Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.537
Filter
Add more filters

Publication year range
1.
Cell ; 184(19): 4996-5014.e26, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34534464

ABSTRACT

CD8 T cell responses against different tumor neoantigens occur simultaneously, yet little is known about the interplay between responses and its impact on T cell function and tumor control. In mouse lung adenocarcinoma, we found that immunodominance is established in tumors, wherein CD8 T cell expansion is predominantly driven by the antigen that most stably binds MHC. T cells responding to subdominant antigens were enriched for a TCF1+ progenitor phenotype correlated with response to immune checkpoint blockade (ICB) therapy. However, the subdominant T cell response did not preferentially benefit from ICB due to a dysfunctional subset of TCF1+ cells marked by CCR6 and Tc17 differentiation. Analysis of human samples and sequencing datasets revealed that CCR6+ TCF1+ cells exist across human cancers and are not correlated with ICB response. Vaccination eliminated CCR6+ TCF1+ cells and dramatically improved the subdominant response, highlighting a strategy to optimally engage concurrent neoantigen responses against tumors.


Subject(s)
Adenocarcinoma of Lung/immunology , Antigens, Neoplasm/immunology , CD8-Positive T-Lymphocytes/immunology , Hepatocyte Nuclear Factor 1-alpha/metabolism , Lung Neoplasms/immunology , Stem Cells/immunology , Amino Acid Sequence , Animals , CTLA-4 Antigen/metabolism , Epitopes , Female , Humans , Immune Checkpoint Inhibitors/pharmacology , Lung Neoplasms/pathology , Mice , Peptides/chemistry , Phenotype , Programmed Cell Death 1 Receptor/metabolism , RNA-Seq , Receptors, Antigen, T-Cell/metabolism , Receptors, CCR6/metabolism , Single-Cell Analysis , Vaccination
2.
Annu Rev Immunol ; 31: 285-316, 2013.
Article in English | MEDLINE | ID: mdl-23298209

ABSTRACT

Mesenchymal stem cells (MSCs) are self-renewing precursor cells that can differentiate into bone, fat, cartilage, and stromal cells of the bone marrow. Recent studies suggest that MSCs themselves are critical for forming a niche that maintains hematopoietic stem cells (HSCs). The ease by which human MSC-like and stromal progenitor cells can be isolated from the bone marrow and other tissues has led to the rapid development of clinical investigations exploring their anti-inflammatory properties, tissue preservation capabilities, and regenerative potential. However, the identity of genuine MSCs and their specific contributions to these various beneficial effects have remained enigmatic. In this article, we examine the definition of MSCs and discuss the importance of rigorously characterizing their stem cell activity. We review their role and that of other putative niche constituents in the regulation of bone marrow HSCs. Additionally, how MSCs and their stromal progeny alter immune function is discussed, as well as potential therapeutic implications.


Subject(s)
Hematopoietic Stem Cell Transplantation/methods , Mesenchymal Stem Cell Transplantation/methods , Regenerative Medicine/methods , Animals , Bone Marrow Cells/immunology , Bone Marrow Cells/pathology , Humans , Inflammation/immunology , Inflammation/pathology , Inflammation/therapy , Stem Cells/immunology , Stromal Cells/immunology , Stromal Cells/pathology , Stromal Cells/transplantation
3.
Immunity ; 57(5): 933-935, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38749394

ABSTRACT

Stem cells heal wounds. In this issue of Immunity, Luan et al. demonstrate that epidermal stem cells orchestrate the recruitment of regulatory T (Treg) cells and neutrophils during wound healing. Treg cells facilitate a tolerogenic environment to protect epithelial regeneration while neutrophils promote inflammation to ward off infection.


Subject(s)
Neutrophils , Stem Cells , T-Lymphocytes, Regulatory , Wound Healing , Wound Healing/immunology , Humans , Stem Cells/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Neutrophils/immunology
4.
Immunity ; 57(5): 1071-1086.e7, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38677291

ABSTRACT

Following tissue damage, epithelial stem cells (SCs) are mobilized to enter the wound, where they confront harsh inflammatory environments that can impede their ability to repair the injury. Here, we investigated the mechanisms that protect skin SCs within this inflammatory environment. Characterization of gene expression profiles of hair follicle SCs (HFSCs) that migrated into the wound site revealed activation of an immune-modulatory program, including expression of CD80, major histocompatibility complex class II (MHCII), and CXC motif chemokine ligand 5 (CXCL5). Deletion of CD80 in HFSCs impaired re-epithelialization, reduced accumulation of peripherally generated Treg (pTreg) cells, and increased infiltration of neutrophils in wounded skin. Importantly, similar wound healing defects were also observed in mice lacking pTreg cells. Our findings suggest that upon skin injury, HFSCs establish a temporary protective network by promoting local expansion of Treg cells, thereby enabling re-epithelialization while still kindling inflammation outside this niche until the barrier is restored.


Subject(s)
B7-1 Antigen , Hair Follicle , Inflammation , Skin , Stem Cells , T-Lymphocytes, Regulatory , Wound Healing , Animals , T-Lymphocytes, Regulatory/immunology , Mice , Wound Healing/immunology , Skin/immunology , Skin/injuries , Skin/pathology , Stem Cells/immunology , Stem Cells/metabolism , Inflammation/immunology , Hair Follicle/immunology , B7-1 Antigen/metabolism , Mice, Inbred C57BL , Mice, Knockout , Re-Epithelialization/immunology , Cell Movement/immunology , Cell Proliferation
5.
Cell ; 175(4): 908-920, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30388451

ABSTRACT

Stem cells regenerate tissues in homeostasis and under stress. By taking cues from their microenvironment or "niche," they smoothly transition between these states. Immune cells have surfaced as prominent members of stem cell niches across the body. Here, we draw parallels between different stem cell niches to explore the context-specific interactions that stem cells have with tissue-resident and recruited immune cells. We also highlight stem cells' innate ability to sense and respond to stress and the enduring memory that forms from such encounters. This fascinating crosstalk holds great promise for novel therapies in inflammatory diseases and regenerative medicine.


Subject(s)
Stem Cells/immunology , Animals , Homeostasis , Humans , Immune System Diseases/immunology , Immune System Diseases/pathology , Stem Cell Niche/immunology
6.
Nat Immunol ; 20(3): 337-349, 2019 03.
Article in English | MEDLINE | ID: mdl-30778251

ABSTRACT

Stem cells are maintained by transcriptional programs that promote self-renewal and repress differentiation. Here, we found that the transcription factor c-Myb was essential for generating and maintaining stem cells in the CD8+ T cell memory compartment. Following viral infection, CD8+ T cells lacking Myb underwent terminal differentiation and generated fewer stem cell-like central memory cells than did Myb-sufficient T cells. c-Myb acted both as a transcriptional activator of Tcf7 (which encodes the transcription factor Tcf1) to enhance memory development and as a repressor of Zeb2 (which encodes the transcription factor Zeb2) to hinder effector differentiation. Domain-mutagenesis experiments revealed that the transactivation domain of c-Myb was necessary for restraining differentiation, whereas its negative regulatory domain was critical for cell survival. Myb overexpression enhanced CD8+ T cell memory formation, polyfunctionality and recall responses that promoted curative antitumor immunity after adoptive transfer. These findings identify c-Myb as a pivotal regulator of CD8+ T cell stemness and highlight its therapeutic potential.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunologic Memory/immunology , Neoplasms, Experimental/immunology , Proto-Oncogene Proteins c-myb/immunology , Stem Cells/immunology , Animals , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/virology , Cell Differentiation/immunology , Cell Line, Tumor , HEK293 Cells , Humans , Immunologic Memory/genetics , Lymphocytic Choriomeningitis/immunology , Lymphocytic Choriomeningitis/metabolism , Lymphocytic Choriomeningitis/virology , Lymphocytic choriomeningitis virus/immunology , Lymphocytic choriomeningitis virus/physiology , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/virology , Proto-Oncogene Proteins c-myb/genetics , Proto-Oncogene Proteins c-myb/metabolism , Stem Cells/metabolism , Stem Cells/virology , T Cell Transcription Factor 1/genetics , T Cell Transcription Factor 1/immunology , T Cell Transcription Factor 1/metabolism
7.
Nat Immunol ; 19(7): 711-722, 2018 07.
Article in English | MEDLINE | ID: mdl-29925996

ABSTRACT

Plasmacytoid dendritic cells (pDCs) are an immune subset devoted to the production of high amounts of type 1 interferons in response to viral infections. Whereas conventional dendritic cells (cDCs) originate mostly from a common dendritic cell progenitor (CDP), pDCs have been shown to develop from both CDPs and common lymphoid progenitors. Here, we found that pDCs developed predominantly from IL-7R+ lymphoid progenitor cells. Expression of SiglecH and Ly6D defined pDC lineage commitment along the lymphoid branch. Transcriptional characterization of SiglecH+Ly6D+ precursors indicated that pDC development requires high expression of the transcription factor IRF8, whereas pDC identity relies on TCF4. RNA sequencing of IL-7R+ lymphoid and CDP-derived pDCs mirrored the heterogeneity of mature pDCs observed in single-cell analysis. Both mature pDC subsets are able to secrete type 1 interferons, but only myeloid-derived pDCs share with cDCs their ability to process and present antigen.


Subject(s)
Dendritic Cells/immunology , Stem Cells/immunology , Animals , B-Lymphocytes/cytology , Cell Lineage , Cells, Cultured , Dendritic Cells/cytology , Female , GTPase-Activating Proteins/metabolism , Interferon Regulatory Factors/metabolism , Lectins/metabolism , Male , Mice , Receptors, Cell Surface/metabolism , Receptors, Interleukin-7/metabolism , Trans-Activators/metabolism , Transcription, Genetic
8.
Nature ; 629(8010): 201-210, 2024 May.
Article in English | MEDLINE | ID: mdl-38600376

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapy has transformed the treatment of haematological malignancies such as acute lymphoblastic leukaemia, B cell lymphoma and multiple myeloma1-4, but the efficacy of CAR T cell therapy in solid tumours has been limited5. This is owing to a number of factors, including the immunosuppressive tumour microenvironment that gives rise to poorly persisting and metabolically dysfunctional T cells. Analysis of anti-CD19 CAR T cells used clinically has shown that positive treatment outcomes are associated with a more 'stem-like' phenotype and increased mitochondrial mass6-8. We therefore sought to identify transcription factors that could enhance CAR T cell fitness and efficacy against solid tumours. Here we show that overexpression of FOXO1 promotes a stem-like phenotype in CAR T cells derived from either healthy human donors or patients, which correlates with improved mitochondrial fitness, persistence and therapeutic efficacy in vivo. This work thus reveals an engineering approach to genetically enforce a favourable metabolic phenotype that has high translational potential to improve the efficacy of CAR T cells against solid tumours.


Subject(s)
Forkhead Box Protein O1 , Immunotherapy, Adoptive , Neoplasms , Receptors, Chimeric Antigen , Stem Cells , T-Lymphocytes , Humans , Mice , Cell Line, Tumor , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O1/genetics , Mitochondria/metabolism , Phenotype , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/cytology , Tumor Microenvironment/immunology , Stem Cells/cytology , Stem Cells/immunology , Stem Cells/metabolism , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/therapy
9.
Nature ; 629(8011): 417-425, 2024 May.
Article in English | MEDLINE | ID: mdl-38658748

ABSTRACT

Cancer-specific TCF1+ stem-like CD8+ T cells can drive protective anticancer immunity through expansion and effector cell differentiation1-4; however, this response is dysfunctional in tumours. Current cancer immunotherapies2,5-9 can promote anticancer responses through TCF1+ stem-like CD8+ T cells in some but not all patients. This variation points towards currently ill-defined mechanisms that limit TCF1+CD8+ T cell-mediated anticancer immunity. Here we demonstrate that tumour-derived prostaglandin E2 (PGE2) restricts the proliferative expansion and effector differentiation of TCF1+CD8+ T cells within tumours, which promotes cancer immune escape. PGE2 does not affect the priming of TCF1+CD8+ T cells in draining lymph nodes. PGE2 acts through EP2 and EP4 (EP2/EP4) receptor signalling in CD8+ T cells to limit the intratumoural generation of early and late effector T cell populations that originate from TCF1+ tumour-infiltrating CD8+ T lymphocytes (TILs). Ablation of EP2/EP4 signalling in cancer-specific CD8+ T cells rescues their expansion and effector differentiation within tumours and leads to tumour elimination in multiple mouse cancer models. Mechanistically, suppression of the interleukin-2 (IL-2) signalling pathway underlies the PGE2-mediated inhibition of TCF1+ TIL responses. Altogether, we uncover a key mechanism that restricts the IL-2 responsiveness of TCF1+ TILs and prevents anticancer T cell responses that originate from these cells. This study identifies the PGE2-EP2/EP4 axis as a molecular target to restore IL-2 responsiveness in anticancer TILs to achieve cancer immune control.


Subject(s)
CD8-Positive T-Lymphocytes , Cell Proliferation , Dinoprostone , Lymphocytes, Tumor-Infiltrating , Neoplasms , Stem Cells , Tumor Escape , Animals , Female , Humans , Male , Mice , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation , Cell Line, Tumor , Dinoprostone/metabolism , Disease Models, Animal , Hepatocyte Nuclear Factor 1-alpha/metabolism , Interleukin-2 , Lymph Nodes/cytology , Lymph Nodes/immunology , Lymphocytes, Tumor-Infiltrating/cytology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Mice, Inbred C57BL , Neoplasms/immunology , Neoplasms/prevention & control , Receptors, Prostaglandin E, EP2 Subtype/deficiency , Receptors, Prostaglandin E, EP2 Subtype/metabolism , Receptors, Prostaglandin E, EP4 Subtype/deficiency , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Signal Transduction , Stem Cells/cytology , Stem Cells/immunology , Stem Cells/metabolism , Tumor Escape/immunology
10.
Immunity ; 52(1): 83-95.e4, 2020 01 14.
Article in English | MEDLINE | ID: mdl-31882362

ABSTRACT

Lymphoid tissue inducer (LTi) cells are regarded as a subset of innate lymphoid cells (ILCs). However, these cells are not derived from the ILC common progenitor, which generates other ILC subsets and is defined by the expression of the transcription factor PLZF. Here, we examined transcription factor(s) determining the fate of LTi progenitors versus non-LTi ILC progenitors. Conditional deletion of Gata3 resulted in the loss of PLZF+ non-LTi progenitors but not the LTi progenitors that expressed the transcription factor RORγt. Consistently, PLZF+ non-LTi progenitors expressed high amounts of GATA3, whereas GATA3 expression was low in RORγt+ LTi progenitors. The generation of both progenitors required the transcriptional regulator Id2, which defines the common helper-like innate lymphoid progenitor (ChILP), but not cytokine signaling. Nevertheless, low GATA3 expression was necessary for the generation of functionally mature LTi cells. Thus, differential expression of GATA3 determines the fates and functions of distinct ILC progenitors.


Subject(s)
GATA3 Transcription Factor/biosynthesis , Stem Cells/cytology , T-Lymphocyte Subsets/cytology , T-Lymphocytes, Helper-Inducer/cytology , T-Lymphocytes, Helper-Inducer/immunology , Animals , Cell Lineage/immunology , Cells, Cultured , GATA3 Transcription Factor/genetics , Inhibitor of Differentiation Protein 2/metabolism , Interleukin Receptor Common gamma Subunit/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Nuclear Receptor Subfamily 1, Group F, Member 3/biosynthesis , Programmed Cell Death 1 Receptor/biosynthesis , Promyelocytic Leukemia Zinc Finger Protein/biosynthesis , Stem Cells/immunology , T-Lymphocyte Subsets/immunology
11.
Immunity ; 50(1): 195-211.e10, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30635237

ABSTRACT

Checkpoint blockade mediates a proliferative response of tumor-infiltrating CD8+ T lymphocytes (TILs). The origin of this response has remained elusive because chronic activation promotes terminal differentiation or exhaustion of tumor-specific T cells. Here we identified a subset of tumor-reactive TILs bearing hallmarks of exhausted cells and central memory cells, including expression of the checkpoint protein PD-1 and the transcription factor Tcf1. Tcf1+PD-1+ TILs mediated the proliferative response to immunotherapy, generating both Tcf1+PD-1+ and differentiated Tcf1-PD-1+ cells. Ablation of Tcf1+PD-1+ TILs restricted responses to immunotherapy. Tcf1 was not required for the generation of Tcf1+PD-1+ TILs but was essential for the stem-like functions of these cells. Human TCF1+PD-1+ cells were detected among tumor-reactive CD8+ T cells in the blood of melanoma patients and among TILs of primary melanomas. Thus, immune checkpoint blockade relies not on reversal of T cell exhaustion programs, but on the proliferation of a stem-like TIL subset.


Subject(s)
Antibodies, Monoclonal/therapeutic use , CD8-Positive T-Lymphocytes/immunology , Hepatocyte Nuclear Factor 1-alpha/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Melanoma/therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Stem Cells/immunology , T-Lymphocyte Subsets/immunology , Animals , CD8-Positive T-Lymphocytes/drug effects , Cell Differentiation , Cell Proliferation , Hepatitis A Virus Cellular Receptor 2/antagonists & inhibitors , Hepatocyte Nuclear Factor 1-alpha/genetics , Humans , Immunotherapy , Lymphocytes, Tumor-Infiltrating/drug effects , Melanoma/immunology , Melanoma, Experimental , Mice , Mice, Inbred C57BL
12.
Immunity ; 50(2): 462-476.e8, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30770246

ABSTRACT

Although the fetal immune system is considered tolerogenic, preterm infants can suffer from severe intestinal inflammation, including necrotizing enterocolitis (NEC). Here, we demonstrate that human fetal intestines predominantly contain tumor necrosis factor-α (TNF-α)+CD4+CD69+ T effector memory (Tem) cells. Single-cell RNA sequencing of fetal intestinal CD4+ T cells showed a T helper 1 phenotype and expression of genes mediating epithelial growth and cell cycling. Organoid co-cultures revealed a dose-dependent, TNF-α-mediated effect of fetal intestinal CD4+ T cells on intestinal stem cell (ISC) development, in which low T cell numbers supported epithelial development, whereas high numbers abrogated ISC proliferation. CD4+ Tem cell frequencies were higher in inflamed intestines from preterm infants with NEC than in healthy infant intestines and showed enhanced TNF signaling. These findings reveal a distinct population of TNF-α-producing CD4+ T cells that promote mucosal development in fetal intestines but can also mediate inflammation upon preterm birth.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Fetus/immunology , Immunologic Memory/immunology , Intestines/immunology , Tumor Necrosis Factor-alpha/immunology , Animals , CD4-Positive T-Lymphocytes/metabolism , Epithelial Cells/cytology , Epithelial Cells/immunology , Epithelial Cells/metabolism , Female , Fetus/metabolism , Humans , Infant, Newborn , Intestinal Mucosa/embryology , Intestinal Mucosa/growth & development , Intestinal Mucosa/immunology , Intestines/embryology , Intestines/growth & development , Mice, Inbred C57BL , Pregnancy , Stem Cells/cytology , Stem Cells/immunology , Stem Cells/metabolism , Th1 Cells/immunology , Th1 Cells/metabolism , Tumor Necrosis Factor-alpha/metabolism
13.
Nature ; 602(7895): 156-161, 2022 02.
Article in English | MEDLINE | ID: mdl-34847567

ABSTRACT

CD8 T cell-mediated autoimmune diseases result from the breakdown of self-tolerance mechanisms in autoreactive CD8 T cells1. How autoimmune T cell populations arise and are sustained, and the molecular programmes defining the autoimmune T cell state, are unknown. In type 1 diabetes, ß-cell-specific CD8 T cells destroy insulin-producing ß-cells. Here we followed the fate of ß-cell-specific CD8 T cells in non-obese diabetic mice throughout the course of type 1 diabetes. We identified a stem-like autoimmune progenitor population in the pancreatic draining lymph node (pLN), which self-renews and gives rise to pLN autoimmune mediators. pLN autoimmune mediators migrate to the pancreas, where they differentiate further and destroy ß-cells. Whereas transplantation of as few as 20 autoimmune progenitors induced type 1 diabetes, as many as 100,000 pancreatic autoimmune mediators did not. Pancreatic autoimmune mediators are short-lived, and stem-like autoimmune progenitors must continuously seed the pancreas to sustain ß-cell destruction. Single-cell RNA sequencing and clonal analysis revealed that autoimmune CD8 T cells represent unique T cell differentiation states and identified features driving the transition from autoimmune progenitor to autoimmune mediator. Strategies aimed at targeting the stem-like autoimmune progenitor pool could emerge as novel and powerful immunotherapeutic interventions for type 1 diabetes.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/pathology , Insulin-Secreting Cells/immunology , Stem Cells/pathology , Animals , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/transplantation , Cell Self Renewal , Clone Cells/immunology , Clone Cells/metabolism , Clone Cells/pathology , Disease Models, Animal , Female , Glucose-6-Phosphatase/immunology , Hepatocyte Nuclear Factor 1-alpha/metabolism , Insulin-Secreting Cells/pathology , Lymph Nodes/immunology , Male , Mice , Receptors, Antigen, T-Cell/metabolism , Single-Cell Analysis , Stem Cell Transplantation , Stem Cells/immunology , Stem Cells/metabolism , Transcriptome
14.
Nat Immunol ; 16(7): 708-17, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26054719

ABSTRACT

The transcription factors Batf3 and IRF8 are required for the development of CD8α(+) conventional dendritic cells (cDCs), but the basis for their actions has remained unclear. Here we identified two progenitor cells positive for the transcription factor Zbtb46 that separately generated CD8α(+) cDCs and CD4(+) cDCs and arose directly from the common DC progenitor (CDP). Irf8 expression in CDPs required prior autoactivation of Irf8 that was dependent on the transcription factor PU.1. Specification of the clonogenic progenitor of CD8α(+) cDCs (the pre-CD8 DC) required IRF8 but not Batf3. However, after specification of pre-CD8 DCs, autoactivation of Irf8 became Batf3 dependent at a CD8α(+) cDC-specific enhancer with multiple transcription factor AP1-IRF composite elements (AICEs) within the Irf8 superenhancer. CDPs from Batf3(-/-) mice that were specified toward development into pre-CD8 DCs failed to complete their development into CD8α(+) cDCs due to decay of Irf8 autoactivation and diverted to the CD4(+) cDC lineage.


Subject(s)
Basic-Leucine Zipper Transcription Factors/immunology , Dendritic Cells/immunology , Interferon Regulatory Factors/immunology , Repressor Proteins/immunology , Stem Cells/immunology , Animals , Base Sequence , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Bone Marrow Cells/immunology , Bone Marrow Cells/metabolism , CD24 Antigen/immunology , CD24 Antigen/metabolism , CD8 Antigens/immunology , CD8 Antigens/metabolism , Cells, Cultured , Clone Cells/immunology , Clone Cells/metabolism , Dendritic Cells/metabolism , Flow Cytometry , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Molecular Sequence Data , Oligonucleotide Array Sequence Analysis , Protein Binding , Receptors, Immunologic/immunology , Receptors, Immunologic/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Sequence Homology, Nucleic Acid , Stem Cells/metabolism , Transcriptome/genetics , Transcriptome/immunology
15.
Nat Immunol ; 16(7): 718-28, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26054720

ABSTRACT

Mouse conventional dendritic cells (cDCs) can be classified into two functionally distinct lineages: the CD8α(+) (CD103(+)) cDC1 lineage, and the CD11b(+) cDC2 lineage. cDCs arise from a cascade of bone marrow (BM) DC-committed progenitor cells that include the common DC progenitors (CDPs) and pre-DCs, which exit the BM and seed peripheral tissues before differentiating locally into mature cDCs. Where and when commitment to the cDC1 or cDC2 lineage occurs remains poorly understood. Here we found that transcriptional signatures of the cDC1 and cDC2 lineages became evident at the single-cell level from the CDP stage. We also identified Siglec-H and Ly6C as lineage markers that distinguished pre-DC subpopulations committed to the cDC1 lineage (Siglec-H(-)Ly6C(-) pre-DCs) or cDC2 lineage (Siglec-H(-)Ly6C(+) pre-DCs). Our results indicate that commitment to the cDC1 or cDC2 lineage occurs in the BM and not in the periphery.


Subject(s)
Bone Marrow Cells/immunology , Cell Lineage/immunology , Dendritic Cells/immunology , Stem Cells/immunology , Animals , Antigens, CD/immunology , Antigens, CD/metabolism , Antigens, Ly/genetics , Antigens, Ly/immunology , Antigens, Ly/metabolism , Bone Marrow Cells/metabolism , CD11b Antigen/immunology , CD11b Antigen/metabolism , CD8 Antigens/immunology , CD8 Antigens/metabolism , Cell Lineage/genetics , Cells, Cultured , Cluster Analysis , Dendritic Cells/metabolism , Dendritic Cells/ultrastructure , Flow Cytometry , Integrin alpha Chains/immunology , Integrin alpha Chains/metabolism , Lectins/genetics , Lectins/immunology , Lectins/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Electron, Scanning , Oligonucleotide Array Sequence Analysis , Receptors, Cell Surface/genetics , Receptors, Cell Surface/immunology , Receptors, Cell Surface/metabolism , Single-Cell Analysis/methods , Stem Cells/metabolism , Transcriptome/genetics , Transcriptome/immunology
16.
Immunity ; 48(2): 271-285.e5, 2018 02 20.
Article in English | MEDLINE | ID: mdl-29466757

ABSTRACT

Stem cells are critical for the maintenance of many tissues, but whether their integrity is maintained in the face of immunity is unclear. Here we found that cycling epithelial stem cells, including Lgr5+ intestinal stem cells, as well as ovary and mammary stem cells, were eliminated by activated T cells, but quiescent stem cells in the hair follicle and muscle were resistant to T cell killing. Immune evasion was an intrinsic property of the quiescent stem cells resulting from systemic downregulation of the antigen presentation machinery, including MHC class I and TAP proteins, and is mediated by the transactivator NLRC5. This process was reversed upon stem cell entry into the cell cycle. These studies identify a link between stem cell quiescence, antigen presentation, and immune evasion. As cancer-initiating cells can derive from stem cells, these findings may help explain how the earliest cancer cells evade immune surveillance.


Subject(s)
Hair Follicle/cytology , Immune Evasion , Immunologic Surveillance , Stem Cells/immunology , Animals , Antigen Presentation , Intracellular Signaling Peptides and Proteins/physiology , Killer Cells, Natural/immunology , Mice , Mice, Inbred C57BL , Muscles/cytology , Receptors, G-Protein-Coupled/physiology , Tumor Escape
17.
Nature ; 597(7875): 279-284, 2021 09.
Article in English | MEDLINE | ID: mdl-34471285

ABSTRACT

T cells are important in tumour immunity but a better understanding is needed of the differentiation of antigen-specific T cells in human cancer1,2. Here we studied CD8 T cells in patients with human papillomavirus (HPV)-positive head and neck cancer and identified several epitopes derived from HPV E2, E5 and E6 proteins that allowed us to analyse virus-specific CD8 T cells using major histocompatibility complex (MHC) class I tetramers. HPV-specific CD8 T cells expressed PD-1 and were detectable in the tumour at levels that ranged from 0.1% to 10% of tumour-infiltrating CD8 T lymphocytes (TILs) for a given epitope. Single-cell RNA-sequencing analyses of tetramer-sorted HPV-specific PD-1+ CD8 TILs revealed three transcriptionally distinct subsets. One subset expressed TCF7 and other genes associated with PD-1+ stem-like CD8 T cells that are critical for maintaining T cell responses in conditions of antigen persistence. The second subset expressed more effector molecules, representing a transitory cell population, and the third subset was characterized by a terminally differentiated gene signature. T cell receptor clonotypes were shared between the three subsets and pseudotime analysis suggested a hypothetical differentiation trajectory from stem-like to transitory to terminally differentiated cells. More notably, HPV-specific PD-1+TCF-1+ stem-like TILs proliferated and differentiated into more effector-like cells after in vitro stimulation with the cognate HPV peptide, whereas the more terminally differentiated cells did not proliferate. The presence of functional HPV-specific PD-1+TCF-1+CD45RO+ stem-like CD8 T cells with proliferative capacity shows that the cellular machinery to respond to PD-1 blockade exists in HPV-positive head and neck cancer, supporting the further investigation of PD-1 targeted therapies in this malignancy. Furthermore, HPV therapeutic vaccination efforts have focused on E6 and E7 proteins; our results suggest that E2 and E5 should also be considered for inclusion as vaccine antigens to elicit tumour-reactive CD8 T cell responses of maximal breadth.


Subject(s)
Alphapapillomavirus/immunology , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/virology , Lymphocytes, Tumor-Infiltrating/immunology , Programmed Cell Death 1 Receptor/metabolism , Stem Cells/cytology , Alphapapillomavirus/isolation & purification , CD8-Positive T-Lymphocytes/classification , CD8-Positive T-Lymphocytes/metabolism , Cancer Vaccines/immunology , Cell Differentiation , Cell Proliferation , DNA-Binding Proteins/immunology , Humans , Lymphocytes, Tumor-Infiltrating/classification , Lymphocytes, Tumor-Infiltrating/cytology , Lymphocytes, Tumor-Infiltrating/metabolism , Oncogene Proteins, Viral/immunology , Papillomavirus Infections/immunology , Papillomavirus Infections/virology , Papillomavirus Vaccines/immunology , RNA-Seq , Receptors, Antigen, T-Cell/immunology , Single-Cell Analysis , Stem Cells/immunology , T Cell Transcription Factor 1/metabolism , T-Lymphocytes/immunology , Transcription, Genetic
18.
Nat Immunol ; 15(1): 36-44, 2014 01.
Article in English | MEDLINE | ID: mdl-24212998

ABSTRACT

Eosinophilia is a hallmark characteristic of T helper type 2 (TH2) cell-associated diseases and is critically regulated by the central eosinophil growth factor interleukin 5 (IL-5). Here we demonstrate that IL-5 activity in eosinophils was regulated by paired immunoglobulin-like receptors PIR-A and PIR-B. Upon self-recognition of ß2-microglobulin (ß2M) molecules, PIR-B served as a permissive checkpoint for IL-5-induced development of eosinophils by suppressing the proapoptotic activities of PIR-A, which were mediated by the Grb2-Erk-Bim pathway. PIR-B-deficient bone marrow eosinophils underwent compartmentalized apoptosis, resulting in decreased blood eosinophilia in naive mice and in mice challenged with IL-5. Subsequently, Pirb(-/-) mice displayed impaired aeroallergen-induced lung eosinophilia and induction of lung TH2 cell responses. Collectively, these data uncover an intrinsic, self-limiting pathway regulating IL-5-induced expansion of eosinophils, which has broad implications for eosinophil-associated diseases.


Subject(s)
Cell Differentiation/immunology , Eosinophils/immunology , Interleukin-5/immunology , Receptors, Immunologic/immunology , Animals , Apoptosis/genetics , Apoptosis/immunology , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/immunology , Apoptosis Regulatory Proteins/metabolism , Asthma/genetics , Asthma/immunology , Asthma/metabolism , Bcl-2-Like Protein 11 , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cells, Cultured , Colony-Forming Units Assay/methods , Eosinophils/cytology , Eosinophils/metabolism , Extracellular Signal-Regulated MAP Kinases/genetics , Extracellular Signal-Regulated MAP Kinases/immunology , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Flow Cytometry , GRB2 Adaptor Protein/genetics , GRB2 Adaptor Protein/immunology , GRB2 Adaptor Protein/metabolism , Gene Expression/immunology , Interleukin-5/pharmacology , Male , Membrane Proteins/genetics , Membrane Proteins/immunology , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/immunology , Proto-Oncogene Proteins/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/genetics , Signal Transduction/immunology , Stem Cells/cytology , Stem Cells/drug effects , Stem Cells/immunology
19.
Nature ; 583(7817): 609-614, 2020 07.
Article in English | MEDLINE | ID: mdl-32581358

ABSTRACT

Cytokines were the first modern immunotherapies to produce durable responses in patients with advanced cancer, but they have only modest efficacy and limited tolerability1,2. In an effort to identify alternative cytokine pathways for immunotherapy, we found that components of the interleukin-18 (IL-18) pathway are upregulated on tumour-infiltrating lymphocytes, suggesting that IL-18 therapy could enhance anti-tumour immunity. However, recombinant IL-18 previously did not demonstrate efficacy in clinical trials3. Here we show that IL-18BP, a high-affinity IL-18 decoy receptor, is frequently upregulated in diverse human and mouse tumours and limits the anti-tumour activity of IL-18 in mice. Using directed evolution, we engineered a 'decoy-resistant' IL-18 (DR-18) that maintains signalling potential but is impervious to inhibition by IL-18BP. Unlike wild-type IL-18, DR-18 exerted potent anti-tumour effects in mouse tumour models by promoting the development of poly-functional effector CD8+ T cells, decreasing the prevalence of exhausted CD8+ T cells that express the transcriptional regulator of exhaustion TOX, and expanding the pool of stem-like TCF1+ precursor CD8+ T cells. DR-18 also enhanced the activity and maturation of natural killer cells to effectively treat anti-PD-1 resistant tumours that have lost surface expression of major histocompatibility complex class I molecules. These results highlight the potential of the IL-18 pathway for immunotherapeutic intervention and implicate IL-18BP as a major therapeutic barrier.


Subject(s)
Immunotherapy , Intercellular Signaling Peptides and Proteins/immunology , Intercellular Signaling Peptides and Proteins/metabolism , Interleukin-18/immunology , Neoplasms/immunology , Neoplasms/therapy , Animals , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Disease Models, Animal , Female , Hepatocyte Nuclear Factor 1-alpha/metabolism , Histocompatibility Antigens Class I/immunology , Humans , Kaplan-Meier Estimate , Killer Cells, Natural/cytology , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Lymphocytes, Tumor-Infiltrating/cytology , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Male , Mice , Receptors, Interleukin-18/metabolism , Stem Cells/cytology , Stem Cells/drug effects , Stem Cells/immunology , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology
20.
Nat Immunol ; 14(12): 1277-84, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24185616

ABSTRACT

Notch signaling induces gene expression of the T cell lineage and discourages alternative fate outcomes. Hematopoietic deficiency in the Notch target Hes1 results in severe T cell lineage defects; however, the underlying mechanism is unknown. We found here that Hes1 constrained myeloid gene-expression programs in T cell progenitor cells, as deletion of the myeloid regulator C/EBP-α restored the development of T cells from Hes1-deficient progenitor cells. Repression of Cebpa by Hes1 required its DNA-binding and Groucho-recruitment domains. Hes1-deficient multipotent progenitor cells showed a developmental bias toward myeloid cells and dendritic cells after Notch signaling, whereas Hes1-deficient lymphoid progenitor cells required additional cytokine signaling for diversion into the myeloid lineage. Our findings establish the importance of constraining developmental programs of the myeloid lineage early in T cell development.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/immunology , CCAAT-Enhancer-Binding Protein-alpha/immunology , Homeodomain Proteins/immunology , Receptor, Notch1/immunology , T-Lymphocytes/immunology , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , CCAAT-Enhancer-Binding Protein-alpha/genetics , CCAAT-Enhancer-Binding Protein-alpha/metabolism , Cell Line , Cell Lineage/genetics , Cell Lineage/immunology , Cells, Cultured , Cytokines/immunology , Cytokines/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Female , Flow Cytometry , Gene Expression/immunology , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Lymphopoiesis/genetics , Lymphopoiesis/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation , Myeloid Cells/immunology , Myeloid Cells/metabolism , Protein Binding/immunology , Receptor, Notch1/genetics , Receptor, Notch1/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/genetics , Signal Transduction/immunology , Stem Cells/immunology , Stem Cells/metabolism , T-Lymphocytes/metabolism , Transcription Factor HES-1
SELECTION OF CITATIONS
SEARCH DETAIL