ABSTRACT
INTRODUCTION: Our previous studies have shown that amyloid ß peptide (Aß) is subject to complement-mediated clearance from the peripheral circulation, and that this mechanism is deficient in Alzheimer's disease. The mechanism should be enhanced by Aß antibodies that form immune complexes (ICs) with Aß, and therefore may be relevant to current Aß immunotherapy approaches. METHODS: Multidisciplinary methods were employed to demonstrate enhanced complement-mediated capture of Aß antibody immune complexes compared with Aß alone in both erythrocytes and THP1-derived macrophages. RESULTS: Aß antibodies dramatically increased complement activation and opsonization of Aß, followed by commensurately enhanced Aß capture by human erythrocytes and macrophages. These in vitro findings were consistent with enhanced peripheral clearance of intravenously administered Aß antibody immune complexes in nonhuman primates. DISCUSSION: Together with our previous results, showing significant Alzheimer's disease deficits in peripheral Aß clearance, the present findings strongly suggest that peripheral mechanisms should not be ignored as contributors to the effects of Aß immunotherapy.
Subject(s)
Alzheimer Disease , Amyloid beta-Peptides/immunology , Antibodies/blood , Complement System Proteins/metabolism , Erythrocytes/metabolism , Immunotherapy/methods , Alzheimer Disease/immunology , Alzheimer Disease/pathology , Alzheimer Disease/therapy , Amyloid beta-Peptides/administration & dosage , Amyloid beta-Peptides/metabolism , Animals , Cell Adhesion/physiology , Cells, Cultured , Dose-Response Relationship, Drug , Erythrocytes/drug effects , Female , Humans , Immunologic Factors , Macaca fascicularis , Macrophages/metabolism , Male , Phagocytosis , THP-1 Cells/metabolism , THP-1 Cells/pathologyABSTRACT
Microglia are tissue macrophages and mediators of innate immune responses in the brain. The protein-modifying glycan polysialic acid (polySia) is implicated in modulating microglia activity. Cultured murine microglia maintain a pool of Golgi-confined polySia, which is depleted in response to lipopolysaccharide (LPS)-induced activation. Polysialylated neuropilin-2 (polySia-NRP2) contributes to this pool but further polySia protein carriers have remained elusive. Here, we use organotypic brain slice cultures to demonstrate that injury-induced activation of microglia initiates Golgi-confined polySia expression in situ. An unbiased glycoproteomic approach with stem cell-derived microglia identifies E-selectin ligand-1 (ESL-1) as a novel polySia acceptor. Together with polySia-NRP2, polySia-ESL-1 is also detected in primary cultured microglia, in brain slice cultures and in phorbol ester-induced THP-1 macrophages. Induction of stem cell-derived microglia, activated microglia in brain slice cultures and THP-1 macrophages by LPS, but not interleukin-4, causes polySia depletion and, as shown for stem cell-derived microglia, a metalloproteinase-dependent release of polySia-ESL-1 and polySia-NRP2. Moreover, soluble polySia attenuates LPS-induced production of nitric oxide and proinflammatory cytokines. Thus, shedding of polySia-ESL-1 and polySia-NRP2 after LPS-induced activation of microglia and THP-1 macrophages may constitute a mechanism for negative feedback regulation. GLIA 2016 GLIA 2016;64:1314-1330.
Subject(s)
Lipopolysaccharides/toxicity , Macrophages/immunology , Microglia/immunology , Neuropilin-2/metabolism , Polysaccharides/toxicity , THP-1 Cells/immunology , Animals , Brain/immunology , Brain/pathology , Cells, Cultured , Cytokines/metabolism , Escherichia coli , Humans , Macrophages/pathology , Mice, Knockout , Microglia/pathology , Neural Cell Adhesion Molecules/deficiency , Neural Cell Adhesion Molecules/genetics , Neural Stem Cells/immunology , Neural Stem Cells/pathology , Nitric Oxide/metabolism , Receptors, Fibroblast Growth Factor/metabolism , Sialoglycoproteins/metabolism , Sialyltransferases/deficiency , Sialyltransferases/genetics , THP-1 Cells/pathology , Tissue Culture TechniquesABSTRACT
Rationale: Breast cancer (BrCa) is the most common cancer worldwide, and the 5-year relative survival rate has declined in patients diagnosed at stage IV. Advanced BrCa is considered as incurable, which still lack effective treatment strategies. Identifying and characterizing new tumor suppression genes is important to establish effective prognostic biomarkers or therapeutic targets for late-stage BrCa. Methods: RNA-seq was applied in BrCa tissues and normal breast tissues. Through analyzing differentially expressed genes, DRD2 was selected for further analysis. And expression and promoter methylation status of DRD2 were also determined. DRD2 functions were analyzed by various cell biology assays in vitro. Subcutaneous tumor model was used to explore DRD2 effects in vivo. A co-cultivated system was constructed to investigate interactions of DRD2 and macrophages in vitro. WB, IHC, IF, TUNEL, qRT-PCR, Co-IP, Antibody Array, and Mass Spectrum analysis were further applied to determine the detailed mechanism. Results: In BrCa, DRD2 was found to be downregulated due to promoter methylation. Higher expression of DRD2 positively correlated with longer survival times especially in HER2-positive patients. DRD2 also promoted BrCa cells sensitivity to Paclitaxel. Ectopic expression of DRD2 significantly inhibited BrCa tumorigenesis. DRD2 also induced apoptosis as well as necroptosis in vitro and in vivo. DRD2 restricted NF-κB signaling pathway activation through interacting with ß-arrestin2, DDX5 and eEF1A2. Interestingly, DRD2 also regulated microenvironment as it facilitated M1 polarization of macrophages, and triggered GSDME-executed pyroptosis. Conclusion: Collectively, this study novelly manifests the role of DRD2 in suppressing BrCa tumorigenesis, predicting prognosis and treatment response. And this study further reveals the critical role of DRD2 in educating M1 macrophages, restricting NF-κB signaling pathway and triggering different processes of programmed cell death in BrCa. Taking together, those findings represent a predictive and therapeutic target for BrCa.
Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Macrophages/metabolism , NF-kappa B/metabolism , Pyroptosis/physiology , Receptors, Dopamine D2/metabolism , Signal Transduction/physiology , Animals , Cell Line , Cell Line, Tumor , Female , HEK293 Cells , Humans , Macrophages/pathology , Mice , Mice, Inbred BALB C , Middle Aged , THP-1 Cells/metabolism , THP-1 Cells/pathology , Tumor Microenvironment/physiologyABSTRACT
Increasing evidences indicate that circular RNAs (circRNAs) play important roles in regulating gene expressions in various diseases. However, the role of circRNAs in inflammatory response of gouty arthritis remains unknown. This study aims to investigate the role and underlying mechanism of circHIPK3 in inflammatory response of gouty arthritis. Quantitative real-time PCR was used to detect the expressions of circHIPK3, miR-192 and miR-561. Western blot was used to detect the protein levels of TLR4, NLRP3, nuclear factor-κB (NF-κB) related proteins, and Caspase-1. Dual luciferase reporter assay, RNA pull-down assay, and FISH assay were used to confirm the interaction between circHIPK3 and miR-192/miR-561. ELISA was used to detect interleukin (IL)-1ß and tumor necrosis factor (TNF)-α levels. circHIPK3 was elevated in synovial fluid mononuclear cells (SFMCs) from patients with gouty arthritis and monosodium urate (MSU)-stimulated THP-1 cells. circHIPK3 overexpression promoted the inflammatory cytokines levels in MSU-stimulated THP-1 cells, and circHIPK3 silencing obtained the opposite effect. Mechanistically, circHIPK3 sponged miR-192 and miR-561, and subsequently promoted the expressions of miR-192 and miR-561 target gene TLR4 and NLRP3. In vivo experiments confirmed circHIPK3 knockdown suppressed gouty arthritis. circHIPK3 sponges miR-192 and miR-561 to promote TLR4 and NLRP3 expressions, thereby promoting inflammatory response in gouty arthritis.
Subject(s)
Arthritis, Gouty/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , MicroRNAs/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Protein Serine-Threonine Kinases/metabolism , Toll-Like Receptor 4/metabolism , Animals , Arthritis, Gouty/pathology , Humans , Macrophages/metabolism , Macrophages/pathology , Male , Mice , Mice, Inbred C57BL , RNA, Circular/metabolism , Signal Transduction/physiology , THP-1 Cells/metabolism , THP-1 Cells/pathologyABSTRACT
Excessive inflammation is fundamental in the pathophysiology of Mycoplasma pneumoniae (MP)-induced respiratory infection in children. Histone deacetylase 5 (HDAC5) is involved in the regulation of inflammation, however, whether it associates with immunity against MP infection is not determined. We report here that HDAC5 expression is decreased in peripheral blood mononuclear cells (PBMCs) from Mycoplasma pneumoniae pneumonia (MPP) children as well as in MP-infected peritoneal and THP-1 macrophages. Functionally, HDAC5 overexpression promotes and its depletion inhibits MP-induced proinflammatory cytokine production in THP-1 macrophages. Mechanistically, HDAC5 modulates NF-κB activation in MP-infected THP-1 macrophages, and moreover, inhibition of NF-κB activity via pharmacological inhibitor Bay 11-7082 attenuates the promotive effect of HDAC5 on MP-induced proinflammatory cytokine production in THP-1 macrophages, hence suggesting that HDAC5 promotes MP-induced inflammatory response in macrophages through NF-κB activation. Together, this study reveals a novel function of HDAC5 in promoting MP-induced inflammation and implies the possible clinical significance in controlling inflammation that underlies MMP pathophysiology.