10-min sessions of electronic-cigarette vaporized nicotine (5% Virginia Tobacco JUUL Pods) or room air in a whole-body exposure chamber (postnatal day 28-31). Pubertal onset was monitored daily (ie, vaginal opening in females, preputial separation in males). Two weeks later, rats were tested for sexual motivation using the partner-preference paradigm, whereby subjects were given the opportunity to approach either a sexual partner or a same-sex social partner. Four weeks later, partner preference was assessed again, 10 min after rats were re-exposed to their same prepubertal treatment. RESULTS: We found that prepubescent electronic-cigarette vaporized nicotine disrupted puberty and sexual motivation in female but not male rats. In vaped females, vaginal opening was delayed and less time was spent with the male stimulus compared to room-air controls. In contrast, no effect of e-cigarette vapor was observed on pubertal onset or on any measures of sexual behavior in male rats. No effects were observed in either female or male rats on the second partner-preference test. CONCLUSIONS: Prepubescent vaporized nicotine affected the development of reproductive physiology and behavior in female rats but not in male rats, whereas an additional acute exposure to nicotine vapor had no effect in either female or male adult rats. IMPLICATIONS: Given the prevalence of increasingly younger users, more animal research is needed to explore the effects of e-cigarette smoking on multiple developmental systems including reproductive physiology and behavior. This model could be useful in exploring multiple behavioral and physiological endpoints in both sexes. Adjustments to the duration of exposure and control conditions will be necessary for future experiments to best model human use.
Subject(s)
Electronic Nicotine Delivery Systems , Motivation , Rats, Long-Evans , Sexual Behavior, Animal , Sexual Maturation , Animals , Male , Female , Rats , Sexual Behavior, Animal/drug effects , Motivation/drug effects , Sexual Maturation/drug effects , Nicotine/pharmacology , VapingABSTRACT
Chemical, electrophysiological, and field trapping experiments were carried out to identify the female-produced sex pheromone of the asparagus moth, Parahypopta caestrum, a very serious pests of asparagus cultivations in southern Europe. Gas chromatography coupled with mass spectrometry and electroantennogram detection (GC-MS-EAD) analysis of hexane and solid-phase microextraction (SPME) extracts of sex pheromone glands of calling females consistently detected four compounds eliciting EAG responses in male moth antennae. According to their GC retention times, mass spectra, and comparative EAG analyses with reference standards, these EAD-active compounds were identified as (Z)-9-tetradecenol (Z9-14:OH), (Z)-5-tetradecenyl acetate (Z5-14:Ac), (Z)-7-tetradecenyl acetate (Z7-14:Ac), and (Z)-9-tetradecenyl acetate (Z9-14:Ac), respectively. In the SPME extracts from the head-space of individual abdominal tips, Z9-14:Ac, Z5-14:Ac, Z7-14:Ac, and Z9:14 OH were detected in the ratio of 82:9:5:4. In EAG dose-response experiments, Z9-14:Ac was the strongest antennal stimulant at different doses tested. In field trapping experiments, Z9-14:Ac, Z7-14:Ac, and Z5-14:Ac proven to be essential for male attraction and a their 85:5:10 blend loaded onto green rubber septum dispensers was significantly more effective than single-, two-, and any other three-component blend of these compounds. The addition of Z9-14:OH to the optimal blend resulted in a significant reduction of male catches. The attractive blend here identified allowed for an effective and accurate monitoring of P. caestrum flight activity in southern Italy.
Subject(s)
Gas Chromatography-Mass Spectrometry , Moths , Sex Attractants , Solid Phase Microextraction , Animals , Sex Attractants/analysis , Sex Attractants/chemistry , Sex Attractants/pharmacology , Female , Male , Moths/physiology , Arthropod Antennae/physiology , Sexual Behavior, Animal/drug effectsABSTRACT
The recognition of cerambycids as frequent and damaging invaders led to an increase in the interest in the chemical ecology of the group with the identification of pheromones and pheromone-like attractants for well over 100 species. Pheromone components of the Cerambycidae are often phylogenetically conserved, with a single compound serving as a pheromone component for several related species. In the subfamily Lamiinae, the compound 2-(undecyloxy)ethanol (monochamol) has been identified as an aggregation-sex pheromone for several species of the genus Monochamus. In other species, including Monochamus maculosus Haldeman, field trials have demonstrated that monochamol is a pheromone attractant, but at that point it was still unknown as to whether it was a pheromone for this species. Here we report the identification, and laboratory and field trials of a pheromone component produced by adult male M. maculosus. Chemical analyses of headspace volatile collections sampled from field collected beetles of both sexes revealed the presence of one male-specific compound that was identified as 2-(undecyloxy)ethanol. Electroantennography analyses showed that monochamol elicited responses from the antennae of female beetles. Traps baited with monochamol in the field captured M. maculosus adults of both sexes corroborating the identification of monochamol as the sex-aggregation pheromone of this species. The attractivity of monochamol to adult M. maculosus in our field trapping experiment was synergized by the addition of the host volatile α-pinene.
Subject(s)
Coleoptera , Sex Attractants , Animals , Coleoptera/physiology , Coleoptera/drug effects , Male , Sex Attractants/pharmacology , Sex Attractants/chemistry , Sex Attractants/metabolism , Female , Sexual Behavior, Animal/drug effects , Arthropod Antennae/physiology , Arthropod Antennae/drug effectsABSTRACT
The major and possibly only component of the sex attractant pheromone of the moth Hemileuca nevadensis (Lepidoptera: Saturniidae) from southern California was determined to be (E10,Z12)-hexadecadienal (E10,Z12-16:Ald). Detectable quantities of the analogs (E10,Z12)-hexadecadien-1-yl acetate (E10,Z12-16:Ac) and (E10,Z12)-hexadecadien-1-ol (E10,Z12-16:OH) were also present in solvent extracts of sex pheromone glands, and stimulated male antennae in coupled gas chromatography-electroantennogram detector (GC-EAD) assays. GC-EAD traces from solid phase microextraction (SPME) wipe samples of sex pheromone glands of calling females confirmed the presence of E10,Z12-16:Ald and traces of E10,Z12-16:OH on the gland surface, but E10,Z12-16:Ac was not detected. Despite evidence for the presence of all three compounds in extracts, behavioral responses to synthetic compounds in the field suggested that only E10,Z12-16:Ald is required for optimal attraction.
Subject(s)
Moths , Sex Attractants , Animals , Sex Attractants/chemistry , Sex Attractants/analysis , Moths/physiology , Moths/chemistry , Male , Female , California , Sexual Behavior, Animal/drug effects , Solid Phase Microextraction , Arthropod Antennae/physiology , Aldehydes/analysis , Aldehydes/isolation & purification , Aldehydes/chemistryABSTRACT
Insect exocrine gland products can be involved in sexual communication, defense, territory labelling, aggregation and alarm. In the vinegar fly Drosophila melanogaster the ejaculatory bulb synthesizes and releases 11-cis-Vaccenyl acetate (cVa). This pheromone, transferred to the female during copulation, affects aggregation, courtship and male-male aggressive behaviors. To determine the ability of male flies to replenish their cVa levels, males of a control laboratory strain and from the desat1 pheromone-defective mutant strain were allowed to mate successively with several females. We measured mating frequency, duration and latency, the amount of cVa transferred to mated females and the residual cVa in tested males. Mating duration remained constant with multiple matings, but we found that the amount of cVa transferred to females declined with multiple matings, indicating that, over short, biologically-relevant periods, replenishment of the pheromone does not keep up with mating frequency, resulting in the transfer of varying quantities of cVa. Adult responses to cVa are affected by early developmental exposure to this pheromone; our revelation of quantitative variation in the amount of cVa transferred to females in the event of multiple matings by a male suggests variable responses to cVa shown by adults produced by such matings. This implies that the natural role of this compound may be richer than suggested by laboratory experiments that study only one mating event and its immediate behavioral or neurobiological consequences.
Subject(s)
Drosophila Proteins , Drosophila melanogaster , Fatty Acid Desaturases , Sex Attractants , Sexual Behavior, Animal , Animals , Male , Female , Drosophila melanogaster/physiology , Drosophila melanogaster/drug effects , Sexual Behavior, Animal/drug effects , Sex Attractants/metabolism , Sex Attractants/pharmacology , Oleic Acids/metabolism , Pheromones/metabolismABSTRACT
The present study aims to analyze the effects of developmental exposure to phthalates at environmentally relevant doses on the neural control of male and female reproduction. For this purpose, C57Bl/6J mice were exposed to di-(2-ethylexyl) phthalate (DEHP) alone (5 or 50 µg/kg/d), or DEHP (5 µg/kg/d) in a phthalate mixture. Exposure through diet started 6 weeks before the first mating and lasted until weaning of litters from the second gestation (multiparous dams). Analyses of offspring born from multiparous dams exposed to DEHP alone or in a phthalate mixture showed that females experienced a delayed pubertal onset, and as adults they had prolonged estrous cyclicity and reduced Kiss1 expression in the preoptic area and mediobasal hypothalamus. Male littermates showed a reduced anogenital distance and delayed pubertal onset compared with controls. However, in adulthood the weight of androgen-sensitive organs and hypothalamic Kiss1 expression were unaffected, suggesting normal functioning of the male gonadotropic axis. Developmental exposure to DEHP alone or in a phthalate mixture reduced the ability of intact males and ovariectomized and hormonally primed females to attract a sexual partner and to express copulatory behaviors. In addition, females were unable to discriminate between male and female stimuli in the olfactory preference test. Social interaction was also impaired in females, while locomotor activity and anxiety-like behavior in both sexes were unaffected by the treatment. The sexual deficiencies were associated with reduced expression of the androgen receptor in the preoptic area and progesterone receptor in the mediobasal hypothalamus, the key regions involved in male and female sexual behavior, respectively. Thus, the neural structures controlling reproduction are vulnerable to developmental exposure to phthalates at environmentally relevant doses in male and female mice. Adult females had an impaired gonadotropic axis and showed more affected behaviors than adult males.
Subject(s)
Environmental Exposure , Phthalic Acids , Reproduction , Reproduction/drug effects , Male , Female , Animals , Mice , Phthalic Acids/toxicity , Environmental Exposure/adverse effects , Mice, Inbred C57BL , Birth Weight/drug effects , Organ Size/drug effects , Diethylhexyl Phthalate/toxicity , Sexual Behavior, Animal/drug effects , Prenatal Exposure Delayed Effects , Kisspeptins/metabolismABSTRACT
Kisspeptin is a peptide that plays an important role through its effects on the hypothalamus-pituitary-gonadal (HPG) axis. It has also been implicated in sexual behavior. The present study investigated whether the relationship between kisspeptin and sexual behavior is independent of the HPG axis, i.e., testosterone. Sexual behavior was examined after the administration of kisspeptin to gonadally intact male rats and gonadectomized male rats that received testosterone supplementation. Other male rats were also observed for sexual behavior once a week from 2 to 5 weeks after gonadectomy and receiving kisspeptin for the sixth postoperative week. Sexual behavior in female rats serving as the partner for each male was also observed. Female rats were not administered kisspeptin in the present study. The results obtained showed that the administration of kisspeptin increased precopulatory behavior in gonadally intact male rats and gonadectomized male rats that received testosterone supplementation and proceptive behavior in their female partners. Precopulatory behavior in males and receptive behavior in females increased, while copulatory behavior in males and receptive behavior in females remained unchanged. Furthermore, the administration of kisspeptin increased precopulatory behavior in gonadectomized males, but did not affect receptive behavior in females. These results suggest that kisspeptin affected males independently and/or supplementally to testosterone, and also that changes in the presence of testosterone in males had an impact on proceptive behavior in their female partners. In conclusion, kisspeptin may involve an as-yet-unidentified neural pathway in sexual desire independently of the HPG axis.
Subject(s)
Kisspeptins , Sexual Behavior, Animal , Testosterone , Animals , Kisspeptins/metabolism , Kisspeptins/pharmacology , Male , Testosterone/pharmacology , Female , Rats , Sexual Behavior, Animal/drug effects , Sexual Behavior, Animal/physiology , Rats, Wistar , Copulation/drug effects , Copulation/physiologyABSTRACT
Antidepressant drugs (ADDs) are one of the most extensively used pharmaceuticals globally. They act at particularly low therapeutic concentrations to modulate monoamine neurotransmission, which is one of the most evolutionary conserved pathways in both humans and animal species including invertebrates. As ADDs are widely detected in the aquatic environment at low concentrations (ng/L to low µg/L), their potential to exert drug-target mediated effects in aquatic species has raised serious concerns. Amitriptyline (AMI) is the most widely used tricyclic ADD, while monoamines, the target of ADDs, are major bioregulators of multiple key physiological processes including feeding, reproduction and behaviour in molluscs. However, the effects of AMI on feeding, reproduction and mating behaviour are unknown in molluscs despite their ecological importance, diversity and reported sensitivity to ADDs. To address this knowledge gap, we investigated the effects of environmentally relevant concentrations of AMI (0, 10, 100, 500 and 1000â¯ng/L) on feeding, reproduction and key locomotor behaviours, including mating, in the freshwater gastropod, Biomphalaria glabrata over a period of 28 days. To further provide insight into the sensitivity of molluscs to ADDs, AMI concentrations (exposure water and hemolymph) were determined using a novel extraction method. The Fish Plasma Model (FPM), a critical tool for prioritization assessment of pharmaceuticals with potential to cause drug target-mediated effects in fish, was then evaluated for its applicability to molluscs for the first time. Disruption of food intake (1000â¯ng/L) and reproductive output (500 and 1000â¯ng/L) were observed at particularly low hemolymph levels of AMI, whereas locomotor behaviours were unaffected. Importantly, the predicted hemolymph levels of AMI using the FPM agreed closely with the measured levels. The findings suggest that hemolymph levels of AMI may be a useful indicator of feeding and reproductive disruptions in wild population of freshwater gastropods, and confirm the applicability of the FPM to molluscs for comparative pharmaceutical hazard identification.
Subject(s)
Amitriptyline , Antidepressive Agents, Tricyclic , Fresh Water , Reproduction , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/toxicity , Reproduction/drug effects , Amitriptyline/toxicity , Antidepressive Agents, Tricyclic/toxicity , Feeding Behavior/drug effects , Sexual Behavior, Animal/drug effectsABSTRACT
Cloprostenol, a synthetic derivative of prostaglandin F2α, effectively triggers functional and morphological regression of the corpus luteum (luteolysis). In rural Peru, the guinea pig (Cavia porcellus) holds significance within the local economy and serves as a valuable protein source. Enhancing reproductive efficiency is crucial to achieve uniformity in weight, age, and litter size across commercial systems. Thus, our study aimed to evaluate the effect of cloprostenol with and without male stimulation on the onset, duration, and intensity of oestrus in Peru guinea pigs. A total of 128 guinea pigs (120 females and eight males) between 8 and 12 months of age, weighing between 800 and 1200 g, were distributed in cages of 15 females per treatment. Cloprostenol sodium (0 [control], 0.20, 0.25, and 0.30 mg/animal) was IM administered to the groups with and without male stimulation. Four isolated males in individual cages, different from the one used for the treatment, were considered to detect oestrus. The oestrus intensity was assessed by observing sexual behaviour signs such as restlessness, moaning, attempts to mount, pelvic elevation, loin stretching, and vulvar inflammation. The oestrus was manifested 2 days after the administration of cloprostenol sodium. At a dose of 0.30 mg/animal and with male stimulation, the earliest oestrus was observed at 46.9 h. There was a reduction in the oestrus duration (p < .05) in guinea pigs that received the three doses of cloprostenol sodium compared to the control group. The highest percentages of frank oestrus intensity (66.7%) were strongly associated with the administered doses of cloprostenol sodium (p < .01). In conclusion, the cloprostenol sodium administration was proper for rapid oestrus induction in Peru guinea pigs.
Subject(s)
Cloprostenol , Estrus Synchronization , Animals , Guinea Pigs , Male , Female , Cloprostenol/pharmacology , Cloprostenol/administration & dosage , Estrus Synchronization/drug effects , Sexual Behavior, Animal/drug effects , Estrus/drug effects , PeruABSTRACT
The effects of an aqueous extract of Scabiosa atropurpurea L. (AES) on the reproduction potential of Queue Fine de l'Ouest rams were evaluated over 9 weeks. Eighteen mature (4-6 years old) rams (52.8 ± 2.6 kg) were divided into three groups. The control (C) group was fed oat hay ad libitum with 700 g of concentrate and the other two groups were fed the same diet supplemented with AES at 1 and 2 mg/kg body weight (AES1 and AES2, respectively). Ram sperm was collected with an artificial vagina (2 × 2 days/week) to evaluate sperm production and quality, antioxidant activity, the adenosine triphosphate (ATP) and calcium concentrations. Sexual behaviour and plasma testosterone concentrations were also investigated. The administration of AES improved sexual behaviour (the duration of contact and the number of lateral approaches). The addition of AES also improved individual spermatozoa motility (C: 71.7% ± 6.3%; AES1: 78.3% ± 4.9%; AES2: 83.8% ± 4.4%), the sperm concentration (C: 5.6 ± 0.36; AES1: 6.4 ± 0.81; AES2: 6.7 ± 0.52 × 109 spermatozoa/mL), the ATP ratio (C: 1 ± 0.08; AES1: 2.1 ± 0.08; AES2: 3.3 ± 0.08) and the calcium concentration (C: 5.6 ± 0.24; AES1: 7.7 ± 0.21; AES2: 8.1 ± 0.24 mmol/L). AES treatment decreased the percentage of abnormal sperm (C: 18.5% ± 1.2%; AES1: 16.2% ± 1.1%; AES2: 14.8% ± 0.94%) and DNA damage (C: 62%; AES1: 27%; AES2: 33%) and was associated with elevated seminal fluid antioxidant activity (C: 22 ± 0.27; AES1: 27.1 ± 1.08 and AES2: 27.5 ± 0.36 mmol Trolox equivalents/L) and plasma testosterone (C: 8.3 ± 0.7; AES1: 11.7 ± 0.4; AES2: 15 ± 0.7 ng/L). In conclusion, our study suggests that S. atropurpurea may be potentially useful to enhance libido and sperm production and quality in ram.
Subject(s)
Plant Extracts , Sexual Behavior, Animal , Spermatozoa , Male , Animals , Spermatozoa/drug effects , Sexual Behavior, Animal/drug effects , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Testosterone/blood , Semen Analysis/veterinary , Sperm Motility/drug effects , Dietary Supplements , Antioxidants/pharmacology , Diet/veterinary , Sperm Count , Calcium/analysis , Calcium/blood , Sheep, Domestic , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/analysisABSTRACT
Sub-estrus buffaloes do not exhibit estrus signs despite being cyclic contributing to extended service periods and inter-calving intervals causing significant economic loss. The present study described the effect of synthetic prostaglandin (PGF2α) on estrus behaviour, follicular and luteal morphometry, and serum estradiol (E2) and progesterone (P4) profile in sub-estrus buffaloes during the non-breeding season. The incidence of sub-estrus was 38.4% during the non-breeding season. The sub-estrus buffaloes (n = 33) were divided into two groups, viz., Control (n = 16) and PGF2α treatment (Inj. Cloprostenol 500 µg, i.m., n = 17). Estrus induction response was significantly greater in the treatment (100 vs. 18.75%, p < .001), and a relatively greater proportion of animals conceived in the treatment group (29.41 vs. 6.25%, p = .08). The time elapsed to induction of estrus and insemination following treatment was significantly lower in the treatment group than control. A significant increment in the follicle diameter (9.72 ± 0.45 vs. 13.00 ± 0.45 mm, P < .0001) and serum estradiol (E2) concentration (66.01 ± 11.92 vs. 104.9 ± 13.21 pg/mL, p = .003) observed at the post-treatment period in the PGF2α treatment group. At the same time, CL diameter was reduced significantly at a higher regression rate in the PGF2α treated buffaloes than those of control. Of the responded buffaloes, only 30% showed high-intensity estrus attributed to the expulsion of cervico-vaginal mucus (CVM), uterine tonicity, micturition, and mounting response by a teaser bull. From this study, it can be concluded that the administration of PGF2α could induce estrus in the sub-estrus buffaloes during the non-breeding season. Behavioural changes, along with sonographic observation of POF, regressing CL, and serum E2 and P4 concentration would be useful to determine the right time of insemination in sub-estrus buffaloes during non-breeding season.
Subject(s)
Buffaloes , Dinoprost , Estradiol , Estrus Synchronization , Estrus , Ovarian Follicle , Progesterone , Animals , Female , Buffaloes/physiology , Estradiol/pharmacology , Estradiol/blood , Progesterone/blood , Progesterone/pharmacology , Estrus/drug effects , Ovarian Follicle/drug effects , Dinoprost/pharmacology , Dinoprost/administration & dosage , Pregnancy , Seasons , Cloprostenol/pharmacology , Cloprostenol/administration & dosage , Corpus Luteum/drug effects , Corpus Luteum/physiology , Insemination, Artificial/veterinary , Sexual Behavior, Animal/drug effectsABSTRACT
Successful execution of behavior requires coordinated activity and communication between multiple cell types. Studies using the relatively simple neural circuits of invertebrates have helped to uncover how conserved molecular and cellular signaling events shape animal behavior. To understand the mechanisms underlying neural circuit activity and behavior, we have been studying a simple circuit that drives egg-laying behavior in the nematode worm Caenorhabditis elegans Here we show that the sex-specific, ventral C (VC) motor neurons are important for vulval muscle contractility and egg laying in response to serotonin. Ca2+ imaging experiments show the VCs are active during times of vulval muscle contraction and vulval opening, and optogenetic stimulation of the VCs promotes vulval muscle Ca2+ activity. Blocking VC neurotransmission inhibits egg laying in response to serotonin and increases the failure rate of egg-laying attempts, indicating that VC signaling facilitates full vulval muscle contraction and opening of the vulva for efficient egg laying. We also find the VCs are mechanically activated in response to vulval opening. Optogenetic stimulation of the vulval muscles is sufficient to drive VC Ca2+ activity and requires muscle contractility, showing the presynaptic VCs and the postsynaptic vulval muscles can mutually excite each other. Together, our results demonstrate that the VC neurons facilitate efficient execution of egg-laying behavior by coordinating postsynaptic muscle contractility in response to serotonin and mechanosensory feedback.SIGNIFICANCE STATEMENT Many animal motor behaviors are modulated by the neurotransmitters, serotonin and ACh. Such motor circuits also respond to mechanosensory feedback, but how neurotransmitters and mechanoreceptors work together to coordinate behavior is not well understood. We address these questions using the egg-laying circuit in Caenorhabditis elegans where we can manipulate presynaptic neuron and postsynaptic muscle activity in behaving animals while recording circuit responses through Ca2+ imaging. We find that the cholinergic VC motoneurons are important for proper vulval muscle contractility and egg laying in response to serotonin. Muscle contraction also activates the VCs, forming a positive feedback loop that promotes full contraction for egg release. In all, mechanosensory feedback provides a parallel form of modulation that shapes circuit responses to neurotransmitters.