Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
Add more filters

Publication year range
1.
BMC Plant Biol ; 24(1): 555, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877393

ABSTRACT

BACKGROUND: Selenium is essential for livestock and human health. The traditional way of adding selenium to livestock diets has limitations, and there is a growing trend to provide livestock with a safe and efficient source of selenium through selenium-enriched pasture. Therefore, this study was conducted to investigate the effects of selenium enrichment on fermentation characteristics, selenium content, selenium morphology, microbial community and in vitro digestion of silage alfalfa by using unenriched (CK) and selenium-enriched (Se) alfalfa as raw material for silage. RESULTS: In this study, selenium enrichment significantly increased crude protein, soluble carbohydrate, total selenium, and organic selenium contents of alfalfa silage fresh and post-silage samples, and it significantly decreased neutral detergent fiber and acid detergent fiber contents (p < 0.05). Selenium enrichment altered the form of selenium in plants, mainly in the form of SeMet and SeMeCys, which were significantly higher than that of CK (p < 0.05). Selenium enrichment could significantly increase the lactic acid content, reduce the pH value, change the diversity of bacterial community, promote the growth of beneficial bacteria such as Lactiplantibacillus and inhibit the growth of harmful bacteria such as Pantoea, so as to improve the fermentation quality of silage. The in vitro digestibility of dry matter (IVDMD), in vitro digestibility of acid detergent fibers (IVADFD) and in vitro digestibility of acid detergent fibers (IVNDFD) of silage after selenium enrichment were significantly higher than those of CK (p < 0.05). CONCLUSION: This study showed that the presence of selenium could regulate the structure of the alfalfa silage bacterial community and improve alfalfa silage fermentation quality. Selenium enrichment measures can change the morphology of selenium in alfalfa silage products, thus promoting the conversion of organic selenium.


Subject(s)
Fermentation , Medicago sativa , Microbiota , Selenium , Silage , Medicago sativa/metabolism , Silage/analysis , Selenium/metabolism , Animals , Animal Feed/analysis
2.
J Dairy Sci ; 107(9): 6983-6993, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38825097

ABSTRACT

Moving from conventional (CMS) to automatic (AMS) milking systems could affect milk quality. Moreover, the type and preservation methods of the forages used in the TMR, such as alfalfa hay (HTMR) or corn silage (STMR) have been demonstrated to modify milk composition. Thus, this study investigated the effect of implementing AMS and different diet forage types on the quality of Italian Holstein-Friesian bulk milk. Milk samples (n = 168) were collected monthly from 21 commercial farms in northern Italy during a period of 8 mo. Farms were categorized into 4 groups according to their milking system (CMS vs. AMS) and diet forage type (HTMR vs. STMR). Milk quality data were analyzed through the mixed procedure for repeated measurement of SAS with the milking system, diet forage type, and sampling day as fixed effects. Milking through the AMS led to lower milk fat, freezing point, and ß-LG A; longer coagulation time; and higher K content, pH, and ß-LG B than CMS. Cows fed STMR produced milk with greater fat, protein, casein, Mg content, titratable acidity, and ß-LG A, but with reduced curd firming time, freezing point, and ß-LG B than those fed HTMR. In conclusion, milk quality is not only altered by the diet's forage type and characteristics but also by the milking system.


Subject(s)
Animal Feed , Dairying , Diet , Lactation , Milk , Silage , Animals , Cattle , Milk/chemistry , Female , Diet/veterinary , Animal Feed/analysis , Dairying/methods , Silage/analysis , Italy
3.
J Dairy Sci ; 107(8): 5722-5737, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38460871

ABSTRACT

Variation in feed components contributes to variation and uncertainty of diets delivered to dairy cows. Forages often have a high inclusion rate (50% to 70% of DM fed) and variable composition, and thus are an important contributor to nutrient variability of delivered diets. Our objective was to quantify the variation and identify the main sources of variability in corn silage and alfalfa-grass haylage composition at harvest (fresh forage) and feed-out (fermented forage) on New York dairy farms. Corn silage and alfalfa-grass haylage were sampled on 8 New York commercial dairy farms during harvest in the summer and fall of 2020 and during their subsequent feed-out in the winter and spring of 2021. At harvest, a composite sample of fresh chopped forage of every 8-ha section of individual fields was collected from piles delivered for silo filling. During a 16-wk feed-out period, 2 independent samples of each forage were collected 3 times per week. The fields of origin of each forage sample during feed-out were identified and recorded using silo maps created at filling. A mixed-model analysis quantified the variance of corn silage DM, NDF, and starch and haylage DM, NDF, and CP content. Fixed effects included soil type, weather conditions, and management practices during harvest and feed-out, and random effects were farm, silo unit, field, and day. At harvest, between-farm variability was the largest source of variation for both corn silage and haylage, but within-farm sources of variation exceeded farm-to-farm variation for haylage at feed-out. At feed-out, haylage DM and NDF content had higher within-farm variability than corn silage. In contrast, corn silage starch showed higher within-farm variation at feed-out than haylage CP content. For DM content at feed-out, day-to-day variation was the most relevant source of within-farm variation for both forages. However, for the nutrient components at feed-out (NDF and CP for haylage; NDF and starch for corn silage) silo-to-silo variation was the largest source of variability. Weather conditions systematically explained a proportion of the farm-to-farm variability for both forages at harvest and feed-out. We concluded that because of the high farm-to-farm variation, corn silage and haylage must be sampled on individual farms. We also concluded that due to the high silo-to-silo variability, and the still significant day-to-day and field-to-field variability within-farm, corn silage and haylage should be sampled within individual silos to better capture changes in forage components at feed-out.


Subject(s)
Animal Feed , Diet , Medicago sativa , Silage , Zea mays , Silage/analysis , Animals , Cattle , Diet/veterinary , Animal Feed/analysis , Female , Nutrients/analysis , New York , Farms , Dairying
4.
Plant Dis ; 108(7): 2090-2095, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38393756

ABSTRACT

In Wisconsin, the use of brown midrib (BMR) corn (Zea mays) hybrids for ensiling and subsequent feeding to dairy cows is quite common. The overall milk production from cows fed silage from BMR hybrids is typically higher than those fed silage made from dual-purpose hybrids. Gibberella diseases (ear and stalk rot) caused by Gibberella zeae (anamorph; Fusarium graminearum) and the accompanying accumulation of the mycotoxin deoxynivalenol (DON) can be significant issues during the field production of BMR hybrids. The work presented here aimed to understand the role of hybrid class on the distribution of F. graminearum DNA and DON in the ear and stalk parts of corn for silage. An ear and stalk partitioned sample experiment was conducted on silage corn from field trials in Arlington, Wisconsin, in 2020 and 2021. The trials were arranged in a randomized complete block design in both years, including one BMR hybrid, one dual-purpose hybrid, and seven fungicide application regimes. Paired ear and stalk samples were physically separated, dried, and ground at harvest before determining the concentration of F. graminearum DNA and DON in each sample. Across both years, the main effects of hybrid, treatment, and plant part were not significant (P > 0.1) on DON concentration. However, the hybrid-by-plant part interaction effect was significant (P < 0.01). Ears of the BMR hybrid accumulated the most DON, whereas the dual-purpose hybrid ears had the lowest DON concentration. The concentrations of DON and F. graminearum DNA were significantly (P < 0.01) and highly correlated in the ear (r = 0.73) but not in the stalk (r = 0.09, P = 0.33). These findings suggest that DON accumulation in the corn ear is a major contributor in the difference observed in the total DON between the hybrid classes. Therefore, growers and researchers are encouraged to focus production and breeding on hybrids in both classes that accumulate less DON in ears, resulting in lower total DON in corn chopped for silage.


Subject(s)
Fungicides, Industrial , Fusarium , Silage , Trichothecenes , Zea mays , Zea mays/microbiology , Zea mays/chemistry , Fusarium/drug effects , Fusarium/genetics , Fusarium/chemistry , Trichothecenes/analysis , Silage/analysis , Fungicides, Industrial/pharmacology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Plant Stems/microbiology , Plant Stems/chemistry , Animals
5.
Sensors (Basel) ; 24(5)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38474933

ABSTRACT

Harvesting corn at the proper maturity is important for managing its nutritive value as livestock feed. Standing whole-plant moisture content is commonly utilized as a surrogate for corn maturity. However, sampling whole plants is time consuming and requires equipment not commonly found on farms. This study evaluated three methods of estimating standing moisture content. The most convenient and accurate approach involved predicting ear moisture using handheld near-infrared reflectance spectrometers and applying a previously established relationship to estimate whole-plant moisture from the ear moisture. The ear moisture model was developed using a partial least squares regression model in the 2021 growing season utilizing reference data from 610 corn plants. Ear moisture contents ranged from 26 to 80 %w.b., corresponding to a whole-plant moisture range of 55 to 81 %w.b. The model was evaluated with a validation dataset of 330 plants collected in a subsequent growing year. The model could predict whole-plant moisture in 2022 plants with a standard error of prediction of 2.7 and an R2P of 0.88. Additionally, the transfer of calibrations between three spectrometers was evaluated. This revealed significant spectrometer-to-spectrometer differences that could be mitigated by including more than one spectrometer in the calibration dataset. While this result shows promise for the method, further work should be conducted to establish calibration stability in a larger geographical region.


Subject(s)
Silage , Zea mays , Zea mays/chemistry , Silage/analysis , Farms , Least-Squares Analysis , Spectroscopy, Near-Infrared/methods
6.
J Environ Manage ; 354: 120327, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38359627

ABSTRACT

Sweet sorghum, as a seasonal energy crop, is rich in cellulose and hemicellulose that can be converted into biofuels. This work aims at investigating the effects of synergistic regulation of Pichia anomala and cellulase on ensiling quality and microbial community of sweet sorghum silages as a storage and pretreatment method. Furthermore, the combined pretreatment effects of ensiling and ball milling on sweet sorghum were evaluated by microstructure change and enzymatic hydrolysis. Based on membership function analysis, the combination of P. anomala and cellulase (PA + CE) significantly improved the silage quality by preserving organic components and promoting fermentation characteristics. The bioaugmented ensiling with PA + CE restructured the bacterial community by facilitating Lactobacillus and inhibiting undesired microorganisms by killer activity of P. anomala. The combined bioaugmented ensiling pretreatment with ball milling significantly increased the enzymatic hydrolysis efficiency (EHE) to 71%, accompanied by the increased specific surface area and decreased pore size/crystallinity of sweet sorghum. Moreover, the EHE after combined pretreatment was increased by 1.37 times compared with raw material. Hence, the combined pretreatment was demonstrated as a novel strategy to effectively enhance enzymatic hydrolysis of sweet sorghum.


Subject(s)
Cellulase , Saccharomycetales , Sorghum , Hydrolysis , Sorghum/chemistry , Sorghum/metabolism , Silage/analysis , Silage/microbiology , Cellulase/metabolism , Fermentation
7.
J Sci Food Agric ; 104(6): 3543-3558, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38146051

ABSTRACT

BACKGROUND: The high fibre content of whole plants of Broussonetia papyrifera limits its efficient utilization. Ferulic acid esterase (FAE), in combination with xylanase, can effectively cleave the lignin-carbohydrate complex, promoting the function of cellulase. However, little is known about the impact of these additives on silage. To effectively utilize natural woody plant resources, FAE-producing Lactiplantibacillus plantarum RO395, xylanase (XY) and cellulase (CE) were used to investigate the dynamic fermentation characteristics, fibre and nitrogen components and microbial community structure during B. papyrifera ensiling. RESULTS: Broussonetia papyrifera was either not treated (CK) or treated with FAE-producing lactic acid bacteria (LP), CE, XY, LP + CE, LP + XY or LP + CE + XY for 3, 7, 15, 30 or 60 days, respectively. In comparison with those in the CK treatment, the L. plantarum and enzyme treatments (LP + CE, LP + XY and LP + XY + CE), especially the LP + XY + CE treatment, significantly increased the lactic acid concentration and decreased the pH and the contents of acid detergent insoluble protein and NH3 -N (P < 0.05). Enzyme addition improved the degradation efficiency of lignocellulose, and a synergistic effect was observed after enzyme treatment in combination with LP; in addition, the lowest acid detergent fibre, neutral detergent fibre, hemicellulose and cellulose contents were detected after the LP + CE + XY treatment (P < 0.05). Moreover, CE, XY and LP additions significantly improved the microbial community structure, increased the relative abundance of Lactiplantibacillus and Firmicutes, and effectively inhibited undesirable bacterial (Enterobacter) growth during ensiling. CONCLUSION: FAE-producing L. plantarum and the two tested enzymes exhibited synergistic effects on improving the quality of silage, which indicates that this combination can serve as an efficient method for improved B. papyrifera silage utilization. © 2023 Society of Chemical Industry.


Subject(s)
Broussonetia , Carboxylic Ester Hydrolases , Cellulase , Lactobacillales , Microbiota , Lactobacillales/metabolism , Fermentation , Cellulase/metabolism , Broussonetia/metabolism , Nitrogen , Detergents , Carbohydrates , Silage/analysis
8.
J Sci Food Agric ; 104(6): 3428-3436, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38109283

ABSTRACT

BACKGROUND: Better utilization of rape straw can provide alternative strategies for sustainable ruminant and food production. The research reported here investigated changes in the carbohydrate composition of rape straw as a result of mixed ensiling with whole-crop corn or inoculated with nitrate, and the consequent effects on ruminal fermentation through in vitro batch culture. The three treatments included: rape straw and corn silage (RSTC), and ensiling treatment of rape straw with whole-crop corn (RSIC) or with calcium nitrate inoculation (RSICN). RESULTS: Ensiling treatment of rape straw and whole-crop corn or plus nitrate enriched lactic acid bacteria and lactate. The treatments broke the fiber surface connections of rape straw, leading to higher neutral detergent soluble (NDS) content and lower fiber content. Ensiling treatments led to greater (P < 0.05) dry matter degradation (DMD), molar proportions of propionate and butyrate, relative abundance of the phylum Bacteroidetes and genus Prevotella, and lower (P < 0.05) methane production in terms of g kg-1 DMD, molar proportions of acetate, and lower acetate to propionate ratio than the RSTC treatment. The RSICN treatment led to the lowest (P < 0.05) hydrogen concentration and methane production among the three treatments. CONCLUSION: Ensiling treatments of rape straw and whole-crop corn destroy the micro-structure of rape straw, promote substrate degradation by enriching the phylum Bacteroidetes and the genus Prevotella, and decrease methane production by favoring propionate and butyrate production. Nitrate inoculation in the ensiling treatment of rape straw and whole-crop corn further decreases methane production without influencing substrate degradation by providing an additional hydrogen sink. © 2023 Society of Chemical Industry.


Subject(s)
Nitrates , Propionates , Animals , Propionates/metabolism , Fermentation , Nitrates/metabolism , Rumen/metabolism , Carbohydrates , Silage/analysis , Butyrates/metabolism , Acetates , Methane/metabolism , Hydrogen/metabolism , Zea mays/chemistry , Digestion , Diet
9.
J Anim Physiol Anim Nutr (Berl) ; 108(4): 1096-1106, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38563274

ABSTRACT

This study investigated the effects of sumac and molasses on nutrient composition, in vitro degradability and fermentation quality of alfalfa silage. Alfalfa was ensiled in quadruplicate in vacuum jars untreated group (A) or after the following treatments: sumac group at 10% (AS), molasses group at 5% (AM), and sumac (10%) and molasses (5%) group (ASM). Silos (n = 64) were stored for 0, 21, 45 or 60 days. The results showed that dry matter (DM) contents of the AS, AM and ASM groups were statistically higher than the control group (p < 0.001). Only on the 21st day of fermentation the crude ash content of the AS group was found to be significantly higher than the other groups (p < 0.05). In vitro, DM and organic matter degradation values of the AMS group increased significantly (p < 0.001). A significant decrease in alfalfa silage's pH values was determined with sumac and molasses additives (p < 0.001). The ammonia nitrogen (NH3-N) values of the control, AS, AM and ASM groups at Day 60 were determined as 9.08%, 7.22%, 7.00% and 6.81% respectively (p < 0.05). The water-soluble carbohydrate (WSC) values of all groups on the 60th day were significantly decreased compared to the 0th day (p < 0.001). When the groups were evaluated within themselves, there was a statistically significant difference between the 0th and 60th day lactic acid values. The acetic acid content of the A group on the 60th day was found to be significantly higher than the other groups (p < 0.01). There was a significant decrease in propionic acid levels on Days 21, 45 and 60 compared to Day 0 of fermentation (p < 0.001). The highest butyric acid (BA) level was determined in the A group on the 21st, 45th and 60th days of fermentation (p < 0.05). In conclusion, sumac prevents proteolysis depending on its tannin content. It improves silage fermentation positively thanks to its organic acid content, while the molasses additive is effective in silage fermentation, mainly depending on the WSC level. However, it was determined that neither additive could reduce the silage pH to the appropriate value ranges due to the low doses, and they could not mainly prevent the formation of BA.


Subject(s)
Fermentation , Medicago sativa , Molasses , Silage , Medicago sativa/chemistry , Silage/analysis , Animals , Digestion/drug effects , Animal Nutritional Physiological Phenomena
10.
Trop Anim Health Prod ; 56(5): 171, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38769268

ABSTRACT

Elephant grass [Pennisetum purpureum Schumach. syn. Cenchrus purpureus (Schumach.) Morrone], also known as Napier grass and King grass, includes varieties Taiwán, Gigante, Merkerón, Maralfalfa, and others. The grass achieves high biomass production in tropical-subtropical, temperate, and arid areas. The high-water concentration of elephant grass suggests that ensiling could offer an alternative way to preserve the nutritional quality of the grass during storage, however, some considerations should be addressed because of the particularities of the grass. Ensiling elephant grass may produce adequate fermentation but could suffer effluent losses and subsequent losses of nutrients due to leaching. To improve fermentation and nutrient characteristics of elephant grass silages, several studies were conducted with the inclusion of additives. Lactic acid bacteria inocula have reduced pH and increased crude protein content of elephant grass silage, but aerobic stability of silages could be affected by the bacterial inoculation. There is limited information, however, on the potential of different silage inoculants to reduce growth of spoilage microorganisms during the aerobic phase of silage prepared with elephant grass. Exogenous fibrolytic enzymes also may improve elephant grass silage quality by enhancing microbial fiber-degradation with subsequent increase in lactic acid and its associated pH reduction. Another study approach to improve fermentation and nutritional quality of elephant grass silages involved the addition of different feeds at ensiling, including conventional feeds such corn, wheat, rice bran, and molasses or alternative feeds such as different dehydrated by-products obtained from the food industries of juice and jelly. In the manuscript, the presented scientific information shows the great potential of the different manipulations to improve the quality of elephant grass silages and with possible enhance of the economic profit and sustainability of livestock farming in the tropical areas.


Subject(s)
Fermentation , Nutritive Value , Silage , Silage/analysis , Animals , Cenchrus , Pennisetum
11.
Trop Anim Health Prod ; 56(2): 72, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38326674

ABSTRACT

This study aimed to assess the impact of adding forage cactus as an additive to the production of corn silage without the cob on the performance of feedlot sheep and subsequent silage losses. The experimental design was completely randomized, consisting of three treatments: corn silage without cob; 0% = 100% corn plant without the cob; 10% = 90% corn plant without cob + 10% forage cactus; 20% = 80% corn plant without cob + 20% forage cactus. Significant effects were observed for dry matter intake (P = 0.0201), organic matter (P = 0.0152), ether extract (P = 0.0001), non-fiber carbohydrates (P = 0.0007). Notably, nutrient digestibility showed significant differences in organic matter (P = 0.0187), ether extract (P = 0.0095), neutral detergent fiber (P = 0.0005), non-fiber carbohydrates (P = 0.0001), and metabolizable energy (P = 0.0001). Performance variables, including total weight gain (P = 0.0148), average daily weight gain (P = 0.0148), feeding efficiency, and rumination efficiency of dry matter (P = 0.0113), also exhibited significant effects. Consequently, it is recommended to include 20% forage cactus in corn silage, which, based on natural matter, helps meet animals' water needs through feed. This inclusion is especially vital in semi-arid regions and aids in reducing silage losses during post-opening silo disposal.


Subject(s)
Cactaceae , Zea mays , Animals , Female , Diet/veterinary , Dietary Fiber , Digestion , Ethers , Lactation , Milk , Plant Extracts , Rumen , Sheep , Silage/analysis , Weight Gain
12.
Trop Anim Health Prod ; 56(1): 41, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38214773

ABSTRACT

The objective of this research was to evaluate how pregnancy and feeding regimens affect the feed intake, digestibility, and efficiency of microbial nitrogen (N) synthesis in beef cows. Forty-four multiparous Nellore cows, comprising 32 gestating and 12 non-gestating cows, with an average weight of 451 ± 10 kg, were assigned to either a HIGH (ad libitum) or LOW (limited feeding at 1.2 times maintenance based on the NRC) feeding regimen during the gestational period. The dry matter intake (DMI) in kg/d was significantly greater (P < 0.01) in HIGH-fed cows. The DMI reduced (P < 0.05) in proportion to the shrunk body weight (SBW) as days of pregnancy (DOP) increased. The interaction between feeding level and DOP was significant (P < 0.05) for the digestibility of dry matter (DM), organic matter (OM), N compounds, ether extract (EE), ash- and protein-free neutral detergent fiber (NDFap), gross energy (GE), and total digestible nutrients (TDN). Except for DM and TDN digestibility, there was a reduced nutrient digestibility as gestation progressed in HIGH-fed cows. In contrast, digestibility increased as a function of DOP in LOW-fed cows. Microbial N synthesis (g/day) was significantly higher in HIGH-fed cows (P < 0.001) compared to LOW-fed cows. The efficiency of microbial N production per g of N intake and kg of digestible OM intake was (P = 0.021) and tended (P = 0.051) to be greater in LOW-fed cows compared to HIGH-fed cows. In summary, HIGH-fed Nellore cows reduce feed intake and digestibility with advancing gestation, affecting feed utilization. In addition, LOW-fed cows, showed higher microbial protein synthesis efficiency, potentially making them more nutrient-efficient under challenging nutritional conditions.


Subject(s)
Diet , Milk , Pregnancy , Female , Cattle , Animals , Milk/metabolism , Diet/veterinary , Lactation , Digestion , Silage/analysis , Nitrogen/metabolism , Animal Feed/analysis , Rumen/metabolism
13.
Trop Anim Health Prod ; 56(2): 104, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38483713

ABSTRACT

We investigated the effects of replacing ground corn with full-fat corn germ (FFCG) on milk production, milk composition, and nutrient use in cows fed sugarcane bagasse and cactus cladodes. Ten multiparous Girolando cows (average body weight 500 ± 66 kg, 90 ± 15 days in milk) were distributed in a replicated 5 × 5 Latin Square and assigned to five dietary treatments containing 0%, 25%, 50%, 75%, or 100% of full-fat corn germ in substitution to ground corn. Full-fat corn germ increased fat-corrected milk yield by 2.2 kg/day and the synthesis of fat, lactose, and total solids in milk by 94.4, 60.0, and 201.10 g/day, respectively (p < 0.05). Cows fed corn germ quadratically increased (p < 0.05) dry matter intake by 1.01 kg/day, with the intake of crude protein and total digestible nutrients following the same pattern. Conversely, the substitution of corn for full-fat corn germ linearly reduced (p < 0.05) the total non-fiber carbohydrate intake from 5.79 to 4.40 kg/d. Except for ether extract and non-fiber carbohydrates, full-fat corn germ did not alter (p > 0.05) nutrient digestibility. Cows fed corn germ excreted less (p < 0.05) urea-N in milk and urine N. These results demonstrate that full-fat corn germ can partially replace ground corn to enhance the milk production efficiency of crossbred cows fed cactus cladodes and sugarcane bagasse. Furthermore, including sugarcane bagasse in FFCG-supplemented diets prevents milk fat depression in cows fed cactus cladodes.


Subject(s)
Cactaceae , Saccharum , Female , Cattle , Animals , Milk/metabolism , Cellulose/metabolism , Zea mays , Lactation , Diet/veterinary , Dietary Carbohydrates/metabolism , Digestion , Rumen/metabolism , Silage/analysis
14.
Trop Anim Health Prod ; 56(3): 108, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38507148

ABSTRACT

Saharan population in Algeria still depending on bovine milk, which suffers from serious constraints undermining its sustainability. Camelus dromedarius milk has experienced growing demand following the emerging market requirements for livestock production and dairy farming over the past decade. The present work aimed at analysing the effect of nutritional regime on milk quality. The differences in pH, Acidity D°, Ash and Fats were significant. The pH was negatively influenced by the intensification conditions such as the much higher use of concentrates. The major constituents of milk were strongly and positively correlated with barley, wheat bran, TN/Kg.DM (Total Nitrogen/ Kg. Dry Matter), Kg.DM, Concentrates and daily watering. The results showed that a good energy-protein balance around 73 g PDI/UFL (Protein Digestible in the Intestine/Energetic Forage Unit for milk production) was beneficial for a better milk protein ratio. The use of corn, soybeans, palm dates and VM-premix (Vitamin Mineral) supplementation were also favourable to the synthesis of fats. Crude fiber and cell walls were better valued in the synthesis of fats with the availability of concentrates and the increasing of TN /Kg.DM and VM-premix rate in dietary regime. The vitamin C content elevate following high ratio of UFL /Kg.DM and PDI/UFL. For thus, the influence of nutritional status can lead to major improvements that need also more advanced and detailed studies.


Subject(s)
Camelus , Lactation , Female , Animals , Milk/chemistry , Milk Proteins/analysis , Zea mays , Fats/analysis , Fats/metabolism , Vitamins/metabolism , Diet/veterinary , Silage/analysis , Rumen/metabolism
15.
Trop Anim Health Prod ; 56(5): 173, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780716

ABSTRACT

This study investigated the effect of co-ensiled rice straw (RS) with whole sugar beet (SB) on lactating cows' performance. Ensiled rice straw (ERS) as control (CGS) was incorporated with immersed corn grains (CG) for 24 h, while the 2nd and 3rd ensiled RS (LSB and HSB) contained SB substituted of 50 and 100% of CG on an energy basis (total digestible nutrients, TDN), respectively. In the experimental diets, D1, D2, and D3, which include CGS, LSB, and HSB provided ad-libitum, respectively, while a concentrated feed mixture (2% of body weight) was offered. The population of lactic acid bacteria was slightly higher with fed HSB, relative to LSB and CGS. The OM, CP, EE, NFC, and TCH contents of CGS were slightly higher than LSB and HSB, while the opposite happened with the aNDFom, and ADFom contents. The digestibility of DM, OM, aNDFom, and ADFom of the D3 group was higher (P < 0.05) than in D1 and D2. The D3 recorded the highest values (P < 0.05) of silage consumption, and palatability. Milk production, fat-corrected milk (FCM), and energy-corrected milk (ECM) were (P < 0.05) higher for cows fed D3 compared with D1 and D2. Fat, protein, lactose, and total solids were trending on the same track. The feed conversion ratio (FCR) of cows fed diet D3 was better than cows fed D1 diet. The level of glucose in the blood increased (P < 0.05) significantly with feeding on HSB than LSB, which was significantly (P < 0.05) higher compared to CGS. In conclusion, co-ensiling of RS with the whole SB plant consider a good method to improve its nutritional value.


Subject(s)
Beta vulgaris , Diet , Lactation , Oryza , Silage , Animals , Cattle/physiology , Female , Beta vulgaris/chemistry , Lactation/physiology , Oryza/chemistry , Silage/analysis , Diet/veterinary , Animal Nutritional Physiological Phenomena , Animal Feed/analysis , Milk/chemistry , Milk/metabolism , Digestion
16.
Trop Anim Health Prod ; 56(4): 153, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717731

ABSTRACT

Ensilage of refused fruit with forage is a viable approach to increase resource use in ruminant feed. The objective of this study was to investigate the impact of ensiling refused melon fruit (RMF) with Canarana grass on the intake, apparent digestibility, serum biochemistry, performance, carcass traits, and meat attributes of feedlot lambs. Four distinct silage treatment types were prepared by ensiling RMF at 0 g/kg (control), 70 g/kg, 140 g/kg, and 210 g/kg (as fed) with Canarana grass. Twenty-eight male Santa Inês lambs (7 lambs per treatment), initially weighing 22.3 ± 1.0 kg at 120 days of age, were distributed in a completely randomized design and confined for a total of 96 days, including a 23-day adaptation period and 73 experimental days in a feedlot. The lambs received the treatment-silage in diets as a complete mixture with a roughage: concentrate ratio of 30:70. The inclusion of RMF in Canarana grass ensilage decreased (P < 0.05) the lambs' intake of dry matter, crude protein and metabolisable energy. The inclusion of RMF in ensilage had a quadratic effect (P < 0.05) on the digestibility of non-fibrous carbohydrates. The serum total protein and cholesterol levels decreased (P < 0.05) with the inclusion of RMF in the ensilage, but we observed no effect on the final weight and average daily gain of the lambs. The feed efficiency increased (P < 0.05) by including RMF in the Canarana grass ensilage. The RMF in the ensilage did not influence cold carcass weight and yield. The fat content of the meat decreased (P < 0.05) with the inclusion of RMF in the ensilage. It is recommended the inclusion of up to 210 g/kg of RMF in Canarana grass ensilage to increase feed efficiency and avoid impacts on the performance and carcass attributes of confined lambs.


Subject(s)
Diet , Digestion , Sheep, Domestic , Silage , Animals , Digestion/drug effects , Male , Silage/analysis , Diet/veterinary , Sheep, Domestic/physiology , Sheep, Domestic/growth & development , Sheep, Domestic/blood , Animal Nutritional Physiological Phenomena , Animal Feed/analysis , Cucurbitaceae/chemistry , Fruit/chemistry , Random Allocation
17.
Trop Anim Health Prod ; 56(6): 201, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990398

ABSTRACT

The aim of this study was to explore the effect of replacing protein pellets with soybean grain in high-concentrate diets with or without the addition of silage, on the intake, digestibility, and rumen and blood parameters of feedlot cattle in tropical regions. Four cannulated, crossbred steers were used, 4.5 ± 0.5 years old, with an average weight of 685.55 ± 111.78 kg. The steers were distributed in a 4 × 4 Latin square, in a 2 × 2 factorial scheme (two sources of protein: protein pellets or whole soybean grain, with or without added dietary bulk). There was no effect (P ≥ 0.109) from the interaction between the source of protein and the addition of silage to the diet on dry matter (DM) and nutrient intake, or the digestibility (P ≥ 0.625) of DM or crude protein (CP). However, both factors affected (P ≤ 0.052) the intake of DM, neutral detergent fiber (NDF), and non-fiber carbohydrates (NFC), as well as the independent digestibility (P ≤ 0.099) of fat, NFC, total carbohydrates (TC), and total cholesterol concentration. There was an effect (P ≤ 0.053) from the interaction between the source of protein and the addition of silage to the diet on the digestibility of NDF and total digestible nutrients (TDN), as well as on the glycose concentration (P = 0.003). Blood parameters (i.e. protein, albumin, creatinine, triglycerides, aspartate aminotransferase (AST), and alanine aminotransferase (ALT)) were not affected (P ≥ 0.139) by the source of protein, the addition of silage, or their interaction. Lastly, including 150 g/kg silage DM in a high-grain diet, and using soybean grain as a source of protein in substitution of protein pellet could be a suitable nutritional strategy to ensure adequate DM and nutrient intake and digestibility, with no detrimental effects on rumen and blood parameters of feedlot cattle in the tropics.


Subject(s)
Animal Feed , Animal Nutritional Physiological Phenomena , Diet , Digestion , Glycine max , Rumen , Tropical Climate , Animals , Cattle/blood , Cattle/physiology , Cattle/metabolism , Rumen/metabolism , Male , Animal Feed/analysis , Digestion/physiology , Diet/veterinary , Silage/analysis , Dietary Proteins/metabolism , Dietary Proteins/administration & dosage , Nutrients/metabolism
18.
Trop Anim Health Prod ; 56(4): 140, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38656670

ABSTRACT

This study evaluated three continuous grazing systems: Brachiaria Brizantha, Clitoria ternatea and naturalized pastures, complemented with commercial concentrate and C. ternatea silage on milk yield, nutrient use and enteric methane (CH4) emissions. Nine multiparous cows of local Zebu breeds, with an average weight of 448 ± 87 kg, were used. The chemical composition of the food was determined. Live weight, milk production, and quality were assessed. Furthermore, serum urea, urea nitrogen, creatinine and glucose in blood were monitored, and nitrogen use efficiency were calculated. Enteric methane (CH4) emissions were estimated using Tier-2 methodology. A 3 × 3 latin square experimental design was applied. The grazing systems of B. brizantha and C. ternatea had the greater live weights of 465.8 and 453.3 kg/cow, although the latter is similar to naturalized pasture. Milk production and quality were not affected by grazing system, with the exception of the non-fat solids, where the C. ternatea system was lower (102.2 g/kg) than the other grazing systems. The crude protein and N intake, and N excretion in feces and urine were lower in naturalized pasture systems (1139.0 g/day). N outputs in milk was high in the C. ternatea system (56.3 g/cow/day). The naturalized pastures systems showed the better feed use efficiency (25.7%) compared to others. Serum urea and blood urea nitrogen were greater in B. brizantha followed by C. ternatea. Enteric CH4 emissions were indifferent among grazing systems when expressed as a percentage of greenhouse gases (7.1%). In conclusion, the grazing C. ternatea supplemented with commercial concentrate and C. ternatea silage maintains milk production and quality, reduced cow/day emissions (by 2.5%) and lowered energy losses as methane.


Subject(s)
Animal Feed , Lactation , Methane , Milk , Animals , Cattle/physiology , Methane/analysis , Methane/metabolism , Female , Lactation/physiology , Milk/chemistry , Milk/metabolism , Animal Feed/analysis , Diet/veterinary , Animal Husbandry/methods , Silage/analysis , Animal Nutritional Physiological Phenomena , Brachiaria , Nitrogen/metabolism , Nitrogen/analysis , Nutrients/analysis , Nutrients/metabolism , Fabaceae/chemistry
19.
Trop Anim Health Prod ; 56(1): 28, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38151553

ABSTRACT

The objective was to assess the in vitro rumen fermentation characteristics, methane production, and biohydrogenation of unsaturated fatty acids of diets with two protected fat (PF) sources from soybean or linseed oil, two levels of PF (0 and 6%) and two forage sources (canola silage (CS) or alfalfa hay (AH)) in a factorial 2x2x2 completely randomised design. Only fatty acids content at final incubation was affected (P<0.05) by triple interaction, where C18:2 was highest with AH plus 6% soybean PF (4.41mg/g DM), while C18:3 was with CS plus 6% linseed oil protected (1.98mg/g DM). C18:2 cis-9 trans-11 had high concentration (308 mg/g DM; P<0.05) with AH plus 6% PF regardless PF type, and C18:1 trans-11 was higher with 6% PF than without PF (13.41 vs 7.89 mg/g DM). Cumulative methane production was not affected by treatments (0.9973 ± 0.1549 mmol/g DM; P>0.05). Gas production and in vitro NDF digestibility were lower with 6% PF of linseed than soybean (160.88 vs 150.97 ml; and 69.28vs 62.89 %, respectively P<0.05). With linseed PF the NH3-N concentration was highest in CS than AH (41.27 vs 27.95 mg/dL; P<0.05) but IVDMD had the opposite result (78.54 vs 85.04). In conclusion, although methane production was not affected and in vitro digestibility and gas production were reduced with linseed PF, the concentration of C18:3 and C18:1 trans-11 was increased, which could improve the lipid profile of milk. The negative effects on digestibility were less with AH than of CS regardless of PF type and level.


Subject(s)
Flax , Linseed Oil , Female , Animals , Linseed Oil/metabolism , Lactation , Rumen/metabolism , Diet/veterinary , Fatty Acids, Unsaturated , Fatty Acids/metabolism , Milk , Silage/analysis , Methane/metabolism , Fermentation , Zea mays
20.
PLoS One ; 19(4): e0296447, 2024.
Article in English | MEDLINE | ID: mdl-38635552

ABSTRACT

The aim of this study was to develop and validate regression models to predict the chemical composition and ruminal degradation parameters of corn silage by near-infrared spectroscopy (NIR). Ninety-four samples were used to develop and validate the models to predict corn silage composition. A subset of 23 samples was used to develop and validate models to predict ruminal degradation parameters of corn silage. Wet chemistry methods were used to determine the composition values and ruminal degradation parameters of the corn silage samples. The dried and ground samples had their NIR spectra scanned using a poliSPECNIR 900-1700 model NIR sprectrophotometer (ITPhotonics S.r.l, Breganze, IT.). The models were developed using regression by partial least squares (PLS), and the ordered predictor selection (OPS) method was used. In general, the regression models obtained to predict the corn silage composition (P>0.05), except the model for organic matter (OM), adequately estimated the studied properties. It was not possible to develop prediction models for the potentially degradable fraction in the rumen of OM and crude protein and the degradation rate of OM. The regression models that could be obtained to predict the ruminal degradation parameters showed correlation coefficient of calibration between 0.530 and 0.985. The regression models developed to predict CS composition accurately estimated the CS composition, except the model for OM. The NIR has potential to be used by nutritionists as a rapid prediction tool for ruminal degradation parameters in the field.


Subject(s)
Silage , Zea mays , Animals , Silage/analysis , Spectroscopy, Near-Infrared , Rumen/metabolism , Digestion , Fermentation , Diet
SELECTION OF CITATIONS
SEARCH DETAIL