Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 501
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Annu Rev Biochem ; 86: 659-684, 2017 06 20.
Article in English | MEDLINE | ID: mdl-28301744

ABSTRACT

The endoplasmic reticulum (ER) has a broad localization throughout the cell and forms direct physical contacts with all other classes of membranous organelles, including the plasma membrane (PM). A number of protein tethers that mediate these contacts have been identified, and study of these protein tethers has revealed a multiplicity of roles in cell physiology, including regulation of intracellular Ca2+ dynamics and signaling as well as control of lipid traffic and homeostasis. In this review, we discuss the cross talk between the ER and the PM mediated by direct contacts. We review factors that tether the two membranes, their properties, and their dynamics in response to the functional state of the cell. We focus in particular on the role of ER-PM contacts in nonvesicular lipid transport between the two bilayers mediated by lipid transfer proteins.


Subject(s)
Calcium/metabolism , Carrier Proteins/metabolism , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Membrane Proteins/metabolism , ORAI1 Protein/metabolism , Biological Transport , Calcium Signaling , Carrier Proteins/genetics , Cell Membrane/ultrastructure , Endoplasmic Reticulum/ultrastructure , Eukaryotic Cells/metabolism , Eukaryotic Cells/ultrastructure , Gene Expression , Homeostasis , Humans , Membrane Proteins/genetics , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , ORAI1 Protein/genetics , Receptors, Steroid/genetics , Receptors, Steroid/metabolism , Stromal Interaction Molecule 1/genetics , Stromal Interaction Molecule 1/metabolism , Synaptotagmins/genetics , Synaptotagmins/metabolism
2.
Cell ; 161(2): 291-306, 2015 Apr 09.
Article in English | MEDLINE | ID: mdl-25860611

ABSTRACT

Cholesterol is dynamically transported among organelles, which is essential for multiple cellular functions. However, the mechanism underlying intracellular cholesterol transport has remained largely unknown. We established an amphotericin B-based assay enabling a genome-wide shRNA screen for delayed LDL-cholesterol transport and identified 341 hits with particular enrichment of peroxisome genes, suggesting a previously unappreciated pathway for cholesterol transport. We show dynamic membrane contacts between peroxisome and lysosome, which are mediated by lysosomal Synaptotagmin VII binding to the lipid PI(4,5)P2 on peroxisomal membrane. LDL-cholesterol enhances such contacts, and cholesterol is transported from lysosome to peroxisome. Disruption of critical peroxisome genes leads to cholesterol accumulation in lysosome. Together, these findings reveal an unexpected role of peroxisome in intracellular cholesterol transport. We further demonstrate massive cholesterol accumulation in human patient cells and mouse model of peroxisomal disorders, suggesting a contribution of abnormal cholesterol accumulation to these diseases.


Subject(s)
Cholesterol/metabolism , Lysosomes/metabolism , Peroxisomes/metabolism , RNA, Small Interfering/metabolism , ATP-Binding Cassette Transporters/metabolism , Adrenoleukodystrophy/metabolism , Amphotericin B/pharmacology , Animals , Biological Transport , Genome-Wide Association Study , Humans , Mice , Peroxisomal Disorders/metabolism , Peroxisomal Disorders/pathology , Phosphatidylinositol 4,5-Diphosphate/metabolism , Synaptotagmins/metabolism , Zebrafish
3.
Cell ; 163(4): 907-19, 2015 Nov 05.
Article in English | MEDLINE | ID: mdl-26544939

ABSTRACT

Steroid hormones are a large family of cholesterol derivatives regulating development and physiology in both the animal and plant kingdoms, but little is known concerning mechanisms of their secretion from steroidogenic tissues. Here, we present evidence that in Drosophila, endocrine release of the steroid hormone ecdysone is mediated through a regulated vesicular trafficking mechanism. Inhibition of calcium signaling in the steroidogenic prothoracic gland results in the accumulation of unreleased ecdysone, and the knockdown of calcium-mediated vesicle exocytosis components in the gland caused developmental defects due to deficiency of ecdysone. Accumulation of synaptotagmin-labeled vesicles in the gland is observed when calcium signaling is disrupted, and these vesicles contain an ABC transporter that functions as an ecdysone pump to fill vesicles. We propose that trafficking of steroid hormones out of endocrine cells is not always through a simple diffusion mechanism as presently thought, but instead can involve a regulated vesicle-mediated release process.


Subject(s)
Drosophila melanogaster/metabolism , Ecdysone/metabolism , Secretory Vesicles/metabolism , ATP-Binding Cassette Transporters/metabolism , Adenosine Triphosphate/metabolism , Animals , Diffusion , Drosophila Proteins/metabolism , Drosophila melanogaster/cytology , Drosophila melanogaster/growth & development , Endocrine Glands/metabolism , Exocytosis , Gene Knockdown Techniques , Inositol 1,4,5-Trisphosphate Receptors/genetics , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Larva/cytology , Larva/metabolism , Synaptotagmins/metabolism
4.
Nature ; 618(7963): 188-192, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37165187

ABSTRACT

The endoplasmic reticulum and mitochondria are main hubs of eukaryotic membrane biogenesis that rely on lipid exchange via membrane contact sites1-3, but the underpinning mechanisms remain poorly understood. In yeast, tethering and lipid transfer between the two organelles is mediated by the endoplasmic reticulum-mitochondria encounter structure (ERMES), a four-subunit complex of unresolved stoichiometry and architecture4-6. Here we determined the molecular organization of ERMES within Saccharomyces cerevisiae cells using integrative structural biology by combining quantitative live imaging, cryo-correlative microscopy, subtomogram averaging and molecular modelling. We found that ERMES assembles into approximately 25 discrete bridge-like complexes distributed irregularly across a contact site. Each bridge consists of three synaptotagmin-like mitochondrial lipid binding protein domains oriented in a zig-zag arrangement. Our molecular model of ERMES reveals a pathway for lipids. These findings resolve the in situ supramolecular architecture of a major inter-organelle lipid transfer machinery and provide a basis for the mechanistic understanding of lipid fluxes in eukaryotic cells.


Subject(s)
Endoplasmic Reticulum , Mitochondria , Saccharomyces cerevisiae , Endoplasmic Reticulum/chemistry , Endoplasmic Reticulum/metabolism , Lipids , Mitochondria/chemistry , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Models, Molecular , Synaptotagmins/chemistry , Synaptotagmins/metabolism
5.
Annu Rev Biochem ; 82: 607-35, 2013.
Article in English | MEDLINE | ID: mdl-23331239

ABSTRACT

Transmitter release is a fast Ca(2+)-dependent process triggered in response to membrane depolarization. It involves two major calcium-binding proteins, the voltage-gated calcium channel (VGCC) and the vesicular protein synaptotagmin (syt1). Ca(2+) binding triggers transmitter release with a time response of conformational changes that are too fast to be accounted for by Ca(2+) binding to syt1. In contrast, conformation-triggered release, which engages Ca(2+) binding to VGCC, better accounts for the fast rate of the release process. Here, we summarize findings obtained from heterologous expression systems, neuroendocrine cells, and reconstituted systems, which reveal the molecular mechanism by which Ca(2+) binding to VGCC triggers exocytosis prior to Ca(2+) entry into the cell. This review highlights the molecular aspects of an intramembrane signaling mechanism in which a signal is propagated from the channel transmembrane (TM) domain to the TM domain of syntaxin 1A to trigger transmitter release. It discusses fundamental problems of triggering transmitter release by syt1 and suggests a classification of docked vesicles that might explain synchronous transmitter release, spontaneous release, and facilitation of transmitter release.


Subject(s)
Calcium Channels/metabolism , Calcium Signaling/physiology , Calcium/metabolism , Exocytosis/physiology , Neuroendocrine Cells/metabolism , Synaptic Transmission/physiology , Synaptotagmins/metabolism , Animals , Calcium Channels/physiology , Humans , Models, Biological , Neuroendocrine Cells/physiology
6.
Cell ; 153(7): 1423-4, 2013 Jun 20.
Article in English | MEDLINE | ID: mdl-23791170

ABSTRACT

Junctions that connect the endoplasmic reticulum (ER) and the plasma membrane (PM) are unique yet ubiquitous subcellular compartments. Giordano et al. now report that extended synaptotagmins (E-Syts) promote their formation, providing fundamental insight into the molecular machinery controlling ER and plasma membrane crosstalk.


Subject(s)
Calcium/metabolism , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism , Synaptotagmins/metabolism , Humans
7.
Cell ; 154(6): 1171-4, 2013 Sep 12.
Article in English | MEDLINE | ID: mdl-24034236

ABSTRACT

This year, the Albert Lasker Basic Medical Research Award will be shared by Richard Scheller and Thomas Südhof for their elucidation of the molecular mechanisms underlying neurotransmitter release. Their discoveries provided insight into the molecular basis of synaptic transmission and enhanced our understanding of how synaptic dysfunction may cause neuropsychiatric disorders.


Subject(s)
Awards and Prizes , Neurophysiology/history , Neurotransmitter Agents/metabolism , Synapses , Animals , History, 20th Century , History, 21st Century , Humans , Nervous System Diseases/metabolism , Synaptotagmins/metabolism , United States
8.
Cell ; 153(7): 1494-509, 2013 Jun 20.
Article in English | MEDLINE | ID: mdl-23791178

ABSTRACT

Most available information on endoplasmic reticulum (ER)-plasma membrane (PM) contacts in cells of higher eukaryotes concerns proteins implicated in the regulation of Ca(2+) entry. However, growing evidence suggests that such contacts play more general roles in cell physiology, pointing to the existence of additionally ubiquitously expressed ER-PM tethers. Here, we show that the three extended synaptotagmins (E-Syts) are ER proteins that participate in such tethering function via C2 domain-dependent interactions with the PM that require PI(4,5)P2 in the case of E-Syt2 and E-Syt3 and also elevation of cytosolic Ca(2+) in the case of E-Syt1. As they form heteromeric complexes, the E-Syts confer cytosolic Ca(2+) regulation to ER-PM contact formation. E-Syts-dependent contacts, however, are not required for store-operated Ca(2+) entry. Thus, the ER-PM tethering function of the E-Syts (tricalbins in yeast) mediates the formation of ER-PM contacts sites, which are functionally distinct from those mediated by STIM1 and Orai1.


Subject(s)
Calcium/metabolism , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism , Synaptotagmins/metabolism , Amino Acid Sequence , Cell Line, Tumor , Cell Membrane/chemistry , Cell Membrane/ultrastructure , Endoplasmic Reticulum/chemistry , Endoplasmic Reticulum/ultrastructure , HeLa Cells , Humans , Molecular Sequence Data , Protein Structure, Tertiary , Sequence Alignment , Synaptotagmins/chemistry , Synaptotagmins/genetics , Yeasts/cytology , Yeasts/metabolism
9.
Nature ; 611(7935): 320-325, 2022 11.
Article in English | MEDLINE | ID: mdl-36261524

ABSTRACT

Sustained neuronal activity demands a rapid resupply of synaptic vesicles to maintain reliable synaptic transmission. Such vesicle replenishment is accelerated by submicromolar presynaptic Ca2+ signals by an as-yet unidentified high-affinity Ca2+ sensor1,2. Here we identify synaptotagmin-3 (SYT3)3,4 as that presynaptic high-affinity Ca2+ sensor, which drives vesicle replenishment and short-term synaptic plasticity. Synapses in Syt3 knockout mice exhibited enhanced short-term depression, and recovery from depression was slower and insensitive to presynaptic residual Ca2+. During sustained neuronal firing, SYT3 accelerated vesicle replenishment and increased the size of the readily releasable pool. SYT3 also mediated short-term facilitation under conditions of low release probability and promoted synaptic enhancement together with another high-affinity synaptotagmin, SYT7 (ref. 5). Biophysical modelling predicted that SYT3 mediates both replenishment and facilitation by promoting the transition of loosely docked vesicles to tightly docked, primed states. Our results reveal a crucial role for presynaptic SYT3 in the maintenance of reliable high-frequency synaptic transmission. Moreover, multiple forms of short-term plasticity may converge on a mechanism of reversible, Ca2+-dependent vesicle docking.


Subject(s)
Synaptic Vesicles , Synaptotagmins , Animals , Mice , Calcium/metabolism , Mice, Knockout , Neuronal Plasticity/physiology , Synaptic Transmission , Synaptic Vesicles/metabolism , Synaptotagmins/deficiency , Synaptotagmins/genetics , Synaptotagmins/metabolism
10.
Genes Dev ; 33(5-6): 365-376, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30808661

ABSTRACT

Synaptotagmin-11 (Syt11) is a Synaptotagmin isoform that lacks an apparent ability to bind calcium, phospholipids, or SNARE proteins. While human genetic studies have linked mutations in the Syt11 gene to schizophrenia and Parkinson's disease, the localization or physiological role of Syt11 remain unclear. We found that in neurons, Syt11 resides on abundant vesicles that differ from synaptic vesicles and resemble trafficking endosomes. These vesicles recycle via the plasma membrane in an activity-dependent manner, but their exocytosis is slow and desynchronized. Constitutive knockout mice lacking Syt11 died shortly after birth, suggesting Syt11-mediated membrane transport is required for survival. In contrast, selective ablation of Syt11 in excitatory forebrain neurons using a conditional knockout did not affect life span but impaired synaptic plasticity and memory. Syt11-deficient neurons displayed normal secretion of fast neurotransmitters and peptides but exhibited a reduction of long-term synaptic potentiation. Hence, Syt11 is an essential component of a neuronal vesicular trafficking pathway that differs from the well-characterized synaptic vesicle trafficking pathway but is also essential for life.


Subject(s)
Neuronal Plasticity/genetics , Neurons/physiology , Synaptic Vesicles/metabolism , Synaptotagmins/genetics , Synaptotagmins/metabolism , Animals , Cerebral Cortex/embryology , Gene Expression Profiling , Gene Expression Regulation, Developmental , Gene Knock-In Techniques , Hippocampus/physiopathology , Memory/physiology , Mice , Mice, Knockout , Neurotransmitter Agents/metabolism , Prosencephalon/cytology , Prosencephalon/physiology , Synaptic Potentials/genetics , Synaptic Transmission , Synaptic Vesicles/genetics , Synaptotagmins/deficiency
11.
EMBO Rep ; 25(1): 286-303, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38177911

ABSTRACT

Upon T-cell activation, the levels of the secondary messenger diacylglycerol (DAG) at the plasma membrane need to be controlled to ensure appropriate T-cell receptor signaling and T-cell functions. Extended-Synaptotagmins (E-Syts) are a family of inter-organelle lipid transport proteins that bridge the endoplasmic reticulum and the plasma membrane. In this study, we identify a novel regulatory mechanism of DAG-mediated signaling for T-cell effector functions based on E-Syt proteins. We demonstrate that E-Syts downmodulate T-cell receptor signaling, T-cell-mediated cytotoxicity, degranulation, and cytokine production by reducing plasma membrane levels of DAG. Mechanistically, E-Syt2 predominantly modulates DAG levels at the plasma membrane in resting-state T cells, while E-Syt1 and E-Syt2 negatively control T-cell receptor signaling upon stimulation. These results reveal a previously underappreciated role of E-Syts in regulating DAG dynamics in T-cell signaling.


Subject(s)
Signal Transduction , T-Lymphocytes , Synaptotagmins/metabolism , Cell Membrane/metabolism , Biological Transport , Receptors, Antigen, T-Cell/metabolism , Calcium/metabolism
12.
EMBO Rep ; 25(6): 2610-2634, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38698221

ABSTRACT

GABAB receptors (GBRs), the G protein-coupled receptors for GABA, regulate synaptic transmission throughout the brain. A main synaptic function of GBRs is the gating of Cav2.2-type Ca2+ channels. However, the cellular compartment where stable GBR/Cav2.2 signaling complexes form remains unknown. In this study, we demonstrate that the vesicular protein synaptotagmin-11 (Syt11) binds to both the auxiliary GBR subunit KCTD16 and Cav2.2 channels. Through these dual interactions, Syt11 recruits GBRs and Cav2.2 channels to post-Golgi vesicles, thus facilitating assembly of GBR/Cav2.2 signaling complexes. In addition, Syt11 stabilizes GBRs and Cav2.2 channels at the neuronal plasma membrane by inhibiting constitutive internalization. Neurons of Syt11 knockout mice exhibit deficits in presynaptic GBRs and Cav2.2 channels, reduced neurotransmitter release, and decreased GBR-mediated presynaptic inhibition, highlighting the critical role of Syt11 in the assembly and stable expression of GBR/Cav2.2 complexes. These findings support that Syt11 acts as a vesicular scaffold protein, aiding in the assembly of signaling complexes from low-abundance components within transport vesicles. This mechanism enables insertion of pre-assembled functional signaling units into the synaptic membrane.


Subject(s)
Mice, Knockout , Signal Transduction , Synaptotagmins , Animals , Synaptotagmins/metabolism , Synaptotagmins/genetics , Mice , Humans , Neurons/metabolism , Synaptic Transmission , Receptors, GABA-B/metabolism , Receptors, GABA-B/genetics , Presynaptic Terminals/metabolism , Calcium Channels, N-Type/metabolism , Calcium Channels, N-Type/genetics , Golgi Apparatus/metabolism , Protein Binding , HEK293 Cells
13.
Cell ; 145(2): 300-11, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21496647

ABSTRACT

Synaptotagmins Syt1, Syt2, Syt7, and Syt9 act as Ca(2+)-sensors for synaptic and neuroendocrine exocytosis, but the function of other synaptotagmins remains unknown. Here, we show that olfactory bulb neurons secrete IGF-1 by an activity-dependent pathway of exocytosis, and that Syt10 functions as the Ca(2+)-sensor that triggers IGF-1 exocytosis in these neurons. Deletion of Syt10 impaired activity-dependent IGF-1 secretion in olfactory bulb neurons, resulting in smaller neurons and an overall decrease in synapse numbers. Exogenous IGF-1 completely reversed the Syt10 knockout phenotype. Syt10 colocalized with IGF-1 in somatodendritic vesicles of olfactory bulb neurons, and Ca(2+)-binding to Syt10 caused these vesicles to undergo exocytosis, thereby secreting IGF-1. Thus, Syt10 controls a previously unrecognized pathway of Ca(2+)-dependent exocytosis that is spatially and temporally distinct from Ca(2+)-dependent synaptic vesicle exocytosis controlled by Syt1. Our findings thereby reveal that two different synaptotagmins can regulate functionally distinct Ca(2+)-dependent membrane fusion reactions in the same neuron.


Subject(s)
Exocytosis , Insulin-Like Growth Factor I/metabolism , Olfactory Bulb/metabolism , Synaptotagmins/metabolism , Animals , Cells, Cultured , In Vitro Techniques , Mice , Mice, Knockout , Neurons/metabolism , Olfactory Bulb/cytology
14.
Proc Natl Acad Sci U S A ; 120(45): e2311484120, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37903271

ABSTRACT

The synaptic vesicle protein Synaptophysin (Syp) has long been known to form a complex with the Vesicle associated soluble N-ethylmaleimide sensitive fusion protein attachment receptor (v-SNARE) Vesicle associated membrane protein (VAMP), but a more specific molecular function or mechanism of action in exocytosis has been lacking because gene knockouts have minimal effects. Utilizing fully defined reconstitution and single-molecule measurements, we now report that Syp functions as a chaperone that determines the number of SNAREpins assembling between a ready-release vesicle and its target membrane bilayer. Specifically, Syp directs the assembly of 12 ± 1 SNAREpins under each docked vesicle, even in the face of an excess of SNARE proteins. The SNAREpins assemble in successive waves of 6 ± 1 and 5 ± 2 SNAREpins, respectively, tightly linked to oligomerization of and binding to the vesicle Ca++ sensor Synaptotagmin. Templating of 12 SNAREpins by Syp is likely the direct result of its hexamer structure and its binding of VAMP2 dimers, both of which we demonstrate in detergent extracts and lipid bilayers.


Subject(s)
Membrane Fusion , Synaptic Vesicles , Synaptophysin/genetics , Synaptophysin/metabolism , Membrane Fusion/physiology , Synaptic Vesicles/metabolism , Synaptotagmins/metabolism , SNARE Proteins/metabolism , Exocytosis/physiology
15.
Proc Natl Acad Sci U S A ; 120(1): e2214897120, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36574702

ABSTRACT

During exocytosis, the fusion of secretory vesicle with plasma membrane forms a pore that regulates release of neurotransmitter and peptide. Heterogeneity of fusion pore behavior has been attributed to stochastic variation in a common exocytic mechanism, implying a lack of biological control. Using a fluorescent false neurotransmitter (FFN), we imaged dense core vesicle (DCV) exocytosis in primary mouse adrenal chromaffin cells by total internal reflection fluorescence microscopy at millisecond resolution and observed strikingly divergent modes of release, with fast events lasting <30 ms and slow events persisting for seconds. Dual imaging of slow events shows a delay in the entry of external dye relative to FFN release, suggesting exclusion by an extremely narrow pore <1 nm in diameter. Unbiased comprehensive analysis shows that the observed variation cannot be explained by stochasticity alone, but rather involves distinct mechanisms, revealing the bimodal nature of DCV exocytosis. Further, loss of calcium sensor synaptotagmin 7 increases the proportion of slow events without changing the intrinsic properties of either class, indicating the potential for independent regulation. The identification of two distinct mechanisms for release capable of independent regulation suggests a biological basis for the diversity of fusion pore behavior.


Subject(s)
Chromaffin Cells , Dense Core Vesicles , Mice , Animals , Synaptotagmins/metabolism , Exocytosis/physiology , Cell Membrane/metabolism , Chromaffin Cells/metabolism , Secretory Vesicles/metabolism , Membrane Fusion/physiology , Calcium/metabolism
16.
J Neurosci ; 44(9)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38262726

ABSTRACT

Synapses with high release probability (Pr ) tend to exhibit short-term synaptic depression. According to the prevailing model, this reflects the temporary depletion of release-ready vesicles after an initial action potential (AP). At the high-Pr layer 4 to layer 2/3 (L4-L2/3) synapse in rodent somatosensory cortex, short-term plasticity appears to contradict the depletion model: depression is absent at interstimulus intervals (ISIs) <50 ms and develops to a maximum at ∼200 ms. To understand the mechanism(s) underlying the biphasic time course of short-term plasticity at this synapse, we used whole-cell electrophysiology and two-photon calcium imaging in acute slices from male and female juvenile mice. We tested several candidate mechanisms including neuromodulation, postsynaptic receptor desensitization, and use-dependent changes in presynaptic AP-evoked calcium. We found that, at single L4-L2/3 synapses, Pr varies as a function of ISI, giving rise to the distinctive short-term plasticity time course. Furthermore, the higher-than-expected Pr at short ISIs depends on expression of synaptotagmin 7 (Syt7). Our results show that two distinct vesicle release processes summate to give rise to short-term plasticity at this synapse: (1) a basal, high-Pr release mechanism that undergoes rapid depression and recovers slowly (τ = ∼3 s) and (2) a Syt7-dependent mechanism that leads to a transient increase in Pr (τ = ∼100 ms) after the initial AP. We thus reveal how these synapses can maintain a very high probability of neurotransmission for multiple APs within a short time frame. Key words : depression; facilitation; short-term plasticity; synaptotagmin 7.


Subject(s)
Calcium , Neuronal Plasticity , Animals , Female , Male , Mice , Calcium/metabolism , Neuronal Plasticity/physiology , Synapses/physiology , Synaptic Transmission/physiology , Synaptotagmins/genetics , Synaptotagmins/metabolism
17.
J Neurosci ; 44(43)2024 Oct 23.
Article in English | MEDLINE | ID: mdl-39266302

ABSTRACT

Injuries to the central nervous system (CNS) can cause severe neurological deficits. Axonal regrowth is a fundamental process for the reconstruction of compensatory neuronal networks after injury; however, it is extremely limited in the adult mammalian CNS. In this study, we conducted a loss-of-function genetic screen in cortical neurons, combined with a Web resource-based phenotypic screen, and identified synaptotagmin 4 (Syt4) as a novel regulator of axon elongation. Silencing Syt4 in primary cultured cortical neurons inhibits neurite elongation, with changes in gene expression involved in signaling pathways related to neuronal development. In a spinal cord injury model, inhibition of Syt4 expression in cortical neurons prevented axonal sprouting of the corticospinal tract, as well as neurological recovery after injury. These results provide a novel therapeutic approach to CNS injury by modulating Syt4 function.


Subject(s)
Axons , Qa-SNARE Proteins , Spinal Cord Injuries , Synaptotagmins , Animals , Female , Mice , Axons/metabolism , Axons/physiology , Cells, Cultured , Cerebral Cortex/metabolism , Mice, Inbred C57BL , Nerve Regeneration/physiology , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/genetics , Spinal Cord Injuries/pathology , Spinal Cord Injuries/physiopathology , Synaptotagmins/metabolism , Synaptotagmins/genetics , Qa-SNARE Proteins/metabolism
18.
Cell Mol Life Sci ; 81(1): 342, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39123091

ABSTRACT

A Disintegrin And Metalloproteinase 10 (ADAM10) plays a pivotal role in shaping neuronal networks by orchestrating the activity of numerous membrane proteins through the shedding of their extracellular domains. Despite its significance in the brain, the specific cellular localization of ADAM10 remains not well understood due to a lack of appropriate tools. Here, using a specific ADAM10 antibody suitable for immunostainings, we observed that ADAM10 is localized to presynapses and especially enriched at presynaptic vesicles of mossy fiber (MF)-CA3 synapses in the hippocampus. These synapses undergo pronounced frequency facilitation of neurotransmitter release, a process that play critical roles in information transfer and neural computation. We demonstrate, that in conditional ADAM10 knockout mice the ability of MF synapses to undergo this type of synaptic plasticity is greatly reduced. The loss of facilitation depends on the cytosolic domain of ADAM10 and association with the calcium sensor synaptotagmin 7 rather than ADAM10's proteolytic activity. Our findings unveil a new role of ADAM10 in the regulation of synaptic vesicle exocytosis.


Subject(s)
ADAM10 Protein , Amyloid Precursor Protein Secretases , Membrane Proteins , Mice, Knockout , Neuronal Plasticity , Synaptic Vesicles , Animals , ADAM10 Protein/metabolism , ADAM10 Protein/genetics , Neuronal Plasticity/physiology , Amyloid Precursor Protein Secretases/metabolism , Amyloid Precursor Protein Secretases/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice , Synaptic Vesicles/metabolism , Mice, Inbred C57BL , Synapses/metabolism , Mossy Fibers, Hippocampal/metabolism , Hippocampus/metabolism , Exocytosis/physiology , Presynaptic Terminals/metabolism , Synaptic Transmission , Synaptotagmins/metabolism , Synaptotagmins/genetics
19.
Traffic ; 23(1): 21-41, 2022 01.
Article in English | MEDLINE | ID: mdl-34693607

ABSTRACT

Extended synaptotagmins are endoplasmic reticulum proteins consisting of an SMP domain and multiple C2 domains that bind phospholipids and Ca2+ . E-Syts create contact junctions between the ER and plasma membrane (PM) to facilitate the exchange of glycerophospholipids between the apposed membranes. We find in the differentiating adipocyte that the E-Syt3 carboxyl domain is cleaved by a multi-step mechanism that includes removing the C2C domain. Confocal and live-cell time-lapse studies show that truncated E-Syt3ΔC2C, as well as endogenous E-Syt3 and the coat protein PLIN1, target the LDs from an annular, single giant ER cisterna. Inhibition of the proteasome blocks the proteolytic cleavage of Esyt3 and E-Syt3ΔC2C and causes the E-Syt3ΔC2C retention in the giant cisterna. The Esyt3 and PLIN1 distributions and LDs biogenesis show that the primordial cisterna, as we call it, is the birth and nurturing site of LDs in the adipocyte. Isoproterenol-induced lipolysis results in loss of cytoplasmic LDs and reappearance of the primordial cisterna. Electron microscopy and 3D-electron tomography studies show that the primordial cisterna consists of a tightly packed network of varicose tubules with extensively blistered membranes. Rounds of homotypic fusions from nascent to mature LDs play a central role in LD growth. The knockdown of E-Syt3 inhibits LD biogenesis. The identification of the primordial cisterna, an organelle that substitutes the randomly scattered ER foci that mother the LDs in non-adipose cells, sets the stage for a better understanding of LD biogenesis in the adipocyte.


Subject(s)
Lipid Droplets , Mothers , Adipocytes/metabolism , Endoplasmic Reticulum/metabolism , Female , Humans , Lipid Droplets/metabolism , Synaptotagmins/metabolism
20.
J Neurosci ; 43(36): 6230-6248, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37474308

ABSTRACT

Synaptic vesicle (SV) endocytosis is a critical and well-regulated process for the maintenance of neurotransmission. We previously reported that synaptotagmin-11 (Syt11), an essential non-Ca2+-binding Syt associated with brain diseases, inhibits neuronal endocytosis (Wang et al., 2016). Here, we found that Syt11 deficiency caused accelerated SV endocytosis and vesicle recycling under sustained stimulation and led to the abnormal membrane partition of synaptic proteins in mouse hippocampal boutons of either sex. Furthermore, our study revealed that Syt11 has direct but Ca2+-independent binding with endophilin A1 (EndoA1), a membrane curvature sensor and endocytic protein recruiter, with high affinity. EndoA1-knockdown significantly reversed Syt11-KO phenotype, identifying EndoA1 as a main inhibitory target of Syt11 during SV endocytosis. The N-terminus of EndoA1 and the C2B domain of Syt11 were responsible for this interaction. A peptide (amino acids 314-336) derived from the Syt11 C2B efficiently blocked Syt11-EndoA1 binding both in vitro and in vivo Application of this peptide inhibited SV endocytosis in WT hippocampal neurons but not in EndoA1-knockdown neurons. Moreover, intracellular application of this peptide in mouse calyx of Held terminals of either sex effectively hampered both fast and slow SV endocytosis at physiological temperature. We thus propose that Syt11 ensures the precision of protein retrieval during SV endocytosis by inhibiting EndoA1 function at neuronal terminals.SIGNIFICANCE STATEMENT Endocytosis is a key stage of synaptic vesicle (SV) recycling. SV endocytosis retrieves vesicular membrane and protein components precisely to support sustained neurotransmission. However, the molecular mechanisms underlying the regulation of SV endocytosis remain elusive. Here, we reported that Syt11-KO accelerated SV endocytosis and impaired membrane partition of synaptic proteins. EndoA1 was identified as a main inhibitory target of Syt11 during SV endocytosis. Our study reveals a novel inhibitory mechanism of SV endocytosis in preventing hyperactivation of endocytosis, potentially safeguarding the recycling of synaptic proteins during sustained neurotransmission.


Subject(s)
Synaptic Transmission , Synaptic Vesicles , Animals , Mice , Endocytosis , Neurons/physiology , Synaptic Transmission/physiology , Synaptic Vesicles/metabolism , Synaptotagmins/genetics , Synaptotagmins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL