Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 147.936
Filter
Add more filters

Publication year range
1.
Cell ; 184(22): 5577-5592.e18, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34644529

ABSTRACT

Intratumoral heterogeneity is a critical frontier in understanding how the tumor microenvironment (TME) propels malignant progression. Here, we deconvolute the human pancreatic TME through large-scale integration of histology-guided regional multiOMICs with clinical data and patient-derived preclinical models. We discover "subTMEs," histologically definable tissue states anchored in fibroblast plasticity, with regional relationships to tumor immunity, subtypes, differentiation, and treatment response. "Reactive" subTMEs rich in complex but functionally coordinated fibroblast communities were immune hot and inhabited by aggressive tumor cell phenotypes. The matrix-rich "deserted" subTMEs harbored fewer activated fibroblasts and tumor-suppressive features yet were markedly chemoprotective and enriched upon chemotherapy. SubTMEs originated in fibroblast differentiation trajectories, and transitory states were notable both in single-cell transcriptomics and in situ. The intratumoral co-occurrence of subTMEs produced patient-specific phenotypic and computationally predictable heterogeneity tightly linked to malignant biology. Therefore, heterogeneity within the plentiful, notorious pancreatic TME is not random but marks fundamental tissue organizational units.


Subject(s)
Pancreatic Neoplasms/pathology , Tumor Microenvironment , Adenocarcinoma/genetics , Adenocarcinoma/immunology , Adenocarcinoma/pathology , Cancer-Associated Fibroblasts/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Cell Differentiation , Cell Proliferation , Epithelium/pathology , Extracellular Matrix/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Male , Middle Aged , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/immunology , Phenotype , Stromal Cells/pathology , Survival Analysis , Tumor Microenvironment/immunology
2.
Cell ; 184(2): 476-488.e11, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33412089

ABSTRACT

Coronavirus disease 2019 (COVID-19) exhibits variable symptom severity ranging from asymptomatic to life-threatening, yet the relationship between severity and the humoral immune response is poorly understood. We examined antibody responses in 113 COVID-19 patients and found that severe cases resulting in intubation or death exhibited increased inflammatory markers, lymphopenia, pro-inflammatory cytokines, and high anti-receptor binding domain (RBD) antibody levels. Although anti-RBD immunoglobulin G (IgG) levels generally correlated with neutralization titer, quantitation of neutralization potency revealed that high potency was a predictor of survival. In addition to neutralization of wild-type SARS-CoV-2, patient sera were also able to neutralize the recently emerged SARS-CoV-2 mutant D614G, suggesting cross-protection from reinfection by either strain. However, SARS-CoV-2 sera generally lacked cross-neutralization to a highly homologous pre-emergent bat coronavirus, WIV1-CoV, which has not yet crossed the species barrier. These results highlight the importance of neutralizing humoral immunity on disease progression and the need to develop broadly protective interventions to prevent future coronavirus pandemics.


Subject(s)
Antibodies, Neutralizing/immunology , Biomarkers/analysis , COVID-19/immunology , COVID-19/physiopathology , Adult , Antibodies, Neutralizing/analysis , Antibodies, Viral/analysis , Antibodies, Viral/blood , Biomarkers/blood , COVID-19/blood , COVID-19/epidemiology , Comorbidity , Coronavirus/classification , Coronavirus/physiology , Cross Reactions , Cytokines/blood , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoglobulin A/analysis , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Male , Massachusetts/epidemiology , Middle Aged , Protein Domains , SARS-CoV-2/chemistry , SARS-CoV-2/physiology , Severity of Illness Index , Spike Glycoprotein, Coronavirus/chemistry , Survival Analysis , Treatment Outcome
3.
Cell ; 184(18): 4753-4771.e27, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34388391

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is characterized by notorious resistance to current therapies attributed to inherent tumor heterogeneity and highly desmoplastic and immunosuppressive tumor microenvironment (TME). Unique proline isomerase Pin1 regulates multiple cancer pathways, but its role in the TME and cancer immunotherapy is unknown. Here, we find that Pin1 is overexpressed both in cancer cells and cancer-associated fibroblasts (CAFs) and correlates with poor survival in PDAC patients. Targeting Pin1 using clinically available drugs induces complete elimination or sustained remissions of aggressive PDAC by synergizing with anti-PD-1 and gemcitabine in diverse model systems. Mechanistically, Pin1 drives the desmoplastic and immunosuppressive TME by acting on CAFs and induces lysosomal degradation of the PD-1 ligand PD-L1 and the gemcitabine transporter ENT1 in cancer cells, besides activating multiple cancer pathways. Thus, Pin1 inhibition simultaneously blocks multiple cancer pathways, disrupts the desmoplastic and immunosuppressive TME, and upregulates PD-L1 and ENT1, rendering PDAC eradicable by immunochemotherapy.


Subject(s)
Immunotherapy , Molecular Targeted Therapy , NIMA-Interacting Peptidylprolyl Isomerase/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/immunology , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/metabolism , Adenocarcinoma/drug therapy , Adenocarcinoma/immunology , Adenocarcinoma/pathology , Allografts/immunology , Amino Acid Motifs , Animals , Apoptosis/drug effects , B7-H1 Antigen/metabolism , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Cell Membrane/drug effects , Cell Membrane/metabolism , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Drug Synergism , Endocytosis/drug effects , Equilibrative Nucleoside Transporter 1/metabolism , Humans , Immunosuppression Therapy , Lysosomes/drug effects , Lysosomes/metabolism , Mice , Microfilament Proteins/chemistry , Microfilament Proteins/metabolism , Oncogenes , Organoids/drug effects , Organoids/pathology , Signal Transduction/drug effects , Survival Analysis , Tumor Microenvironment/drug effects , Xenograft Model Antitumor Assays , Gemcitabine
4.
Cell ; 184(15): 4016-4031.e22, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34081922

ABSTRACT

Cross-presentation of antigens from dead tumor cells by type 1 conventional dendritic cells (cDC1s) is thought to underlie priming of anti-cancer CD8+ T cells. cDC1 express high levels of DNGR-1 (a.k.a. CLEC9A), a receptor that binds to F-actin exposed by dead cell debris and promotes cross-presentation of associated antigens. Here, we show that secreted gelsolin (sGSN), an extracellular protein, decreases DNGR-1 binding to F-actin and cross-presentation of dead cell-associated antigens by cDC1s. Mice deficient in sGsn display increased DNGR-1-dependent resistance to transplantable tumors, especially ones expressing neoantigens associated with the actin cytoskeleton, and exhibit greater responsiveness to cancer immunotherapy. In human cancers, lower levels of intratumoral sGSN transcripts, as well as presence of mutations in proteins associated with the actin cytoskeleton, are associated with signatures of anti-cancer immunity and increased patient survival. Our results reveal a natural barrier to cross-presentation of cancer antigens that dampens anti-tumor CD8+ T cell responses.


Subject(s)
Cross-Priming/immunology , Gelsolin/metabolism , Immunity , Lectins, C-Type/metabolism , Neoplasms/immunology , Receptors, Immunologic/metabolism , Receptors, Mitogen/metabolism , Actins/metabolism , Amino Acid Sequence , Animals , Antigens, Neoplasm/metabolism , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Cell Movement/drug effects , Cell Proliferation/drug effects , Cross-Priming/drug effects , Cytoskeleton/drug effects , Cytoskeleton/metabolism , Dendritic Cells/drug effects , Dendritic Cells/immunology , Gelsolin/chemistry , Gelsolin/deficiency , Gene Expression Regulation, Neoplastic/drug effects , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Immunity/drug effects , Mice, Inbred C57BL , Mutation/genetics , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Protein Binding/drug effects , Survival Analysis
5.
Cell ; 183(6): 1634-1649.e17, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33259803

ABSTRACT

Microsatellite instability-high (MSI-H) tumors are characterized by high tumor mutation burden and responsiveness to checkpoint blockade. We identified tumor-specific frameshifts encoding multiple epitopes that originated from indel mutations shared among patients with MSI-H endometrial, colorectal, and stomach cancers. Epitopes derived from these shared frameshifts have high population occurrence rates, wide presence in many tumor subclones, and are predicted to bind to the most frequent MHC alleles in MSI-H patient cohorts. Neoantigens arising from these mutations are distinctly unlike self and viral antigens, signifying novel groups of potentially highly immunogenic tumor antigens. We further confirmed the immunogenicity of frameshift peptides in T cell stimulation experiments using blood mononuclear cells isolated from both healthy donors and MSI-H cancer patients. Our study uncovers the widespread occurrence and strong immunogenicity of tumor-specific antigens derived from shared frameshift mutations in MSI-H cancer and Lynch syndrome patients, suitable for the design of common "off-the-shelf" cancer vaccines.


Subject(s)
Epitopes/genetics , Epitopes/immunology , Frameshift Mutation/genetics , Microsatellite Instability , Neoplasms/genetics , Neoplasms/immunology , Amino Acid Sequence , Antigens, Neoplasm/immunology , Antigens, Viral/immunology , Cell Line, Tumor , DNA Mutational Analysis , Gene Expression Regulation, Neoplastic , Genome, Human , Humans , Immunotherapy , Mutation, Missense/genetics , Neoplasms/therapy , Peptides/chemistry , Peptides/immunology , Survival Analysis , T-Lymphocytes/immunology
6.
Cell ; 182(4): 855-871.e23, 2020 08 20.
Article in English | MEDLINE | ID: mdl-32730808

ABSTRACT

A T cell receptor (TCR) mediates antigen-induced signaling through its associated CD3ε, δ, γ, and ζ, but the contributions of different CD3 chains remain elusive. Using quantitative mass spectrometry, we simultaneously quantitated the phosphorylation of the immunoreceptor tyrosine-based activation motif (ITAM) of all CD3 chains upon TCR stimulation. A subpopulation of CD3ε ITAMs was mono-phosphorylated, owing to Lck kinase selectivity, and specifically recruited the inhibitory Csk kinase to attenuate TCR signaling, suggesting that TCR is a self-restrained signaling machinery containing both activating and inhibitory motifs. Moreover, we found that incorporation of the CD3ε cytoplasmic domain into a second-generation chimeric antigen receptor (CAR) improved antitumor activity of CAR-T cells. Mechanistically, the Csk-recruiting ITAM of CD3ε reduced CAR-T cytokine production whereas the basic residue rich sequence (BRS) of CD3ε promoted CAR-T persistence via p85 recruitment. Collectively, CD3ε is a built-in multifunctional signal tuner, and increasing CD3 diversity represents a strategy to design next-generation CAR.


Subject(s)
CD3 Complex/metabolism , Immunotherapy, Adoptive/methods , Receptors, Chimeric Antigen/metabolism , Signal Transduction , Amino Acid Motifs , Animals , CD3 Complex/chemistry , CSK Tyrosine-Protein Kinase/metabolism , Cell Line , Cytokines/metabolism , Humans , Lymphocyte Activation/drug effects , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Mice , Mice, Inbred NOD , Neoplasms/mortality , Neoplasms/pathology , Neoplasms/therapy , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Antigen, T-Cell/metabolism , Survival Analysis , Vanadates/pharmacology
7.
Cell ; 179(5): 1177-1190.e13, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31730856

ABSTRACT

Immune checkpoint therapy (ICT) shows encouraging results in a subset of patients with metastatic castration-resistant prostate cancer (mCRPC) but still elicits a sub-optimal response among those with bone metastases. Analysis of patients' bone marrow samples revealed increased Th17 instead of Th1 subsets after ICT. To further evaluate the different tumor microenvironments, we injected mice with prostate tumor cells either subcutaneously or intraosseously. ICT in the subcutaneous CRPC model significantly increases intra-tumoral Th1 subsets and improves survival. However, ICT fails to elicit an anti-tumor response in the bone CRPC model despite an increase in the intra-tumoral CD4 T cells, which are polarized to Th17 rather than Th1 lineage. Mechanistically, tumors in the bone promote osteoclast-mediated bone resorption that releases TGF-ß, which restrains Th1 lineage development. Blocking TGF-ß along with ICT increases Th1 subsets and promotes clonal expansion of CD8 T cells and subsequent regression of bone CRPC and improves survival.


Subject(s)
Cell Lineage , Immunotherapy , T-Lymphocytes, Helper-Inducer/cytology , Tumor Microenvironment , Animals , Antigens/metabolism , Bone Neoplasms/secondary , CTLA-4 Antigen/metabolism , Cell Lineage/drug effects , Cell Proliferation/drug effects , Clone Cells , Cytokines/metabolism , Disease Models, Animal , Immunologic Memory/drug effects , Ipilimumab/pharmacology , Male , Mice , Osteoclasts/drug effects , Osteoclasts/metabolism , Programmed Cell Death 1 Receptor/metabolism , Prostatic Neoplasms, Castration-Resistant/immunology , Prostatic Neoplasms, Castration-Resistant/pathology , Survival Analysis , T-Lymphocytes, Helper-Inducer/drug effects , Th1 Cells/drug effects , Transforming Growth Factor beta/metabolism , Tumor Microenvironment/drug effects
8.
Nat Immunol ; 22(12): 1503-1514, 2021 12.
Article in English | MEDLINE | ID: mdl-34716452

ABSTRACT

Prevention of viral escape and increased coverage against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern require therapeutic monoclonal antibodies (mAbs) targeting multiple sites of vulnerability on the coronavirus spike glycoprotein. Here we identify several potent neutralizing antibodies directed against either the N-terminal domain (NTD) or the receptor-binding domain (RBD) of the spike protein. Administered in combinations, these mAbs provided low-dose protection against SARS-CoV-2 infection in the K18-human angiotensin-converting enzyme 2 mouse model, using both neutralization and Fc effector antibody functions. The RBD mAb WRAIR-2125, which targets residue F486 through a unique heavy-chain and light-chain pairing, demonstrated potent neutralizing activity against all major SARS-CoV-2 variants of concern. In combination with NTD and other RBD mAbs, WRAIR-2125 also prevented viral escape. These data demonstrate that NTD/RBD mAb combinations confer potent protection, likely leveraging complementary mechanisms of viral inactivation and clearance.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/metabolism , Antibodies, Viral/immunology , Antibodies, Viral/metabolism , Binding Sites/genetics , COVID-19/metabolism , COVID-19/prevention & control , Disease Models, Animal , Dose-Response Relationship, Drug , Epitope Mapping , Epitopes/chemistry , Epitopes/immunology , Epitopes/metabolism , Humans , Mice, Transgenic , Neutralization Tests , Protein Binding , Protein Conformation , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Sequence Homology, Amino Acid , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Survival Analysis
9.
Cell ; 172(5): 1022-1037.e14, 2018 02 22.
Article in English | MEDLINE | ID: mdl-29429633

ABSTRACT

Conventional type 1 dendritic cells (cDC1) are critical for antitumor immunity, and their abundance within tumors is associated with immune-mediated rejection and the success of immunotherapy. Here, we show that cDC1 accumulation in mouse tumors often depends on natural killer (NK) cells that produce the cDC1 chemoattractants CCL5 and XCL1. Similarly, in human cancers, intratumoral CCL5, XCL1, and XCL2 transcripts closely correlate with gene signatures of both NK cells and cDC1 and are associated with increased overall patient survival. Notably, tumor production of prostaglandin E2 (PGE2) leads to evasion of the NK cell-cDC1 axis in part by impairing NK cell viability and chemokine production, as well as by causing downregulation of chemokine receptor expression in cDC1. Our findings reveal a cellular and molecular checkpoint for intratumoral cDC1 recruitment that is targeted by tumor-derived PGE2 for immune evasion and that could be exploited for cancer therapy.


Subject(s)
Dendritic Cells/immunology , Killer Cells, Natural/immunology , Neoplasms/immunology , Neoplasms/pathology , Tumor Microenvironment/immunology , Animals , Cell Line, Tumor , Chemokine CCL5/metabolism , Chemokines, C/metabolism , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/metabolism , Dinoprostone/metabolism , Gene Expression Regulation, Neoplastic , Humans , Melanoma/genetics , Melanoma/pathology , Mice , Mutation/genetics , Prognosis , Proto-Oncogene Proteins B-raf/genetics , Survival Analysis
10.
Cell ; 173(4): 879-893.e13, 2018 05 03.
Article in English | MEDLINE | ID: mdl-29681456

ABSTRACT

Triple-negative breast cancer (TNBC) is an aggressive subtype that frequently develops resistance to chemotherapy. An unresolved question is whether resistance is caused by the selection of rare pre-existing clones or alternatively through the acquisition of new genomic aberrations. To investigate this question, we applied single-cell DNA and RNA sequencing in addition to bulk exome sequencing to profile longitudinal samples from 20 TNBC patients during neoadjuvant chemotherapy (NAC). Deep-exome sequencing identified 10 patients in which NAC led to clonal extinction and 10 patients in which clones persisted after treatment. In 8 patients, we performed a more detailed study using single-cell DNA sequencing to analyze 900 cells and single-cell RNA sequencing to analyze 6,862 cells. Our data showed that resistant genotypes were pre-existing and adaptively selected by NAC, while transcriptional profiles were acquired by reprogramming in response to chemotherapy in TNBC patients.


Subject(s)
Antineoplastic Agents/therapeutic use , Drug Resistance, Neoplasm/genetics , High-Throughput Nucleotide Sequencing , Triple Negative Breast Neoplasms/drug therapy , Case-Control Studies , Cluster Analysis , DNA Copy Number Variations , Exome/genetics , Female , Gene Frequency , Genotype , Humans , Neoadjuvant Therapy , Sequence Analysis, DNA , Sequence Analysis, RNA , Single-Cell Analysis , Survival Analysis , Transcriptome , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/mortality , Triple Negative Breast Neoplasms/pathology
11.
Nat Immunol ; 21(10): 1160-1171, 2020 10.
Article in English | MEDLINE | ID: mdl-32747819

ABSTRACT

Autophagy supports both cellular and organismal homeostasis. However, whether autophagy should be inhibited or activated for cancer therapy remains unclear. Deletion of essential autophagy genes increased the sensitivity of mouse mammary carcinoma cells to radiation therapy in vitro and in vivo (in immunocompetent syngeneic hosts). Autophagy-deficient cells secreted increased amounts of type I interferon (IFN), which could be limited by CGAS or STING knockdown, mitochondrial DNA depletion or mitochondrial outer membrane permeabilization blockage via BCL2 overexpression or BAX deletion. In vivo, irradiated autophagy-incompetent mammary tumors elicited robust immunity, leading to improved control of distant nonirradiated lesions via systemic type I IFN signaling. Finally, a genetic signature of autophagy had negative prognostic value in patients with breast cancer, inversely correlating with mitochondrial abundance, type I IFN signaling and effector immunity. As clinically useful autophagy inhibitors are elusive, our findings suggest that mitochondrial outer membrane permeabilization may represent a valid target for boosting radiation therapy immunogenicity in patients with breast cancer.


Subject(s)
Autophagy-Related Protein 5/genetics , Autophagy-Related Protein 7/genetics , Autophagy/genetics , Breast Neoplasms/radiotherapy , DNA, Mitochondrial/genetics , Mammary Neoplasms, Animal/radiotherapy , Mitochondria/metabolism , Adult , Aged , Animals , Breast Neoplasms/genetics , Breast Neoplasms/mortality , Cell Line, Tumor , Cytotoxicity, Immunologic , Female , Humans , Interferon Type I/metabolism , Mammary Neoplasms, Animal/genetics , Mice , Mice, Inbred BALB C , Middle Aged , Prognosis , Radiation Tolerance , Signal Transduction , Survival Analysis
12.
Cell ; 171(3): 540-556.e25, 2017 Oct 19.
Article in English | MEDLINE | ID: mdl-28988769

ABSTRACT

We report a comprehensive analysis of 412 muscle-invasive bladder cancers characterized by multiple TCGA analytical platforms. Fifty-eight genes were significantly mutated, and the overall mutational load was associated with APOBEC-signature mutagenesis. Clustering by mutation signature identified a high-mutation subset with 75% 5-year survival. mRNA expression clustering refined prior clustering analyses and identified a poor-survival "neuronal" subtype in which the majority of tumors lacked small cell or neuroendocrine histology. Clustering by mRNA, long non-coding RNA (lncRNA), and miRNA expression converged to identify subsets with differential epithelial-mesenchymal transition status, carcinoma in situ scores, histologic features, and survival. Our analyses identified 5 expression subtypes that may stratify response to different treatments.


Subject(s)
Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Aged , Cluster Analysis , DNA Methylation , Humans , MicroRNAs/genetics , Middle Aged , Muscle, Smooth/pathology , RNA, Long Noncoding/genetics , Survival Analysis , Urinary Bladder/pathology , Urinary Bladder Neoplasms/epidemiology , Urinary Bladder Neoplasms/therapy
13.
Nat Immunol ; 20(12): 1656-1667, 2019 12.
Article in English | MEDLINE | ID: mdl-31636463

ABSTRACT

Natural killer (NK) cells have crucial roles in tumor surveillance. We found that tumor-infiltrating NK cells in human liver cancers had small, fragmented mitochondria in their cytoplasm, whereas liver NK cells outside tumors, as well as peripheral NK cells, had normal large, tubular mitochondria. This fragmentation was correlated with reduced cytotoxicity and NK cell loss, resulting in tumor evasion of NK cell-mediated surveillance, which predicted poor survival in patients with liver cancer. The hypoxic tumor microenvironment drove the sustained activation of mechanistic target of rapamycin-GTPase dynamin-related protein 1 (mTOR-Drp1) in NK cells, resulting in excessive mitochondrial fission into fragments. Inhibition of mitochondrial fragmentation improved mitochondrial metabolism, survival and the antitumor capacity of NK cells. These data reveal a mechanism of immune escape that might be targetable and could invigorate NK cell-based cancer treatments.


Subject(s)
Immunotherapy, Adoptive/methods , Killer Cells, Natural/immunology , Liver Neoplasms/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Mitochondria/metabolism , Aged , Animals , Cytotoxicity, Immunologic , Death-Associated Protein Kinases/metabolism , Female , Humans , Immunologic Surveillance , Liver Neoplasms/mortality , Liver Neoplasms/therapy , Male , Mice , Microscopy, Confocal , Middle Aged , Mitochondria/ultrastructure , Mitochondrial Dynamics , Survival Analysis , TOR Serine-Threonine Kinases/metabolism , Tumor Escape
14.
Nat Immunol ; 20(5): 546-558, 2019 05.
Article in English | MEDLINE | ID: mdl-30911105

ABSTRACT

Neutrophils are essential first-line defense cells against invading pathogens, yet when inappropriately activated, their strong immune response can cause collateral tissue damage and contributes to immunological diseases. However, whether neutrophils can intrinsically titrate their immune response remains unknown. Here we conditionally deleted the Spi1 gene, which encodes the myeloid transcription factor PU.1, from neutrophils of mice undergoing fungal infection and then performed comprehensive epigenomic profiling. We found that as well as providing the transcriptional prerequisite for eradicating pathogens, the predominant function of PU.1 was to restrain the neutrophil defense by broadly inhibiting the accessibility of enhancers via the recruitment of histone deacetylase 1. Such epigenetic modifications impeded the immunostimulatory AP-1 transcription factor JUNB from entering chromatin and activating its targets. Thus, neutrophils rely on a PU.1-installed inhibitor program to safeguard their epigenome from undergoing uncontrolled activation, protecting the host against an exorbitant innate immune response.


Subject(s)
Epigenesis, Genetic/immunology , Epigenomics/methods , Neutrophils/immunology , Proto-Oncogene Proteins/immunology , Trans-Activators/immunology , Animals , Candida albicans/immunology , Candida albicans/physiology , Candidiasis/genetics , Candidiasis/immunology , Candidiasis/microbiology , Disease Resistance/genetics , Disease Resistance/immunology , Gene Expression Profiling/methods , Humans , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Neutrophils/metabolism , Neutrophils/microbiology , Proto-Oncogene Proteins/deficiency , Proto-Oncogene Proteins/genetics , Survival Analysis , Trans-Activators/deficiency , Trans-Activators/genetics , Transcriptome/genetics , Transcriptome/immunology
15.
Nat Immunol ; 20(2): 206-217, 2019 02.
Article in English | MEDLINE | ID: mdl-30664764

ABSTRACT

Immune checkpoint blockade therapy has shifted the paradigm for cancer treatment. However, the majority of patients lack effective responses due to insufficient T cell infiltration in tumors. Here we show that expression of mitochondrial uncoupling protein 2 (UCP2) in tumor cells determines the immunostimulatory feature of the tumor microenvironment (TME) and is positively associated with prolonged survival. UCP2 reprograms the immune state of the TME by altering its cytokine milieu in an interferon regulatory factor 5-dependent manner. Consequently, UCP2 boosts the conventional type 1 dendritic cell- and CD8+ T cell-dependent anti-tumor immune cycle and normalizes the tumor vasculature. Finally we show, using either a genetic or pharmacological approach, that induction of UCP2 sensitizes melanomas to programmed cell death protein-1 blockade treatment and elicits effective anti-tumor responses. Together, this study demonstrates that targeting the UCP2 pathway is a potent strategy for alleviating the immunosuppressive TME and overcoming the primary resistance of programmed cell death protein-1 blockade.


Subject(s)
Antineoplastic Agents, Immunological/therapeutic use , Melanoma, Experimental/immunology , Skin Neoplasms/immunology , Tumor Microenvironment/immunology , Uncoupling Protein 2/immunology , Animals , Antineoplastic Agents, Immunological/pharmacology , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Dendritic Cells/immunology , Drug Resistance, Neoplasm/immunology , Female , Humans , Immunotherapy/methods , Interferon Regulatory Factors/immunology , Interferon Regulatory Factors/metabolism , Melanoma, Experimental/blood supply , Melanoma, Experimental/drug therapy , Melanoma, Experimental/mortality , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Skin Neoplasms/blood supply , Skin Neoplasms/drug therapy , Skin Neoplasms/mortality , Survival Analysis , Treatment Outcome , Uncoupling Protein 2/genetics , Uncoupling Protein 2/metabolism
16.
Immunity ; 55(1): 56-64.e4, 2022 01 11.
Article in English | MEDLINE | ID: mdl-34986342

ABSTRACT

We evaluated the impact of class I and class II human leukocyte antigen (HLA) genotypes, heterozygosity, and diversity on the efficacy of pembrolizumab. Seventeen pembrolizumab clinical trials across eight tumor types and one basket trial in patients with advanced solid tumors were included (n > 3,500 analyzed). Germline DNA was genotyped using a custom genotyping array. HLA diversity (measured by heterozygosity and evolutionary divergence) across class I loci was not associated with improved response to pembrolizumab, either within each tumor type evaluated or across all patients. Similarly, HLA heterozygosity at each class I and class II gene was not associated with response to pembrolizumab after accounting for the number of tests conducted. No conclusive association between HLA genotype and response to pembrolizumab was identified in this dataset. Germline HLA genotype or diversity alone is not an important independent determinant of response to pembrolizumab and should not be used for clinical decision-making in patients treated with pembrolizumab.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Genotype , Germ-Line Mutation/genetics , HLA Antigens/genetics , Immune Checkpoint Inhibitors/therapeutic use , Neoplasms/drug therapy , Age Factors , Female , Genetic Association Studies , Heterozygote , Humans , Male , Neoplasms/diagnosis , Neoplasms/mortality , Polymorphism, Genetic , Prognosis , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Sex Factors , Survival Analysis , Treatment Outcome
17.
Cell ; 166(3): 755-765, 2016 Jul 28.
Article in English | MEDLINE | ID: mdl-27372738

ABSTRACT

To provide a detailed analysis of the molecular components and underlying mechanisms associated with ovarian cancer, we performed a comprehensive mass-spectrometry-based proteomic characterization of 174 ovarian tumors previously analyzed by The Cancer Genome Atlas (TCGA), of which 169 were high-grade serous carcinomas (HGSCs). Integrating our proteomic measurements with the genomic data yielded a number of insights into disease, such as how different copy-number alternations influence the proteome, the proteins associated with chromosomal instability, the sets of signaling pathways that diverse genome rearrangements converge on, and the ones most associated with short overall survival. Specific protein acetylations associated with homologous recombination deficiency suggest a potential means for stratifying patients for therapy. In addition to providing a valuable resource, these findings provide a view of how the somatic genome drives the cancer proteome and associations between protein and post-translational modification levels and clinical outcomes in HGSC. VIDEO ABSTRACT.


Subject(s)
Neoplasm Proteins/genetics , Neoplasms, Cystic, Mucinous, and Serous/genetics , Ovarian Neoplasms/genetics , Proteome , Acetylation , Chromosomal Instability , DNA Repair , DNA, Neoplasm , Female , Gene Dosage , Humans , Mass Spectrometry , Phosphoproteins/genetics , Protein Processing, Post-Translational , Survival Analysis
18.
Immunity ; 54(3): 454-467.e6, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33561388

ABSTRACT

Heparin, a mammalian polysaccharide, is a widely used anticoagulant medicine to treat thrombotic disorders. It is also known to improve outcomes in sepsis, a leading cause of mortality resulted from infection-induced immune dysfunction. Whereas it is relatively clear how heparin exerts its anticoagulant effect, the immunomodulatory mechanisms enabled by heparin remain enigmatic. Here, we show that heparin prevented caspase-11-dependent immune responses and lethality in sepsis independent of its anticoagulant properties. Heparin or a chemically modified form of heparin without anticoagulant function inhibited the alarmin HMGB1-lipopolysaccharide (LPS) interaction and prevented the macrophage glycocalyx degradation by heparanase. These events blocked the cytosolic delivery of LPS in macrophages and the activation of caspase-11, a cytosolic LPS receptor that mediates lethality in sepsis. Survival was higher in septic patients treated with heparin than those without heparin treatment. The identification of this previously unrecognized heparin function establishes a link between innate immune responses and coagulation.


Subject(s)
Anticoagulants/therapeutic use , Caspases/metabolism , Heparin/therapeutic use , Macrophages/immunology , Sepsis/drug therapy , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Caspases/genetics , Cell Line , Female , Glucuronidase/genetics , Glucuronidase/metabolism , Glycocalyx/metabolism , HMGB1 Protein/metabolism , Humans , Immunomodulation , Lipopolysaccharides/metabolism , Male , Mice , Mice, Knockout , Middle Aged , Sepsis/mortality , Survival Analysis , Young Adult
19.
Immunity ; 54(1): 132-150.e9, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33271119

ABSTRACT

HLA class I (HLA-I) glycoproteins drive immune responses by presenting antigens to cognate CD8+ T cells. This process is often hijacked by tumors and pathogens for immune evasion. Because options for restoring HLA-I antigen presentation are limited, we aimed to identify druggable HLA-I pathway targets. Using iterative genome-wide screens, we uncovered that the cell surface glycosphingolipid (GSL) repertoire determines effective HLA-I antigen presentation. We show that absence of the protease SPPL3 augmented B3GNT5 enzyme activity, resulting in upregulation of surface neolacto-series GSLs. These GSLs sterically impeded antibody and receptor interactions with HLA-I and diminished CD8+ T cell activation. Furthermore, a disturbed SPPL3-B3GNT5 pathway in glioma correlated with decreased patient survival. We show that the immunomodulatory effect could be reversed through GSL synthesis inhibition using clinically approved drugs. Overall, our study identifies a GSL signature that inhibits immune recognition and represents a potential therapeutic target in cancer, infection, and autoimmunity.


Subject(s)
Aspartic Acid Endopeptidases/metabolism , CD8-Positive T-Lymphocytes/immunology , Glioma/immunology , Glycosphingolipids/metabolism , Glycosyltransferases/metabolism , HLA Antigens/metabolism , Histocompatibility Antigens Class I/metabolism , Immunotherapy/methods , Antigen Presentation , Aspartic Acid Endopeptidases/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Glioma/mortality , Glycosphingolipids/immunology , HLA Antigens/immunology , Histocompatibility Antigens Class I/immunology , Humans , Lymphocyte Activation , Signal Transduction , Survival Analysis , Tumor Escape
20.
CA Cancer J Clin ; 73(5): 516-523, 2023.
Article in English | MEDLINE | ID: mdl-37114458

ABSTRACT

The American Joint Committee on Cancer (AJCC) staging system for all cancer sites, including anal cancer, is the standard for cancer staging in the United States. The AJCC staging criteria are dynamic, and periodic updates are conducted to optimize AJCC staging definitions through a panel of experts charged with evaluating new evidence to implement changes. With greater availability of large data sets, the AJCC has since restructured and updated its processes, incorporating prospectively collected data to validate stage group revisions in the version 9 AJCC staging system, including anal cancer. Survival analysis using AJCC eighth edition staging guidelines revealed a lack of hierarchical order in which stage IIIA anal cancer was associated with a better prognosis than stage IIB disease, suggesting that, for anal cancer, tumor (T) category has a greater effect on survival than lymph node (N) category. Accordingly, version 9 stage groups have been appropriately adjusted to reflect contemporary long-term outcomes. This article highlights the changes to the now published AJCC staging system for anal cancer, which: (1) redefined stage IIB as T1-T2N1M0 disease, (2) redefined stage IIIA as T3N0-N1M0 disease, and (3) eliminated stage 0 disease from its guidelines altogether.


Subject(s)
Anus Neoplasms , Humans , United States , Neoplasm Staging , Prognosis , Survival Analysis , Anus Neoplasms/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL