Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Nature ; 629(8011): 443-449, 2024 May.
Article in English | MEDLINE | ID: mdl-38658754

ABSTRACT

The Werner syndrome RecQ helicase WRN was identified as a synthetic lethal target in cancer cells with microsatellite instability (MSI) by several genetic screens1-6. Despite advances in treatment with immune checkpoint inhibitors7-10, there is an unmet need in the treatment of MSI cancers11-14. Here we report the structural, biochemical, cellular and pharmacological characterization of the clinical-stage WRN helicase inhibitor HRO761, which was identified through an innovative hit-finding and lead-optimization strategy. HRO761 is a potent, selective, allosteric WRN inhibitor that binds at the interface of the D1 and D2 helicase domains, locking WRN in an inactive conformation. Pharmacological inhibition by HRO761 recapitulated the phenotype observed by WRN genetic suppression, leading to DNA damage and inhibition of tumour cell growth selectively in MSI cells in a p53-independent manner. Moreover, HRO761 led to WRN degradation in MSI cells but not in microsatellite-stable cells. Oral treatment with HRO761 resulted in dose-dependent in vivo DNA damage induction and tumour growth inhibition in MSI cell- and patient-derived xenograft models. These findings represent preclinical pharmacological validation of WRN as a therapeutic target in MSI cancers. A clinical trial with HRO761 (NCT05838768) is ongoing to assess the safety, tolerability and preliminary anti-tumour activity in patients with MSI colorectal cancer and other MSI solid tumours.


Subject(s)
Antineoplastic Agents , Drug Discovery , Enzyme Inhibitors , Microsatellite Instability , Neoplasms , Synthetic Lethal Mutations , Werner Syndrome Helicase , Animals , Female , Humans , Mice , Administration, Oral , Allosteric Regulation/drug effects , Antineoplastic Agents/adverse effects , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Clinical Trials as Topic , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , DNA Damage/drug effects , Enzyme Inhibitors/adverse effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Mice, Nude , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism , Protein Domains , Reproducibility of Results , Suppression, Genetic , Synthetic Lethal Mutations/genetics , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Werner Syndrome Helicase/antagonists & inhibitors , Werner Syndrome Helicase/genetics , Werner Syndrome Helicase/metabolism , Xenograft Model Antitumor Assays
2.
Med ; 5(1): 73-89.e9, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38218178

ABSTRACT

BACKGROUND: Synthetic lethality (SL) denotes a genetic interaction between two genes whose co-inactivation is detrimental to cells. Because more than 25 years have passed since SL was proposed as a promising way to selectively target cancer vulnerabilities, it is timely to comprehensively assess its impact so far and discuss its future. METHODS: We systematically analyzed the literature and clinical trial data from the PubMed and Trialtrove databases to portray the preclinical and clinical landscape of SL oncology. FINDINGS: We identified 235 preclinically validated SL pairs and found 1,207 pertinent clinical trials, and the number keeps increasing over time. About one-third of these SL clinical trials go beyond the typically studied DNA damage response (DDR) pathway, testifying to the recently broadening scope of SL applications in clinical oncology. We find that SL oncology trials have a greater success rate than non-SL-based trials. However, about 75% of the preclinically validated SL interactions have not yet been tested in clinical trials. CONCLUSIONS: Dissecting the recent efforts harnessing SL to identify predictive biomarkers, novel therapeutic targets, and effective combination therapy, our systematic analysis reinforces the hope that SL may serve as a key driver of precision oncology going forward. FUNDING: Funded by the Samsung Research Funding & Incubation Center of Samsung Electronics, the Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Republic of Korea government (MSIT), the Kwanjeong Educational Foundation, the Intramural Research Program of the National Institutes of Health (NIH), National Cancer Institute (NCI), and Center for Cancer Research (CCR).


Subject(s)
Neoplasms , Humans , Medical Oncology , Neoplasms/genetics , Neoplasms/therapy , Precision Medicine , Republic of Korea , Synthetic Lethal Mutations/genetics , United States , Clinical Trials as Topic
3.
mSphere ; 9(7): e0013924, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38904396

ABSTRACT

Gene knockout studies suggest that ~300 genes in a bacterial genome and ~1,100 genes in a yeast genome cannot be deleted without loss of viability. These single-gene knockout experiments do not account for negative genetic interactions, when two or more genes can each be deleted without effect, but their joint deletion is lethal. Thus, large-scale single-gene deletion studies underestimate the size of a minimal gene set compatible with cell survival. In yeast Saccharomyces cerevisiae, the viability of all possible deletions of gene pairs (2-tuples), and of some deletions of gene triplets (3-tuples), has been experimentally tested. To estimate the size of a yeast minimal genome from that data, we first established that finding the size of a minimal gene set is equivalent to finding the minimum vertex cover in the lethality (hyper)graph, where the vertices are genes and (hyper)edges connect k-tuples of genes whose joint deletion is lethal. Using the Lovász-Johnson-Chvatal greedy approximation algorithm, we computed the minimum vertex cover of the synthetic-lethal 2-tuples graph to be 1,723 genes. We next simulated the genetic interactions in 3-tuples, extrapolating from the existing triplet sample, and again estimated minimum vertex covers. The size of a minimal gene set in yeast rapidly approaches the size of the entire genome even when considering only synthetic lethalities in k-tuples with small k. In contrast, several studies reported successful experimental reductions of yeast and bacterial genomes by simultaneous deletions of hundreds of genes, without eliciting synthetic lethality. We discuss possible reasons for this apparent contradiction.IMPORTANCEHow can we estimate the smallest number of genes sufficient for a unicellular organism to survive on a rich medium? One approach is to remove genes one at a time and count how many of such deletion strains are unable to grow. However, the single-gene knockout data are insufficient, because joint gene deletions may result in negative genetic interactions, also known as synthetic lethality. We used a technique from graph theory to estimate the size of minimal yeast genome from partial data on synthetic lethality. The number of potential synthetic lethal interactions grows very fast when multiple genes are deleted, revealing a paradoxical contrast with the experimental reductions of yeast genome by ~100 genes, and of bacterial genomes by several hundreds of genes.


Subject(s)
Genome Size , Genome, Fungal , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Genome, Fungal/genetics , Gene Deletion , Synthetic Lethal Mutations/genetics , Gene Knockout Techniques , Algorithms , Models, Genetic
4.
Cells ; 13(7)2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38607047

ABSTRACT

Cohesin is a highly conserved ring-shaped complex involved in topologically embracing chromatids, gene expression regulation, genome compartmentalization, and genome stability maintenance. Genomic analyses have detected mutations in the cohesin complex in a wide array of human tumors. These findings have led to increased interest in cohesin as a potential target in cancer therapy. Synthetic lethality has been suggested as an approach to exploit genetic differences in cancer cells to influence their selective killing. In this study, we show that mutations in ESCO1, NIPBL, PDS5B, RAD21, SMC1A, SMC3, STAG2, and WAPL genes are synthetically lethal with stimulation of WNT signaling obtained following LY2090314 treatment, a GSK3 inhibitor, in several cancer cell lines. Moreover, treatment led to the stabilization of ß-catenin and affected the expression of c-MYC, probably due to the occupancy decrease in cohesin at the c-MYC promoter. Finally, LY2090314 caused gene expression dysregulation mainly involving pathways related to transcription regulation, cell proliferation, and chromatin remodeling. For the first time, our work provides the underlying molecular basis for synthetic lethality due to cohesin mutations and suggests that targeting the WNT may be a promising therapeutic approach for tumors carrying mutated cohesin.


Subject(s)
Cohesins , Heterocyclic Compounds, 3-Ring , Maleimides , Neoplasms , Humans , Synthetic Lethal Mutations/genetics , Wnt Signaling Pathway/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Glycogen Synthase Kinase 3/metabolism , Neoplasms/genetics , Neoplasms/pathology , DNA-Binding Proteins/metabolism , Transcription Factors/genetics
5.
Life Sci Alliance ; 7(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38316463

ABSTRACT

Radiation therapy (RT) is one of the most commonly used anticancer therapies. However, the landscape of cellular response to irradiation, especially to a single high-dose irradiation, remains largely unknown. In this study, we performed a whole-genome CRISPR loss-of-function screen and revealed temporal inherent and acquired responses to RT. Specifically, we found that loss of the IL1R1 pathway led to cellular resistance to RT. This is in part because of the involvement of radiation-induced IL1R1-dependent transcriptional regulation, which relies on the NF-κB pathway. Moreover, the mitochondrial anti-apoptotic pathway, particularly the BCL2L1 gene, is crucially important for cell survival after radiation. BCL2L1 inhibition combined with RT dramatically impeded tumor growth in several breast cancer cell lines and syngeneic models. Taken together, our results suggest that the combination of an apoptosis inhibitor such as a BCL2L1 inhibitor with RT may represent a promising anticancer strategy for solid cancers including breast cancer.


Subject(s)
Breast Neoplasms , Synthetic Lethal Mutations , bcl-X Protein , Female , Humans , bcl-X Protein/genetics , bcl-X Protein/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/radiotherapy , Breast Neoplasms/metabolism , Cell Line, Tumor , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , NF-kappa B/genetics , NF-kappa B/metabolism , Synthetic Lethal Mutations/genetics
6.
J Clin Invest ; 134(14)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007266

ABSTRACT

Mutations in the tumor-suppressor genes BRCA1 and BRCA2 resulting in BRCA1/2 deficiency are frequently identified in breast, ovarian, prostate, pancreatic, and other cancers. Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPis) selectively kill BRCA1/2-deficient cancer cells by inducing synthetic lethality, providing an effective biomarker-guided strategy for targeted cancer therapy. However, a substantial fraction of cancer patients carrying BRCA1/2 mutations do not respond to PARPis, and most patients develop resistance to PARPis over time, highlighting a major obstacle to PARPi therapy in the clinic. Recent studies have revealed that changes of specific functional defects of BRCA1/2-deficient cells, particularly their defects in suppressing and protecting single-stranded DNA gaps, contribute to the gain or loss of PARPi-induced synthetic lethality. These findings not only shed light on the mechanism of action of PARPis, but also lead to revised models that explain how PARPis selectively kill BRCA-deficient cancer cells. Furthermore, new mechanistic principles of PARPi sensitivity and resistance have emerged from these studies, generating potentially useful guidelines for predicting the PARPi response and design therapies for overcoming PARPi resistance. In this Review, we will discuss these recent studies and put them in context with the classic views of PARPi-induced synthetic lethality, aiming to stimulate the development of new therapeutic strategies to overcome PARPi resistance and improve PARPi therapy.


Subject(s)
BRCA1 Protein , BRCA2 Protein , Poly(ADP-ribose) Polymerase Inhibitors , Synthetic Lethal Mutations , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Humans , BRCA2 Protein/genetics , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Synthetic Lethal Mutations/genetics , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Animals , Female , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects
7.
Adv Sci (Weinh) ; 11(19): e2307940, 2024 May.
Article in English | MEDLINE | ID: mdl-38482976

ABSTRACT

PARP inhibitors (PARPi)-based synthetic lethal therapy demonstrates limited efficacy for most cancer types that are homologous recombination (HR) proficient. To potentiate the PARPi application, a nanocarrier based on 5-azacytidine (AZA)-conjugated polymer (PAZA) for the codelivery of AZA and a PARP inhibitor, BMN673 (BMN) is developed. AZA conjugation significantly decreased the nanoparticle (NP) size and increased BMN loading. Molecular dynamics simulation and experimental validations shed mechanistic insights into the self-assembly of effective NPs. The small PAZA NPs demonstrated higher efficiency of tumor targeting and penetration than larger NPs, which is mediated by a new mechanism of active targeting that involves the recruitment of fibronectin from serum proteins following systemic administration of PAZA NPs. Furthermore, it is found that PAZA carrier sensitize the HR-proficient nonsmall cell lung cancer (NSCLC) to BMN, a combination therapy that is more effective at a lower AZA/BMN dosage. To investigate the underlying mechanism, the tumor immune microenvironment and various gene expressions by RNAseq are explored. Moreover, the BMN/PAZA combination increased the immunogenicity and synergized with PD-1 antibody in improving the overall therapeutic effect in an orthotopic model of lung cancer (LLC).


Subject(s)
Carcinoma, Non-Small-Cell Lung , Fibronectins , Lung Neoplasms , Nanoparticles , Mice , Animals , Humans , Fibronectins/metabolism , Fibronectins/genetics , Nanoparticles/chemistry , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Disease Models, Animal , Cell Line, Tumor , Azacitidine/pharmacology , Drug Carriers/chemistry , Synthetic Lethal Mutations/genetics , Epigenesis, Genetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL