Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 114(5): 1189-1194, 2017 01 31.
Article in English | MEDLINE | ID: mdl-28096339

ABSTRACT

Cholesterol is important for normal brain function. The brain synthesizes its own cholesterol, presumably in astrocytes. We have previously shown that diabetes results in decreased brain cholesterol synthesis by a reduction in sterol regulatory element-binding protein 2 (SREBP2)-regulated transcription. Here we show that coculture of control astrocytes with neurons enhances neurite outgrowth, and this is reduced with SREBP2 knockdown astrocytes. In vivo, mice with knockout of SREBP2 in astrocytes have impaired brain development and behavioral and motor defects. These mice also have altered energy balance, altered body composition, and a shift in metabolism toward carbohydrate oxidation driven by increased glucose oxidation by the brain. Thus, SREBP2-mediated cholesterol synthesis in astrocytes plays an important role in brain and neuronal development and function, and altered brain cholesterol synthesis may contribute to the interaction between metabolic diseases, such as diabetes and altered brain function.


Subject(s)
Astrocytes/metabolism , Body Composition/physiology , Brain/metabolism , Cholesterol/metabolism , Energy Metabolism/physiology , Sterol Regulatory Element Binding Protein 2/deficiency , Animals , Body Composition/genetics , Cell Line, Tumor , Energy Metabolism/genetics , Female , Gene Knockdown Techniques , Glioma/pathology , Glucose/metabolism , Hyperinsulinism/metabolism , Male , Maze Learning , Mice , Mice, Inbred C57BL , Mice, Knockout , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Nesting Behavior , Neurites/ultrastructure , Oxidation-Reduction , Rats , Rotarod Performance Test , Sterol Regulatory Element Binding Protein 2/genetics , Sterol Regulatory Element Binding Protein 2/physiology , Sterol Regulatory Element Binding Proteins/antagonists & inhibitors , Sterol Regulatory Element Binding Proteins/genetics
2.
Circulation ; 131(9): 805-14, 2015 Mar 03.
Article in English | MEDLINE | ID: mdl-25550450

ABSTRACT

BACKGROUND: Oxidative stress activates endothelial innate immunity and disrupts endothelial functions, including endothelial nitric oxide synthase-derived nitric oxide bioavailability. Here, we postulated that oxidative stress induces sterol regulatory element-binding protein 2 (SREBP2) and microRNA-92a (miR-92a), which in turn activate endothelial innate immune response, leading to dysfunctional endothelium. METHODS AND RESULTS: Using cultured endothelial cells challenged by diverse oxidative stresses, hypercholesterolemic zebrafish, and angiotensin II-infused or aged mice, we demonstrated that SREBP2 transactivation of microRNA-92a (miR-92a) is oxidative stress inducible. The SREBP2-induced miR-92a targets key molecules in endothelial homeostasis, including sirtuin 1, Krüppel-like factor 2, and Krüppel-like factor 4, leading to NOD-like receptor family pyrin domain-containing 3 inflammasome activation and endothelial nitric oxide synthase inhibition. In endothelial cell-specific SREBP2 transgenic mice, locked nucleic acid-modified antisense miR-92a attenuates inflammasome, improves vasodilation, and ameliorates angiotensin II-induced and aging-related atherogenesis. In patients with coronary artery disease, the level of circulating miR-92a is inversely correlated with endothelial cell-dependent, flow-mediated vasodilation and is positively correlated with serum level of interleukin-1ß. CONCLUSIONS: Our findings suggest that SREBP2-miR-92a-inflammasome exacerbates endothelial dysfunction during oxidative stress. Identification of this mechanism may help in the diagnosis or treatment of disorders associated with oxidative stress, innate immune activation, and endothelial dysfunction.


Subject(s)
Endothelium, Vascular/metabolism , Immunity, Innate/genetics , Inflammasomes/metabolism , MicroRNAs/biosynthesis , Oxidative Stress/genetics , Sterol Regulatory Element Binding Protein 2/physiology , Transcriptional Activation , Aged , Angiotensin II/toxicity , Animals , Coronary Disease/blood , Coronary Disease/physiopathology , Endothelial Cells/metabolism , Female , Free Radical Scavengers/pharmacology , Gene Expression Regulation , Genes, Reporter , HEK293 Cells , Human Umbilical Vein Endothelial Cells , Humans , Hydrogen Peroxide/toxicity , Hypercholesterolemia/genetics , Interleukin-1beta/blood , Kruppel-Like Factor 4 , Lipoproteins, LDL/toxicity , Male , Mice , Mice, Transgenic , MicroRNAs/genetics , Middle Aged , Organometallic Compounds/pharmacology , Oxidative Stress/immunology , Recombinant Fusion Proteins/metabolism , Salicylates/pharmacology , Sterol Regulatory Element Binding Protein 2/genetics , Zebrafish , Zebrafish Proteins/physiology
3.
Circulation ; 131(21): 1861-71, 2015 May 26.
Article in English | MEDLINE | ID: mdl-25794851

ABSTRACT

BACKGROUND: Fibroblast growth factor 21 (FGF21) is a metabolic hormone with pleiotropic effects on glucose and lipid metabolism and insulin sensitivity. It acts as a key downstream target of both peroxisome proliferator-activated receptor α and γ, the agonists of which have been used for lipid lowering and insulin sensitization, respectively. However, the role of FGF21 in the cardiovascular system remains elusive. METHODS AND RESULTS: The roles of FGF21 in atherosclerosis were investigated by evaluating the impact of FGF21 deficiency and replenishment with recombinant FGF21 in apolipoprotein E(-/-) mice. FGF21 deficiency causes a marked exacerbation of atherosclerotic plaque formation and premature death in apolipoprotein E(-/-) mice, which is accompanied by hypoadiponectinemia and severe hypercholesterolemia. Replenishment of FGF21 protects against atherosclerosis in apolipoprotein E(-/-)mice via 2 independent mechanisms, inducing the adipocyte production of adiponectin, which in turn acts on the blood vessels to inhibit neointima formation and macrophage inflammation, and suppressing the hepatic expression of the transcription factor sterol regulatory element-binding protein-2, thereby leading to reduced cholesterol synthesis and attenuation of hypercholesterolemia. Chronic treatment with adiponectin partially reverses atherosclerosis without obvious effects on hypercholesterolemia in FGF21-deficient apolipoprotein E(-/-) mice. By contrast, the cholesterol-lowering effects of FGF21 are abrogated by hepatic expression of sterol regulatory element-binding protein-2. CONCLUSIONS: FGF21 protects against atherosclerosis via fine tuning the multiorgan crosstalk among liver, adipose tissue, and blood vessels.


Subject(s)
Adiponectin/physiology , Atherosclerosis/prevention & control , Fibroblast Growth Factors/therapeutic use , Sterol Regulatory Element Binding Protein 2/physiology , Adipocytes/drug effects , Adipocytes/metabolism , Adiponectin/biosynthesis , Adiponectin/deficiency , Adiponectin/genetics , Animals , Apolipoproteins E/deficiency , Atherosclerosis/drug therapy , Atherosclerosis/genetics , Atherosclerosis/metabolism , Cholesterol/biosynthesis , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Fibroblast Growth Factors/deficiency , Gene Expression Regulation/drug effects , Hyperlipoproteinemia Type II/complications , Hyperlipoproteinemia Type II/genetics , Hyperlipoproteinemia Type II/metabolism , Klotho Proteins , Liver/drug effects , Liver/metabolism , Membrane Proteins/deficiency , Membrane Proteins/drug effects , Membrane Proteins/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Receptor, Fibroblast Growth Factor, Type 2/drug effects , Receptor, Fibroblast Growth Factor, Type 2/physiology , Recombinant Proteins/therapeutic use , Signal Transduction/drug effects , Sterol Regulatory Element Binding Protein 2/biosynthesis , Sterol Regulatory Element Binding Protein 2/genetics
4.
Circ Res ; 115(1): 10-22, 2014 Jun 20.
Article in English | MEDLINE | ID: mdl-24753547

ABSTRACT

RATIONALE: Several reports suggest that antisense oligonucleotides against miR-33 might reduce cardiovascular risk in patients by accelerating the reverse cholesterol transport pathway. However, conflicting reports exist about the impact of anti-miR-33 therapy on the levels of very low-density lipoprotein-triglycerides (VLDL-TAG). OBJECTIVE: We test the hypothesis that miR-33 controls hepatic VLDL-TAG secretion. METHODS AND RESULTS: Using therapeutic silencing of miR-33 and adenoviral overexpression of miR-33, we show that miR-33 limits hepatic secretion of VLDL-TAG by targeting N-ethylmaleimide-sensitive factor (NSF), both in vivo and in primary hepatocytes. We identify conserved sequences in the 3'UTR of NSF as miR-33 responsive elements and show that Nsf is specifically recruited to the RNA-induced silencing complex following induction of miR-33. In pulse-chase experiments, either miR-33 overexpression or knock-down of Nsf lead to decreased secretion of apolipoproteins and TAG in primary hepatocytes, compared with control cells. Importantly, Nsf rescues miR-33-dependent reduced secretion. Finally, we show that overexpression of Nsf in vivo increases global hepatic secretion and raises plasma VLDL-TAG. CONCLUSIONS: Together, our data reveal key roles for the miR-33-NSF axis during hepatic secretion and suggest that caution should be taken with anti-miR-33-based therapies because they might raise proatherogenic VLDL-TAG levels.


Subject(s)
Lipoproteins, VLDL/metabolism , MicroRNAs/physiology , N-Ethylmaleimide-Sensitive Proteins/physiology , Triglycerides/metabolism , Animals , Apolipoprotein B-100 , Apolipoproteins B/metabolism , Apolipoproteins B/physiology , Carrier Proteins/physiology , Hepatocytes/metabolism , Lipoproteins, VLDL/blood , Male , Mice , Mice, Inbred C57BL , Receptors, LDL/physiology , Sterol Regulatory Element Binding Protein 2/physiology , Triglycerides/blood
5.
Arterioscler Thromb Vasc Biol ; 34(6): 1171-8, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24675665

ABSTRACT

OBJECTIVE: Low-density lipoprotein receptor (LDLR) is degraded by inducible degrader of LDLR (Idol) and protein convertase subtilisin/kexin type 9 (PCSK9), thereby regulating circulating LDL levels. However, it remains unclear whether, and if so how, these LDLR degraders affect each other. We therefore investigated effects of liver-specific expression of Idol on LDL/PCSK9 metabolism in mice and hamsters. APPROACH AND RESULTS: Injection of adenoviral vector expressing Idol (Ad-Idol) induced a liver-specific reduction in LDLR expression which, in turn, increased very-low-density lipoprotein/LDL cholesterol levels in wild-type mice because of delayed LDL catabolism. Interestingly, hepatic Idol overexpression markedly increased plasma PCSK9 levels. In LDLR-deficient mice, plasma PCSK9 levels were already elevated at baseline and unchanged by Idol overexpression, which was comparable with the observation for Ad-Idol-injected wild-type mice, indicating that Idol-induced PCSK9 elevation depended on LDLR. In wild-type mice, but not in LDLR-deficient mice, Ad-Idol enhanced hepatic PCSK9 expression, with activation of sterol regulatory element-binding protein 2 and subsequently increased expression of its target genes. Supporting in vivo findings, Idol transactivated PCSK9/LDLR in sterol regulatory element-binding protein 2/LDLR-dependent manners in vitro. Furthermore, an in vivo kinetic study using (125)I-labeled PCSK9 revealed delayed clearance of circulating PCSK9, which could be another mechanism. Finally, to extend these findings into cholesteryl ester transfer protein-expressing animals, we repeated the above in vivo experiments in hamsters and obtained similar results. CONCLUSIONS: A vicious cycle in LDLR degradation might be generated by PCSK9 induced by hepatic Idol overexpression via dual mechanisms: sterol regulatory element-binding protein 2/LDLR. Furthermore, these effects would be independent of cholesteryl ester transfer protein expression.


Subject(s)
Liver/metabolism , Proprotein Convertases/blood , Receptors, LDL/physiology , Serine Endopeptidases/blood , Signal Transduction , Sterol Regulatory Element Binding Protein 2/physiology , Ubiquitin-Protein Ligases/physiology , Animals , Cholesterol Ester Transfer Proteins/physiology , Cricetinae , Hep G2 Cells , Humans , Lipoproteins, LDL/metabolism , Liver X Receptors , Mesocricetus , Mice , Mice, Inbred C57BL , Orphan Nuclear Receptors/physiology , Proprotein Convertase 9 , Proprotein Convertases/physiology , Serine Endopeptidases/physiology
6.
J Lipid Res ; 55(4): 659-67, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24516236

ABSTRACT

The liver plays a central role in metabolism and mediating insulin action. To dissect the effects of insulin on the liver in vivo, we have studied liver insulin receptor knockout (LIRKO) mice. Because LIRKO livers lack insulin receptors, they are unable to respond to insulin. Surprisingly, the most profound derangement observed in LIRKO livers by microarray analysis is a suppression of the cholesterologenic genes. Sterol regulatory element binding protein (SREBP)-2 promotes cholesterologenic gene transcription, and is inhibited by intracellular cholesterol. LIRKO livers show a slight increase in hepatic cholesterol, a 40% decrease in Srebp-2, and a 50-90% decrease in the cholesterologenic genes at the mRNA and protein levels. In control mice, SREBP-2 and cholesterologenic gene expression are suppressed by fasting and restored by refeeding; in LIRKO mice, this response is abolished. Similarly, the ability of statins to induce Srebp-2 and the cholesterologenic genes is lost in LIRKO livers. In contrast, ezetimibe treatment robustly induces Srepb-2 and its targets in LIRKO livers, raising the possibility that insulin may regulate SREBP-2 indirectly, by altering the accumulation or distribution of cholesterol within the hepatocyte. Taken together, these data indicate that cholesterol synthesis is a key target of insulin action in the liver.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Liver/metabolism , Lovastatin/pharmacology , Receptor, Insulin/deficiency , Sterol Regulatory Element Binding Protein 2/physiology , Animals , Azetidines/pharmacology , Biosynthetic Pathways/genetics , Cholesterol/biosynthesis , Ezetimibe , Fasting , Gene Expression/drug effects , Lipogenesis/drug effects , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Transgenic , Oligonucleotide Array Sequence Analysis , Receptor, Insulin/genetics , Transcriptional Activation/drug effects , Transcriptome
7.
Biochim Biophys Acta ; 1832(10): 1560-8, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23651731

ABSTRACT

The liver plays a central role in regulating cholesterol homeostasis. High fat diets have been shown to induce obesity and hyperlipidemia. Despite considerable advances in our understanding of cholesterol metabolism, the regulation of liver cholesterol biosynthesis in response to high fat diet feeding has not been fully addressed. The aim of the present study was to investigate mechanisms by which a high fat diet caused activation of liver 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) leading to increased cholesterol biosynthesis. Mice were fed a high fat diet (60% kcal fat) for 5weeks. High fat diet feeding induced weight gain and elevated lipid levels (total cholesterol and triglyceride) in both the liver and serum. Despite cholesterol accumulation in the liver, there was a significant increase in hepatic HMG-CoA reductase mRNA and protein expression as well as enzyme activity. The DNA binding activity of sterol regulatory element binding protein (SREBP)-2 and specific protein 1 (Sp1) were also increased in the liver of mice fed a high fat diet. To validate the in vivo findings, HepG2 cells were treated with palmitic acid. Such a treatment activated SREBP-2 as well as increased the mRNA and enzyme activity of HMG-CoA reductase leading to intracellular cholesterol accumulation. Inhibition of Sp1 by siRNA transfection abolished palmitic acid-induced SREBP-2 and HMG-CoA reductase mRNA expression. These results suggest that Sp1-mediated SREBP-2 activation contributes to high fat diet induced HMG-CoA reductase activation and increased cholesterol biosynthesis. This may play a role in liver cholesterol accumulation and hypercholesterolemia.


Subject(s)
Dietary Fats/administration & dosage , Hydroxymethylglutaryl CoA Reductases/metabolism , Animals , Base Sequence , Cell Line , DNA Primers , Enzyme Activation , Gene Expression Regulation, Enzymologic/physiology , Humans , Hydroxymethylglutaryl CoA Reductases/genetics , Lipid Metabolism , Liver/metabolism , Mice , Mice, Inbred C57BL , Real-Time Polymerase Chain Reaction , Sp1 Transcription Factor/physiology , Sterol Regulatory Element Binding Protein 2/physiology
8.
Biochim Biophys Acta ; 1835(2): 219-29, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23357067

ABSTRACT

Prostate cancer (PCa) is the most common cancer in men in developed countries. Epidemiological studies have associated high blood-cholesterol levels with an increased risk of PCa, whilst cholesterol-lowering drugs (statins) reduce the risk of advanced PCa. Furthermore, normal prostate epithelial cells have an abnormally high cholesterol content, with cholesterol levels increasing further during progression to PCa. In this review, we explore why and how this occurs. Concurrent to this observation, intense efforts have been expended in cardiovascular research to better understand the regulators of cholesterol homeostasis. Here, we apply this knowledge to elucidate the molecular mechanisms driving the accumulation of cholesterol in PCa. For instance, recent evidence from our group and others shows that major signalling players in prostate growth and differentiation, such as androgens and Akt, modulate the key transcriptional regulators of cholesterol homeostasis to enhance cholesterol levels. This includes adjusting central carbon metabolism to sustain greater lipid synthesis. Perturbations in cholesterol homeostasis appear to be maintained even when PCa approaches the advanced, 'castration-resistant' state. Overall, this provides a link between cholesterol accumulation and PCa cell growth. Given there is currently no cure for castration-resistant PCa, could cholesterol metabolism be a novel target for PCa therapy? Overall, this review presents a picture that cholesterol metabolism is important for PCa development: growth-promoting factors stimulate cholesterol accumulation, which in turn presents a possible target for chemotherapy. Consequently, we recommend future investigations, both to better elucidate the mechanisms driving this accumulation and applying it in novel chemotherapeutic strategies.


Subject(s)
Cholesterol/metabolism , Prostatic Neoplasms/metabolism , Cell Proliferation , Homeostasis , Humans , Liver X Receptors , Male , Orphan Nuclear Receptors/antagonists & inhibitors , Orphan Nuclear Receptors/physiology , Prostatic Neoplasms/drug therapy , Receptors, Androgen/physiology , Sterol Regulatory Element Binding Protein 2/antagonists & inhibitors , Sterol Regulatory Element Binding Protein 2/physiology
9.
J Hepatol ; 61(2): 358-65, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24768901

ABSTRACT

BACKGROUND & AIMS: Perilipin-5 (PLIN5) is a member of the perilipin family of lipid droplet (LD)-associated proteins. PLIN5 is expressed in oxidative tissues including the liver, and is critical during LD biogenesis. Studies showed that statins reduce hepatic triglyceride contents in some patients with non-alcoholic fatty liver disease and in rodent models of diet-induced hepatosteatosis. Whether statins alter triglyceride synthesis, storage, and/or utilization within the hepatocyte is unknown, though. Here we tested the hypothesis that statins alter the metabolism of LD in the hepatocyte during physiological conditions, such as fasting-induced steatosis. METHODS: Mice were gavaged with saline or atorvastatin, and the expression of LD-associated genes was determined in fed and fasted animals. The accumulation of triglycerides and LD was studied in mouse or human primary hepatocytes in response to statins, and following knock-down of SREBP2 or PLIN5. RESULTS: We show that statins decrease the levels of PLIN5, but not other LD-associated genes, in both mouse liver and mouse/human primary hepatocytes, which is paralleled by a significant reduction in both intracellular triglycerides and the number of LD. We identify an atypical negative sterol regulatory sequence in the proximal promoter of mouse/human PLIN5 that recruits the transcription factor SREBP2 and confers response to statins. Finally, we show that the statin-dependent reduction of hepatocyte triglyceride contents is mimicked by partial knock-down of PLIN5; conversely, ectopic overexpression of PLIN5 reverts the statin effect. CONCLUSIONS: PLIN5 is a physiological regulator of triglyceride metabolism in the liver, and likely contributes to the pleiotropic effects of statins.


Subject(s)
Hepatocytes/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Intracellular Signaling Peptides and Proteins/physiology , Muscle Proteins/physiology , Triglycerides/metabolism , Animals , Hepatocytes/drug effects , Intracellular Signaling Peptides and Proteins/analysis , Lipid Droplets/metabolism , Male , Mice , Mice, Inbred C57BL , Muscle Proteins/analysis , Sterol Regulatory Element Binding Protein 2/physiology
10.
PLoS Biol ; 9(3): e1000598, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21408089

ABSTRACT

Little is known about the protective role of inflammatory processes in modulating lipid metabolism in infection. Here we report an intimate link between the innate immune response to infection and regulation of the sterol metabolic network characterized by down-regulation of sterol biosynthesis by an interferon regulatory loop mechanism. In time-series experiments profiling genome-wide lipid-associated gene expression of macrophages, we show a selective and coordinated negative regulation of the complete sterol pathway upon viral infection or cytokine treatment with IFNγ or ß but not TNF, IL1ß, or IL6. Quantitative analysis at the protein level of selected sterol metabolic enzymes upon infection shows a similar level of suppression. Experimental testing of sterol metabolite levels using lipidomic-based measurements shows a reduction in metabolic output. On the basis of pharmacologic and RNAi inhibition of the sterol pathway we show augmented protection against viral infection, and in combination with metabolite rescue experiments, we identify the requirement of the mevalonate-isoprenoid branch of the sterol metabolic network in the protective response upon statin or IFNß treatment. Conditioned media experiments from infected cells support an involvement of secreted type 1 interferon(s) to be sufficient for reducing the sterol pathway upon infection. Moreover, we show that infection of primary macrophages containing a genetic knockout of the major type I interferon, IFNß, leads to only a partial suppression of the sterol pathway, while genetic knockout of the receptor for all type I interferon family members, ifnar1, or associated signaling component, tyk2, completely abolishes the reduction of the sterol biosynthetic activity upon infection. Levels of the proteolytically cleaved nuclear forms of SREBP2, a key transcriptional regulator of sterol biosynthesis, are reduced upon infection and IFNß treatment at both the protein and de novo transcription level. The reduction in srebf2 gene transcription upon infection and IFN treatment is also found to be strictly dependent on ifnar1. Altogether these results show that type 1 IFN signaling is both necessary and sufficient for reducing the sterol metabolic network activity upon infection, thereby linking the regulation of the sterol pathway with interferon anti-viral defense responses. These findings bring a new link between sterol metabolism and interferon antiviral response and support the idea of using host metabolic modifiers of innate immunity as a potential antiviral strategy.


Subject(s)
Down-Regulation , Herpesviridae Infections/immunology , Interferon-beta/physiology , Interferon-gamma/physiology , Muromegalovirus/immunology , Sterols/biosynthesis , Animals , Antiviral Agents/pharmacology , Cholesterol/metabolism , Herpesviridae Infections/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Immunity, Innate , Interferon-beta/biosynthesis , Interferon-beta/pharmacology , Interferon-gamma/biosynthesis , Interferon-gamma/pharmacology , Macrophages/immunology , Macrophages/metabolism , Macrophages/virology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , NIH 3T3 Cells , RNA Interference , Signal Transduction , Simvastatin/pharmacology , Sterol Regulatory Element Binding Protein 2/physiology
11.
Eur J Nutr ; 53(2): 469-77, 2014.
Article in English | MEDLINE | ID: mdl-25289390

ABSTRACT

PURPOSE: Nicotinic acid is one of the older drugs used to treat hyperlipidemia, the greatest risk factor of coronary heart disease. Nicotinic acid is also a precursor of the coenzyme nicotinamide adenine dinucleotide (NAD). In mammals, α-amino-ß-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD) plays a key role in NAD biosynthesis from tryptophan. However, the relationship between ACMSD and cholesterol metabolism has not been clarified enough yet. The present study was performed to make clear the relationship between ACMSD and cholesterol metabolism using hypercholesterolemic rats and rat primary hepatocytes. METHODS: Male Sprague-Dawley rats were fed a diet containing cholesterol for 10 days to induce hypercholesterolemia. The NAD levels in the plasma and liver and hepatic ACMSD activity were determined. In vitro study, the expression of ACMSD and the transcriptional factors that regulate cholesterol metabolism were determined using rat primary hepatocytes treated with cholesterol and 25-hydroxycholesterol or simvastatin, a statin medication, by quantitative real-time PCR analysis and Western blotting analysis. RESULTS: The hepatic NAD level of the hypercholesterolemic group was significantly higher than the control, and the hepatic ACMSD activity of this group was significantly suppressed. There was a significant negative correlation between the hepatic ACMSD activity and liver cholesterol levels. Additionally, in primary rat hepatocytes treated with cholesterol and 25-hydroxycholesterol or simvastatin, ACMSD gene and protein expression was subjected to sterol-dependent regulation. This gene expression changed in parallel to sterol regulatory element-binding protein (SREBP)-2 expression. CONCLUSION: These results provide the first evidence that ACMSD is associated with cholesterol metabolism, and ACMSD gene expression may be upregulated by SREBP-2.


Subject(s)
Carboxy-Lyases/genetics , Cholesterol, Dietary/administration & dosage , Gene Expression Regulation, Enzymologic , Liver/enzymology , NAD/biosynthesis , Sterol Regulatory Element Binding Protein 2/physiology , Animals , Carboxy-Lyases/metabolism , Hepatocytes/drug effects , Hepatocytes/metabolism , Hydroxycholesterols/pharmacology , Hypercholesterolemia/enzymology , Hypercholesterolemia/metabolism , Liver/chemistry , Male , Models, Animal , NAD/analysis , NAD/blood , RNA, Messenger/analysis , Rats , Rats, Sprague-Dawley , Simvastatin/pharmacology , Sterol Regulatory Element Binding Protein 2/genetics , Tryptophan/metabolism
12.
Biochim Biophys Acta ; 1821(10): 1350-60, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22809995

ABSTRACT

3ß-Hydroxysterol Δ24-reductase (DHCR24) catalyzes a final step in cholesterol synthesis, and has been ascribed diverse functions, such as being anti-apoptotic and anti-inflammatory. How this enzyme is regulated transcriptionally by sterols is currently unclear. Some studies have suggested that its expression is regulated by Sterol Regulatory Element Binding Proteins (SREBPs) while another suggests it is through the Liver X Receptor (LXR). However, these transcription factors have opposing effects on cellular sterol levels, so it is likely that one predominates. Here we establish that sterol regulation of DHCR24 occurs predominantly through SREBP-2, and identify the particular region of the DHCR24 promoter to which SREBP-2 binds. We demonstrate that sterol regulation is mediated by two sterol regulatory elements (SREs) in the promoter of the gene, assisted by two nearby NF-Y binding sites. Moreover, we present evidence that the dual SREs work cooperatively to regulate DHCR24 expression by comparison to two known SREBP target genes, the LDL receptor with one SRE, and farnesyl-diphosphate farnesyltransferase 1, with two SREs.


Subject(s)
Lipids/biosynthesis , Nerve Tissue Proteins/genetics , Oxidoreductases Acting on CH-CH Group Donors/genetics , Sterol Regulatory Element Binding Protein 2/physiology , Sterols/pharmacology , Animals , Base Sequence , Binding Sites , CCAAT-Binding Factor/metabolism , CHO Cells , Cricetinae , Cricetulus , Farnesyl-Diphosphate Farnesyltransferase/physiology , Gene Expression Regulation, Enzymologic , Liver X Receptors , Molecular Sequence Data , Orphan Nuclear Receptors/physiology , Promoter Regions, Genetic , Receptors, LDL/genetics
13.
IUBMB Life ; 65(8): 675-84, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23847008

ABSTRACT

Cholesterol is a vital lipid and performs diverse functions on a whole body and cellular level. However, excess cellular cholesterol is toxic, and thus, elegant mechanisms have evolved to tightly regulate this important lipid. The regulation of cholesterol homeostasis is an area of intense research, and the role that signalling plays is gradually becoming more widely recognised. Cholesterol homeostasis is achieved through intricate mechanisms involving synthesis, uptake, and efflux. Although there is a large body of work elucidating these cholesterol-related pathways, less is known about the role of signalling in these processes. Here, we discuss the variety of ways that signalling impacts on these modes and levels of cholesterol homeostasis, including transcriptional regulation. Most work thus far has investigated the role of kinases in cholesterol efflux (especially on ATP-binding cassette transporter A1, ABCA1), and therefore constitutes a major focus of this review. We also indicate further avenues to explore in the area of signalling in cellular cholesterol homeostasis.


Subject(s)
Cholesterol/metabolism , Homeostasis , Signal Transduction/physiology , ATP Binding Cassette Transporter 1/physiology , Animals , Calcineurin/metabolism , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Gene Expression Regulation , Humans , Hydroxymethylglutaryl CoA Reductases/metabolism , Janus Kinase 2/metabolism , Liver X Receptors , Mitogen-Activated Protein Kinases/metabolism , Orphan Nuclear Receptors/physiology , Phosphorylation , Protein Kinase C/metabolism , Receptors, LDL/metabolism , Sterol Regulatory Element Binding Protein 2/physiology
14.
Biochim Biophys Acta ; 1813(9): 1562-77, 2011 Sep.
Article in English | MEDLINE | ID: mdl-20977914

ABSTRACT

Although proteins are translated on cytoplasmic ribosomes, many of these proteins play essential roles in the nucleus, mediating key cellular processes including but not limited to DNA replication and repair as well as transcription and RNA processing. Thus, understanding how these critical nuclear proteins are accurately targeted to the nucleus is of paramount importance in biology. Interaction and structural studies in the recent years have jointly revealed some general rules on the specificity determinants of the recognition of nuclear targeting signals by their specific receptors, at least for two nuclear import pathways: (i) the classical pathway, which involves the classical nuclear localization sequences (cNLSs) and the receptors importin-α/karyopherin-α and importin-ß/karyopherin-ß1; and (ii) the karyopherin-ß2 pathway, which employs the proline-tyrosine (PY)-NLSs and the receptor transportin-1/karyopherin-ß2. The understanding of specificity rules allows the prediction of protein nuclear localization. We review the current understanding of the molecular determinants of the specificity of nuclear import, focusing on the importin-α•cargo recognition, as well as the currently available databases and predictive tools relevant to nuclear localization. This article is part of a Special Issue entitled: Regulation of Signaling and Cellular Fate through Modulation of Nuclear Protein Import.


Subject(s)
Active Transport, Cell Nucleus/physiology , Nuclear Localization Signals/physiology , Amino Acid Sequence , Animals , Binding Sites , Databases, Protein , Humans , Mice , Models, Biological , Models, Molecular , Molecular Sequence Data , Nuclear Localization Signals/chemistry , Nuclear Localization Signals/genetics , Parathyroid Hormone-Related Protein/chemistry , Parathyroid Hormone-Related Protein/physiology , Protein Interaction Domains and Motifs , Signal Transduction/physiology , Sterol Regulatory Element Binding Protein 2/chemistry , Sterol Regulatory Element Binding Protein 2/physiology , alpha Karyopherins/chemistry , alpha Karyopherins/physiology , beta Karyopherins/chemistry , beta Karyopherins/physiology
15.
J Virol ; 85(15): 7699-709, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21613400

ABSTRACT

Cholesterol plays an essential role in the life cycle of several enveloped viruses. Many of these viruses manipulate host cholesterol metabolism to facilitate their replication. HIV-1 infection of CD4(+) T cells activates the sterol regulatory element-binding protein 2 (SREBP2) transcriptional program, which includes genes involved in cholesterol homeostasis. However, the role of SREBP2-dependent transcription in HIV-1 biology has not been fully examined. Here, we identify TFII-I, a gene critical for HIV-1 transcription in activated T cells, as a novel SREBP2 target gene. We found TFII-I expression increased after HIV-1 infection or activation of human primary CD4(+) T cells. We show that inhibition of SREBP2 activity reduced TFII-I induction in response to these stimuli. More importantly, small interfering RNA (siRNA)-mediated gene silencing of either SREBP2 or TFII-I significantly reduced HIV-1 production in CD4(+) T cells. We also found that TFII-I potentiates Tat-dependent viral gene expression, consistent with a role at the level of HIV-1 transcription. Collectively, our results demonstrate for the first time that HIV-1 transcription in T cells is linked to cholesterol homeostasis through control of TFII-I expression by SREBP2.


Subject(s)
Cholesterol/metabolism , HIV-1/genetics , Homeostasis/physiology , Lymphocyte Activation , Sterol Regulatory Element Binding Protein 2/physiology , T-Lymphocytes/immunology , Transcription, Genetic/physiology , Base Sequence , Cell Line , DNA Primers , Flow Cytometry , Humans , Protein Binding , Sterol Regulatory Element Binding Protein 2/metabolism , Transcription Factors, TFII/genetics
16.
Bioengineered ; 13(2): 3137-3147, 2022 02.
Article in English | MEDLINE | ID: mdl-35037821

ABSTRACT

Asthma is a respiratory disease with complex pathogenesis. Sterol-responsive element-binding proteins 2 (SREBP2) was found to bind to promoter sequences of ABCA1 to suppress ABCA1 promoter activity. This study aimed to explore the expression level of SREBP2 and ATP-binding cassette transporter A1 (ABCA1), and their effects on the development of airway smooth muscle cells (ASMCs) in asthma. ASMCs were treated with different concentrations of TGF-ß1 (0, 0.5, 1, 5 and 10 ng/mL). Short hairpin SREBP2 (shSREBP2), SREBP2, shABCA1 or ABCA1 were transfected into ASMCs. Cell viability, proliferation, apoptosis, migration, and the expression of SREBP2, ABCA1 and related pathway proteins were detected by MTT assay, Brdu staining, flow cytometer, Transwell assay, qRT-PCR, and Western blotting, respectively. The results showed that TGF-ß1 increased the viability, proliferation, migration and inhibited apoptosis in ASMCs. Moreover, TGF-ß1 also decreased the expression of ABCA1, cleaved caspase-3, cleaved PARP, E-cadherin, and increased the expression of vimentin, TLR2, p-p65 and NFATc1. SREBP2 knockdown alleviated these TGF-ß1-induced changes. SREBP2 overexpression inhibited ABCA1 expression and apoptosis, and promoted cell migration and the expression of TLR2, p-p65, NFATc1 in ASMCs. ABCA1 overexpression alleviated these SREBP2-induced promoting and inhibition effects. In conclusion, SREBP2 activates TLR2/NF-κB/NFATc1 regulatory network and promotes TGF-ß1-induced cell movement through inhibiting ABCA1 expression.


Subject(s)
Myocytes, Smooth Muscle , Sterol Regulatory Element Binding Protein 2/physiology , Transforming Growth Factor beta1/pharmacology , ATP Binding Cassette Transporter 1/genetics , ATP Binding Cassette Transporter 1/metabolism , Apoptosis/drug effects , Apoptosis/genetics , Cell Movement/drug effects , Cell Movement/genetics , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cell Survival/drug effects , Cell Survival/genetics , Cells, Cultured , Humans , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/physiology , NF-kappa B/genetics , NF-kappa B/metabolism , NFATC Transcription Factors/genetics , NFATC Transcription Factors/metabolism , Respiratory Mucosa/cytology , Respiratory Mucosa/drug effects , Respiratory Mucosa/metabolism , Respiratory System/cytology , Respiratory System/drug effects , Respiratory System/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism
17.
Biochim Biophys Acta ; 1787(12): 1433-43, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19524545

ABSTRACT

Many cancer cells have an unusual ability to grow in hypoxia, but the origins of this metabolic phenotype remain unclear. We compared the metabolic phenotypes of three common prostate cancer cell models (LNCaP, DU145, PC3), assessing energy metabolism, metabolic gene expression, and the response to various culture contexts (in vitro and xenografts). LNCaP cells had a more oxidative phenotype than PC3 and DU145 cells based upon respiration, lactate production, [ATP], metabolic gene expression, and sensitivity of these parameters to hypoxia. PC3 and DU145 cells possessed similar Complex II and mtDNA levels, but lower Complex III and IV activities, and were unresponsive to dinitrophenol or dichloroacetate, suggesting that their glycolytic phenotype is due to mitochondrial dysfunction rather than regulation. High passage under normoxia converted LNCaP from oxidative to glycolytic cells (based on respiration and lactate production), and altered metabolic gene expression. Though LNCaP-derived cells differed from the parental line in mitochondrial enzyme activities, none differed in mitochondrial content (assessed as cardiolipin levels). When LNCaP-derived cells were grown as xenografts in immunodeficient mice, there were elements of a hypoxic response (e.g., elevated VEGF mRNA) but line-specific changes in expression of select glycolytic, mitochondrial and fatty acid metabolic genes. Low oxygen in vitro did not influence the mRNA levels of SREBP axis, nor did it significantly alter triglyceride production in any of the cell lines suggesting that the pathway of de novo fatty acid synthesis is not directly upregulated by hypoxic conditions. Collectively, these studies demonstrate important differences in the metabolism of these prostate cancer models. Such metabolic differences would have important ramifications for therapeutic strategies involving metabolic targets.


Subject(s)
Cell Hypoxia , Prostatic Neoplasms/metabolism , Animals , Cell Line, Tumor , Gene Expression , Glycolysis , Humans , Lipids/biosynthesis , Male , Mice , Mice, SCID , Mitochondria/enzymology , Phenotype , Prostatic Neoplasms/pathology , Sterol Regulatory Element Binding Protein 2/physiology
18.
Am J Physiol Heart Circ Physiol ; 298(1): H251-8, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19915177

ABSTRACT

Asymmetric dimethylarginine (ADMA) has been implicated in the progression of cardiovascular disease as an endogenous inhibitor of nitric oxide synthase. The regulation of dimethylarginine dimethylaminohydrolase (DDAH), the enzyme responsible for metabolizing ADMA, is poorly understood. The transcription factor sterol response element binding protein (SREBP) is activated by statins via a reduction of membrane cholesterol content. Because the promoters of both DDAH1 and DDAH2 isoforms contain sterol response elements, we tested the hypothesis that simvastatin regulates DDAH1 and DDAH2 transcription via SREBP. In cultured endothelial cells, simvastatin increased DDAH1 mRNA expression compared with vehicle. In an ADMA loading experiment, simvastatin treatment resulted in a decrease in ADMA content, an indication of increased DDAH activity. The knockdown of SREBP1c protein led to an increase in DDAH1 mRNA expression and activity, whereas the knockdown of SREBP2 led to a decrease in DDAH1 mRNA expression. The role of SREBP2 in the activation of the DDAH1 was supported by chromatin immunoprecipitation studies demonstrating increased binding of SREBP2 to the DDAH1 promoter upon simvastatin stimulation. These data indicate that SREBP1c might act as a repressor and SREBP2 as an activator of DDAH transcription and activity. This study describes a novel mechanism of reciprocal regulation by the SREBP family members of the DDAH-ADMA system, which represents a potential link between cellular cholesterol content and endothelial dysfunction observed in cardiovascular disease.


Subject(s)
Amidohydrolases/physiology , Arginine/analogs & derivatives , Endothelial Cells/physiology , Sterol Regulatory Element Binding Protein 1/physiology , Sterol Regulatory Element Binding Protein 2/physiology , Amidohydrolases/genetics , Arginine/physiology , Blotting, Western , Cells, Cultured , Chromatin/metabolism , Chromatography, High Pressure Liquid , DNA Primers , Endothelial Cells/enzymology , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Immunoprecipitation , Lentivirus/genetics , Nitrites/metabolism , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction , Simvastatin/pharmacology , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 2/genetics , Transfection
19.
Med Sci (Paris) ; 26(4): 385-90, 2010 Apr.
Article in French | MEDLINE | ID: mdl-20412743

ABSTRACT

Type 2 diabetes (T2D) frequently occurs in the context of a dysregulation of plasma lipoproteins with an increased triglyceride content in pancreatic beta cells, leading to lipotoxicity and subsequent cell death. More recently, accumulating data suggest that cholesterol homeostasis is a major regulator of beta cell function. Intra-cellular cholesterol accumulation leads to islet dysfunction and impaired insulin secretion. The role of essential cholesterol modulators like the ATP-binding cassette transporter A1 or the LDL receptor has emerged in regulating insulin secretion in beta cells. Intracellular cholesterol impacts both the beta-cell membrane organization in microdomains as well as the dynamic regulation of glucose-induced insulin secretion. There is also evidence suggesting that the different lipoprotein classes have varying effects on beta cell apoptosis and proliferation. Here we review the impact of cholesterol metabolism on islet function and its potential relationship to T2D.


Subject(s)
Cholesterol/metabolism , Islets of Langerhans/metabolism , ATP Binding Cassette Transporter 1 , ATP-Binding Cassette Transporters/physiology , Animals , Apoptosis , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/etiology , Diabetes Mellitus, Type 2/metabolism , Humans , Hyperlipoproteinemia Type II/complications , Hyperlipoproteinemia Type II/physiopathology , Insulin/metabolism , Insulin Resistance/physiology , Insulin Secretion , Islets of Langerhans/pathology , Membrane Lipids/metabolism , Metabolic Syndrome/metabolism , Mice , Models, Biological , Randomized Controlled Trials as Topic , Rats , Receptors, LDL/physiology , Sterol Regulatory Element Binding Protein 2/physiology
20.
Mol Nutr Food Res ; 63(19): e1900385, 2019 10.
Article in English | MEDLINE | ID: mdl-31327168

ABSTRACT

SCOPE: The mechanisms underlying the deleterious effects of trans fatty acids on plasma cholesterol and non-alcoholic fatty liver disease (NAFLD) are unclear. Here, the aim is to investigate the molecular mechanisms of action of industrial trans fatty acids. METHODS AND RESULTS: Hepa1-6 hepatoma cells were incubated with elaidate, oleate, or palmitate. C57Bl/6 mice were fed diets rich in trans-unsaturated, cis-unsaturated, or saturated fatty acids. Transcriptomics analysis of Hepa1-6 cells shows that elaidate but not oleate or palmitate induces expression of genes involved in cholesterol biosynthesis. Induction of cholesterogenesis by elaidate is mediated by increased sterol regulatory element-binding protein 2 (SREBP2) activity and is dependent on SREBP cleavage-activating protein (SCAP), yet independent of liver-X receptor and ubiquitin regulatory X domain-containing protein 8. Elaidate decreases intracellular free cholesterol levels and represses the anticholesterogenic effect of exogenous cholesterol. In mice, the trans-unsaturated diet increases the ratio of liver to gonadal fat mass, steatosis, hepatic cholesterol levels, alanine aminotransferase activity, and fibrosis markers, suggesting enhanced NAFLD, compared to the cis-unsaturated and saturated diets. CONCLUSION: Elaidate induces cholesterogenesis in vitro by activating the SCAP-SREBP2 axis, likely by lowering intracellular free cholesterol and attenuating cholesterol-dependent repression of SCAP. This pathway potentially underlies the increase in liver cholesterol and NAFLD by industrial trans fatty acids.


Subject(s)
Cholesterol/biosynthesis , Dietary Fats/pharmacology , Non-alcoholic Fatty Liver Disease/chemically induced , Sterol Regulatory Element Binding Protein 2/physiology , Trans Fatty Acids/pharmacology , 3T3-L1 Cells , Animals , CHO Cells , Carcinoma, Hepatocellular , Cell Line, Tumor , Cholesterol/genetics , Cricetulus , Gene Expression/drug effects , Intracellular Signaling Peptides and Proteins/physiology , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Membrane Proteins/physiology , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Oleic Acids/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL