Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 178
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Int J Mol Sci ; 25(3)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38338721

ABSTRACT

We investigated the effects of a Tankyrase (TNKS-1/2) inhibitor on mechanical stress-induced gene expression in human chondrocytes and examined TNKS-1/2 expression in human osteoarthritis (OA) cartilage. Cells were seeded onto stretch chambers and incubated with or without a TNKS-1/2 inhibitor (XAV939) for 12 h. Uni-axial cyclic tensile strain (CTS) (0.5 Hz, 8% elongation, 30 min) was applied and the gene expression of type II collagen a1 chain (COL2A1), aggrecan (ACAN), SRY-box9 (SOX9), TNKS-1/2, a disintegrin and metalloproteinase with thrombospondin motifs-5 (ADAMTS-5), and matrix metalloproteinase-13 (MMP-13) were examined by real-time PCR. The expression of ADAMTS-5, MMP-13, nuclear translocation of nuclear factor-κB (NF-κB), and ß-catenin were examined by immunocytochemistry and Western blotting. The concentration of IL-1ß in the supernatant was examined by enzyme-linked immunosorbent assay (ELISA). TNKS-1/2 expression was assessed by immunohistochemistry in human OA cartilage obtained at the total knee arthroplasty. TNKS-1/2 expression was increased after CTS. The expression of anabolic factors were decreased by CTS, however, these declines were abrogated by XAV939. XAV939 suppressed the CTS-induced expression of catabolic factors, the release of IL-1ß, as well as the nuclear translocation of NF-κB and ß-catenin. TNKS-1/2 expression increased in mild and moderate OA cartilage. Our results demonstrated that XAV939 suppressed mechanical stress-induced expression of catabolic proteases by the inhibition of NF-κB and activation of ß-catenin, indicating that TNKS-1/2 expression might be associated with OA pathogenesis.


Subject(s)
Cartilage, Articular , Osteoarthritis , Tankyrases , Humans , beta Catenin/metabolism , Cartilage, Articular/metabolism , Cells, Cultured , Chondrocytes/drug effects , Chondrocytes/metabolism , Interleukin-1beta/metabolism , Matrix Metalloproteinase 13/genetics , Matrix Metalloproteinase 13/metabolism , NF-kappa B/metabolism , Osteoarthritis/metabolism , Peptide Hydrolases/drug effects , Peptide Hydrolases/metabolism , Stress, Mechanical , Tankyrases/antagonists & inhibitors
2.
Int J Cancer ; 150(5): 727-740, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34536299

ABSTRACT

Wnt signaling plays an essential role in the initiation and progression of various types of cancer. Besides, the Wnt pathway components have been established as reliable biomarkers and potential targets for cancer therapy. Wnt signaling is categorized into canonical and noncanonical pathways. The canonical pathway is involved in cell survival, proliferation, differentiation and migration, while the noncanonical pathway regulates cell polarity and migration. Apart from its biological role in development and homeostasis, the Wnt pathway has been implicated in several pathological disorders, including cancer. As a result, inhibiting this pathway has been a focus of cancer research with multiple targetable candidates in development. In this review, our focus will be to summarize information about ongoing and completed clinical trials targeting various Wnt pathway components, along with describing current and emerging Wnt targeted therapies. In addition, we will discuss potential opportunities and associated challenges of inhibiting Wnt signaling for cancer therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Clinical Trials as Topic , Neoplasms/drug therapy , Wnt Signaling Pathway/drug effects , Acyltransferases/antagonists & inhibitors , Animals , Humans , Membrane Proteins/antagonists & inhibitors , Tankyrases/antagonists & inhibitors , Wnt Signaling Pathway/physiology , beta Catenin/antagonists & inhibitors
3.
Org Biomol Chem ; 20(7): 1453-1461, 2022 02 16.
Article in English | MEDLINE | ID: mdl-35088800

ABSTRACT

The directing group assisted decarboxylative ortho-benzoylation of N-aryl-7-azaindoles with α-keto acids has been achieved by synergistic visible light promoted photoredox and palladium catalysis. The approach tenders rapid entry to aryl ketone architectures from simple α-keto acid precursors via the in situ generation of a benzoyl radical intermediate. The transformation provides a range of ortho-benzoylated N-aryl-7-azaindoles, with excellent site-selectivity and good functional group compatibility under mild reaction conditions. Biological target predictions indicate that these molecules may serve as potential anti-cancer and anti-viral agents.


Subject(s)
Enzyme Inhibitors/chemistry , Indoles/chemistry , Palladium/chemistry , Catalysis , Decarboxylation , Enzyme Inhibitors/pharmacology , HIV Reverse Transcriptase/antagonists & inhibitors , HIV Reverse Transcriptase/metabolism , Humans , Indoles/pharmacology , Janus Kinase 3/antagonists & inhibitors , Janus Kinase 3/metabolism , Keto Acids/chemistry , Light , Molecular Structure , Oxidation-Reduction , Photochemical Processes , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Proto-Oncogene Proteins c-pim-1/metabolism , Tankyrases/antagonists & inhibitors , Tankyrases/metabolism
4.
Int J Mol Sci ; 23(17)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36077457

ABSTRACT

Hyperactive poly(ADP-ribose) polymerases (PARP) promote ischemic heart failure (IHF) after myocardial infarction (MI). However, the role of tankyrases (TNKSs), members of the PARP family, in pathogenesis of IHF remains unknown. We investigated the expression and activation of TNKSs in myocardium of IHF patients and MI rats. We explored the cardioprotective effect of TNKS inhibition in an isoproterenol-induced zebrafish HF model. In IHF patients, we observed elevated TNKS2 and DICER and concomitant upregulation of miR-34a-5p and miR-21-5p in non-infarcted myocardium. In a rat MI model, we found augmented TNKS2 and DICER in the border and infarct areas at the early stage of post-MI. We also observed consistently increased TNKS1 in the border and infarct areas and destabilized AXIN in the infarct area from 4 weeks onward, which in turn triggered Wnt/ß-catenin signaling. In an isoproterenol-induced HF zebrafish model, inhibition of TNKS activity with XAV939, a TNKSs-specific inhibitor, protected against ventricular dilatation and cardiac dysfunction and abrogated overactivation of Wnt/ß-catenin signaling and dysregulation of miR-34a-5p induced by isoproterenol. Our study unravels a potential role of TNKSs in the pathogenesis of IHF by regulating Wnt/ß-catenin signaling and possibly modulating miRNAs and highlights the pharmacotherapeutic potential of TNKS inhibition for prevention of IHF.


Subject(s)
Heart Failure , MicroRNAs , Tankyrases , Animals , Dilatation , Heart Failure/drug therapy , Isoproterenol/pharmacology , MicroRNAs/genetics , Rats , Tankyrases/antagonists & inhibitors , Tankyrases/metabolism , Wnt Signaling Pathway , Zebrafish/metabolism , beta Catenin/metabolism
5.
Biochem Biophys Res Commun ; 537: 85-92, 2021 01 22.
Article in English | MEDLINE | ID: mdl-33387887

ABSTRACT

Transactive response DNA-binding protein of 43 kDa (TDP-43) abnormally forms aggregates in certain subtypes of frontotemporal lobar degeneration (FTLD) and in amyotrophic lateral sclerosis (ALS). The pathological forms of TDP-43 have reported to be associated with poly(ADP-ribose) (PAR), which regulates the properties of these aggregates. A recent study has indicated that tankyrase, a member of the PAR polymerase (PARP) family, regulates pathological TDP-43 formation under conditions of stress, and tankyrase inhibitors suppress TDP-43 aggregate formation and cytotoxicity. Since we reported the development of tankyrase inhibitors that are more specific than conventional inhibitors, in this study, we examined their effects on the formation of TDP-43 aggregates in cultured cells. Time-lapse imaging showed that TDP-43 aggregates appeared in the nucleus within 30 min of treatment with sodium arsenite. Several tankyrase inhibitors suppressed the formation of aggregates and decreased the levels of the tankyrase protein. Immunohistochemical studies demonstrated that tankyrase was localized to neuronal cytoplasmic inclusions in the spinal cords of patients with ALS. Moreover, the tankyrase protein levels were significantly higher in the brains of patients with FTLD than in the brains of control subjects. These findings suggest that the inhibition of tankyrase activity protects against TDP-43 toxicity. Tankyrase inhibitors may be a potential treatment to suppress the progression of TDP-43 proteinopathies.


Subject(s)
DNA-Binding Proteins/metabolism , Enzyme Inhibitors/pharmacology , Protein Aggregates , Tankyrases/antagonists & inhibitors , Arsenites/toxicity , Cell Line, Tumor , Cell Nucleus/drug effects , Cell Nucleus/metabolism , HEK293 Cells , Humans , Poly Adenosine Diphosphate Ribose/toxicity , Protein Aggregates/drug effects , TDP-43 Proteinopathies/pathology , Tankyrases/metabolism
6.
Biochem Biophys Res Commun ; 552: 66-72, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33743349

ABSTRACT

Transplantation of retinal pigment epithelium (RPE) cells derived from human embryonic stem cells (hESCs) or induced pluripotent stem cells (hiPSCs) hold great promise as a new therapeutic modality for age-related macular degeneration and Stargardt disease. The development of hESC/hiPSC-derived RPE cells as cell-based therapeutic products requires a robust, scalable production for every hiPSC line congruent for patients. However, individual hESC/hiPSC lines show bias in differentiation. Here we report an efficient, robust method that induces RPE cells regardless of the differentiation propensity of the hiPSC lines. Application of the tankyrase inhibitor IWR-1-endo, which potentially inhibits Wnt signaling, promoted retinal differentiation in dissociated hiPSCs under feeder-free, two-dimensional culture conditions. The other tankyrase inhibitor, XAV939, also promoted retinal differentiation. However, Wnt signaling inhibitors, IWP-2 and iCRT3, that target porcupine and ß-catenin/TCF, respectively, did not. Further treatment with the GSK3ß inhibitor CHIR99021 and FGF receptor inhibitor SU5402 induced hexagonal pigmented cells with phagocytotic ability. Notably, the IWR-1-endo-based differentiation method induced RPE cells even in an hiPSC line that expresses a lower level of the differentiation propensity marker SALL3, which is indicative of resistance to ectoderm differentiation. The present study demonstrated that tankyrase inhibitors cause efficient and robust RPE differentiation, irrespective of the SALL3 expression levels in hiPSC lines. This differentiation method will resolve line-to-line variations of hiPSCs in RPE production and facilitate clinical application and industrialization of RPE cell products for regenerative medicine.


Subject(s)
Cell Differentiation , Human Embryonic Stem Cells/cytology , Induced Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/cytology , Retinal Pigment Epithelium/cytology , Tankyrases/metabolism , Cell Transplantation/methods , Cells, Cultured , Heterocyclic Compounds, 3-Ring/pharmacology , Human Embryonic Stem Cells/drug effects , Human Embryonic Stem Cells/metabolism , Humans , Imides/pharmacology , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Macular Degeneration/therapy , Pluripotent Stem Cells/drug effects , Pluripotent Stem Cells/metabolism , Quinolines/pharmacology , Retinal Pigment Epithelium/metabolism , Tankyrases/antagonists & inhibitors
7.
PLoS Genet ; 14(9): e1007697, 2018 09.
Article in English | MEDLINE | ID: mdl-30260955

ABSTRACT

Lgr5+ intestinal stem cells are crucial for fast homeostatic renewal of intestinal epithelium and Wnt/ß-catenin signaling plays an essential role in this process by sustaining stem cell self-renewal. The poly(ADP-ribose) polymerases tankyrases (TNKSs) mediate protein poly-ADP-ribosylation and are involved in multiple cellular processes such as Wnt signaling regulation, mitotic progression and telomere maintenance. However, little is known about the physiological function of TNKSs in epithelium homeostasis regulation. Here, using Villin-creERT2;Tnks1-/-;Tnks2fl/fl (DKO) mice, we observed that loss of TNKSs causes a rapid decrease of Lgr5+ intestinal stem cells and magnified apoptosis in small intestinal crypts, leading to intestine degeneration and increased mouse mortality. Consistently, deletion of Tnks or blockage of TNKS activity with the inhibitor XAV939 significantly inhibits the growth of intestinal organoids. We further showed that the Wnt signaling agonist CHIR99021 sustains the growth of DKO organoids, and XAV939 does not cause growth retardation of Apc-/- organoids. Consistent with the promoting function of TNKSs in Wnt signaling, Wnt/ß-catenin signaling is significantly decreased with stabilized Axin in DKO crypts. Together, our findings unravel the essential role of TNKSs-mediated protein parsylation in small intestinal homeostasis by modulating Wnt/ß-catenin signaling.


Subject(s)
Adult Stem Cells/physiology , Cell Proliferation/physiology , Intestinal Mucosa/physiology , Tankyrases/metabolism , Animals , Cell Culture Techniques , Cell Death/drug effects , Cell Death/physiology , Cell Proliferation/drug effects , Cells, Cultured , Female , Heterocyclic Compounds, 3-Ring/pharmacology , Intestinal Mucosa/cytology , Male , Mice , Mice, Inbred C57BL , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Organoids , Poly ADP Ribosylation/physiology , Receptors, G-Protein-Coupled/metabolism , Tankyrases/antagonists & inhibitors , Tankyrases/genetics , Wnt Signaling Pathway/physiology
8.
Int J Mol Sci ; 22(14)2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34298950

ABSTRACT

More than 80% of colorectal cancer patients have adenomatous polyposis coli (APC) mutations, which induce abnormal WNT/ß-catenin activation. Tankyrase (TNKS) mediates the release of active ß-catenin, which occurs regardless of the ligand that translocates into the nucleus by AXIN degradation via the ubiquitin-proteasome pathway. Therefore, TNKS inhibition has emerged as an attractive strategy for cancer therapy. In this study, we identified pyridine derivatives by evaluating in vitro TNKS enzyme activity and investigated N-([1,2,4]triazolo[4,3-a]pyridin-3-yl)-1-(2-cyanophenyl)piperidine-4-carboxamide (TI-12403) as a novel TNKS inhibitor. TI-12403 stabilized AXIN2, reduced active ß-catenin, and downregulated ß-catenin target genes in COLO320DM and DLD-1 cells. The antitumor activities of TI-12403 were confirmed by the viability of the colorectal cancer cells and its lack of visible toxicity in DLD-1 xenograft mouse model. In addition, combined 5-FU and TI-12403 treatment synergistically inhibited proliferation to a greater extent than that in a single drug treatment. Our observations suggest that TI-12403, a novel selective TNKS1 inhibitor, may be a suitable compound for anticancer drug development.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Drug Discovery , Enzyme Inhibitors , Neoplasm Proteins/antagonists & inhibitors , Pyridines , Tankyrases/antagonists & inhibitors , Thiazoles , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/enzymology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Neoplasm Proteins/metabolism , Pyridines/chemistry , Pyridines/pharmacology , Tankyrases/metabolism , Thiazoles/chemistry , Thiazoles/pharmacology
9.
Pharmazie ; 76(4): 132-137, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33849696

ABSTRACT

To investigate structure-activity relationships of tankyrase (TNKS) inhibitors, twelve new derivatives of isoquinolin-1(2 H )-one were designed and synthesized, and biological assessments were conducted. Several potent TNKS inhibitors with single- or double-digit nanomolar IC50 values were identified using enzymatic assays. Compound 11c was the most potent compound of this series and inhibited TNKS1 and TNKS2 at an IC50 of 0.009 and 0.003 µM, respectively, and showed an IC50 of 0.029 µM in a DLD-1 SuperTopFlash assay. Molecular docking results showed that compound 11c occupied a unique subpocket and formed a hydrogen bond with Glu1138 of TNKS2, which was not consistent with the patterns of known TNKS inhibitors and thus warrants further research.


Subject(s)
Enzyme Inhibitors/pharmacology , Isoquinolines/pharmacology , Tankyrases/antagonists & inhibitors , Cell Line, Tumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Hydrogen Bonding , Inhibitory Concentration 50 , Isoquinolines/chemical synthesis , Isoquinolines/chemistry , Molecular Docking Simulation , Structure-Activity Relationship
10.
Biochem Biophys Res Commun ; 529(4): 970-976, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32819607

ABSTRACT

In this study, the role of ubiquitin conjugating enzyme E2 M (UBE2M) and molecular mechanisms associated with osteoarthritis (OA) were explored. Cartilage tissues and corresponding healthy tissues from OA patients were isolated. Our data suggested that the expression level of UBE2M in OA patients was significantly higher compared to that in healthy individuals (P < 0.01). The apoptosis of human OA chondrocytes was inhibited when silencing UBE2M and increased when overexpressing UBE2M. XAV939, as a tankyrase 1 inhibitor, could block the signaling pathway of Wnt/ß-catenin, which significantly reversed the change introduced by UBE2M. The expression level of cytoplasmic ß-catenin in siUBE2M cells dramatically increased, and the expression levels of nuclear ß-catenin, cleaved caspase-3 (C-caspase-3), and MMP13 remarkably downregulated. Moreover, the ubiquitination of Axin was enhanced by the overexpression of UBE2M. The expression level of Axin significantly decreased in OA chondrocytes with UBE2M overexpression and increased after MG132 treatment. Moreover, UBE2M enhanced the apoptosis of OA chondrocytes by activating the Axin-dependent Wnt/ß-catenin pathway. In this process, UBE2M downregulated Axin in an ubiquitination-dependent degradation pathway and subsequently activated Wnt/ß-catenin signaling.


Subject(s)
Chondrocytes/metabolism , Osteoarthritis/genetics , Tankyrases/genetics , Ubiquitin-Conjugating Enzymes/genetics , Wnt Proteins/genetics , beta Catenin/genetics , Apoptosis/drug effects , Apoptosis/genetics , Axin Protein/genetics , Axin Protein/metabolism , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Case-Control Studies , Caspase 3/genetics , Caspase 3/metabolism , Chondrocytes/drug effects , Chondrocytes/pathology , Femur/metabolism , Femur/pathology , Gene Expression Regulation , Heterocyclic Compounds, 3-Ring/pharmacology , Humans , Leupeptins/pharmacology , Matrix Metalloproteinase 13/genetics , Matrix Metalloproteinase 13/metabolism , Osteoarthritis/metabolism , Osteoarthritis/pathology , Primary Cell Culture , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , Tankyrases/antagonists & inhibitors , Tankyrases/metabolism , Ubiquitin-Conjugating Enzymes/antagonists & inhibitors , Ubiquitin-Conjugating Enzymes/metabolism , Wnt Proteins/metabolism , beta Catenin/antagonists & inhibitors , beta Catenin/metabolism
11.
Int J Obes (Lond) ; 44(8): 1691-1702, 2020 08.
Article in English | MEDLINE | ID: mdl-32317752

ABSTRACT

OBJECTIVE: Human TNKS, encoding tankyrase 1 (TNKS1), localizes to a susceptibility locus for obesity and type 2 diabetes mellitus (T2DM). Here, we addressed the therapeutic potential of G007-LK, a TNKS-specific inhibitor, for obesity and T2DM. METHODS: We administered G007-LK to diabetic db/db mice and measured the impact on body weight, abdominal adiposity, and serum metabolites. Muscle, liver, and white adipose tissues were analyzed by quantitative RT-PCR and western blotting to determine TNKS inhibition, lipolysis, beiging, adiponectin level, mitochondrial oxidative metabolism and mass, and gluconeogenesis. Protein interaction and PARylation analyses were carried out by immunoprecipitation, pull-down and in situ proximity ligation assays. RESULTS: TNKS inhibition reduced body weight gain, abdominal fat content, serum cholesterol levels, steatosis, and proteins associated with lipolysis in diabetic db/db mice. We discovered that TNKS associates with PGC-1α and that TNKS inhibition attenuates PARylation of PGC-1α, contributing to increased PGC-1α level in WAT and muscle in db/db mice. PGC-1α upregulation apparently modulated transcriptional reprogramming to increase mitochondrial mass and fatty acid oxidative metabolism in muscle, beiging of WAT, and raised circulating adiponectin level in db/db mice. This was in sharp contrast to the liver, where TNKS inhibition in db/db mice had no effect on PGC-1α expression, lipid metabolism, or gluconeogenesis. CONCLUSION: Our study unravels a novel molecular mechanism whereby pharmacological inhibition of TNKS in obesity and diabetes enhances oxidative metabolism and ameliorates lipid disorder. This happens via tissue-specific PGC-1α-driven transcriptional reprogramming in muscle and WAT, without affecting liver. This highlights inhibition of TNKS as a potential pharmacotherapy for obesity and T2DM.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Dyslipidemias/drug therapy , Obesity/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Tankyrases/antagonists & inhibitors , Abdominal Fat , Adipose Tissue, White , Animals , Body Weight , Liver , Male , Mice , Mice, Inbred C57BL , Mice, Inbred Strains , Oxidation-Reduction , Poly ADP Ribosylation , Sulfones/therapeutic use , Tankyrases/metabolism , Triazoles/therapeutic use
12.
Molecules ; 25(14)2020 Jul 11.
Article in English | MEDLINE | ID: mdl-32664504

ABSTRACT

Tankyrase enzymes (TNKS), a core part of the canonical Wnt pathway, are a promising target in the search for potential anti-cancer agents. Although several hundreds of the TNKS inhibitors are currently known, identification of their novel chemotypes attracts considerable interest. In this study, the molecular docking and machine learning-based virtual screening techniques combined with the physico-chemical and ADMET (absorption, distribution, metabolism, excretion, toxicity) profile prediction and molecular dynamics simulations were applied to a subset of the ZINC database containing about 1.7 M commercially available compounds. Out of seven candidate compounds biologically evaluated in vitro for their inhibition of the TNKS2 enzyme using immunochemical assay, two compounds have shown a decent level of inhibitory activity with the IC50 values of less than 10 nM and 10 µM. Relatively simple scores based on molecular docking or MM-PBSA (molecular mechanics, Poisson-Boltzmann, surface area) methods proved unsuitable for predicting the effect of structural modification or for accurate ranking of the compounds based on their binding energies. On the other hand, the molecular dynamics simulations and Free Energy Perturbation (FEP) calculations allowed us to further decipher the structure-activity relationships and retrospectively analyze the docking-based virtual screening performance. This approach can be applied at the subsequent lead optimization stages.


Subject(s)
Enzyme Inhibitors , Tankyrases , Binding Sites , Drug Discovery , Enzyme Inhibitors/chemistry , Humans , Molecular Dynamics Simulation , Molecular Structure , Protein Binding , Structure-Activity Relationship , Tankyrases/antagonists & inhibitors , Tankyrases/chemistry
13.
Molecules ; 25(7)2020 Apr 06.
Article in English | MEDLINE | ID: mdl-32268564

ABSTRACT

Aberrant activation of the WNT/ß-catenin signaling pathway is implicated in various types of cancers. Inhibitors targeting the Wnt signaling pathway are intensively studied in the current cancer research field, the outcomes of which remain to be determined. In this study, we have attempted to discover novel potent WNT/ß-catenin pathway inhibitors through tankyrase 1/2 structure-based virtual screening. After screening more than 13.4 million compounds through molecular docking, we experimentally verified one compound, LZZ-02, as the most potent inhibitor out of 11 structurally representative top hits. LiCl-induced HEK293 cells containing TOPFlash reporter showed that LZZ-02 inhibited the transcriptional activity of ß-catenin with an IC50 of 10 ± 1.2 µM. Mechanistically, LZZ-02 degrades the expression of ß-catenin by stabilizing axin 2, thereby diminishing downstream proteins levels, including c-Myc and cyclin D1. LZZ-02 also inhibits the growth of colonic carcinoma cell harboring constitutively active ß-catenin. More importantly, LZZ-02 effectively shrinks tumor xenograft derived from colonic cell lines. Our study successfully identified a novel tankyrase 1/2 inhibitor and shed light on a novel strategy for developing inhibitors targeting the WNT/ß-catenin signaling axis.


Subject(s)
Antineoplastic Agents/therapeutic use , Enzyme Inhibitors/therapeutic use , Tankyrases/antagonists & inhibitors , Wnt Signaling Pathway/drug effects , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclin D1/metabolism , Female , Gene Expression Regulation, Neoplastic/drug effects , HEK293 Cells , Humans , Mice , Mice, Inbred BALB C , Protein Structure, Secondary , Proto-Oncogene Proteins c-myb/metabolism , Xenograft Model Antitumor Assays
14.
Development ; 143(23): 4368-4380, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27660325

ABSTRACT

The derivation and maintenance of human pluripotent stem cells (hPSCs) in stable naïve pluripotent states has a wide impact in human developmental biology. However, hPSCs are unstable in classical naïve mouse embryonic stem cell (ESC) WNT and MEK/ERK signal inhibition (2i) culture. We show that a broad repertoire of conventional hESC and transgene-independent human induced pluripotent stem cell (hiPSC) lines could be reverted to stable human preimplantation inner cell mass (ICM)-like naïve states with only WNT, MEK/ERK, and tankyrase inhibition (LIF-3i). LIF-3i-reverted hPSCs retained normal karyotypes and genomic imprints, and attained defining mouse ESC-like functional features, including high clonal self-renewal, independence from MEK/ERK signaling, dependence on JAK/STAT3 and BMP4 signaling, and naïve-specific transcriptional and epigenetic configurations. Tankyrase inhibition promoted a stable acquisition of a human preimplantation ICM-like ground state via modulation of WNT signaling, and was most efficacious in efficiently reprogrammed conventional hiPSCs. Importantly, naïve reversion of a broad repertoire of conventional hiPSCs reduced lineage-primed gene expression and significantly improved their multilineage differentiation capacities. Stable naïve hPSCs with reduced genetic variability and improved functional pluripotency will have great utility in regenerative medicine and human disease modeling.


Subject(s)
Cell Differentiation/physiology , Cell Self Renewal/physiology , Embryonic Stem Cells/cytology , Induced Pluripotent Stem Cells/cytology , Tankyrases/antagonists & inhibitors , Wnt Signaling Pathway/physiology , Animals , Bone Morphogenetic Protein 4/metabolism , Cells, Cultured , Cellular Reprogramming/physiology , Germ Layers/embryology , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Humans , Janus Kinases/metabolism , Leukemia Inhibitory Factor/metabolism , Mice , STAT3 Transcription Factor/metabolism
15.
J Chem Inf Model ; 59(8): 3519-3532, 2019 08 26.
Article in English | MEDLINE | ID: mdl-31276400

ABSTRACT

Molecular dynamics simulations provide valuable insights into the behavior of molecular systems. Extending the recent trend of using machine learning techniques to predict physicochemical properties from molecular dynamics data, we propose to consider the trajectories as multidimensional time series represented by 2D tensors containing the ligand-protein interaction descriptor values for each time step. Similar in structure to the time series encountered in modern approaches for signal, speech, and natural language processing, these time series can be directly analyzed using long short-term memory (LSTM) recurrent neural networks or convolutional neural networks (CNNs). The predictive regression models for the ligand-protein affinity were built for a subset of the PDBbind v.2017 database and applied to inhibitors of tankyrase, an enzyme of the poly(ADP-ribose)-polymerase (PARP) family that can be used in the treatment of colorectal cancer. As an additional test set, a subset of the Community Structure-Activity Resource (CSAR) data set was used. For comparison, the random forest and simple neural network models based on the crystal pose or the trajectory-averaged descriptors were used, as well as the commonly employed docking and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) scores. Convolutional neural networks based on the 2D tensors of ligand-protein interaction descriptors for short (2 ns) trajectories provide the best accuracy and predictive power, reaching the Spearman rank correlation coefficient of 0.73 and Pearson correlation coefficient of 0.70 for the tankyrase test set. Taking into account the recent increase in computational power of modern GPUs and relatively low computational complexity of the proposed approach, it can be used as an advanced virtual screening filter for compound prioritization.


Subject(s)
Computational Biology/methods , Deep Learning , Enzyme Inhibitors/pharmacology , Molecular Dynamics Simulation , Tankyrases/antagonists & inhibitors , Time Factors
16.
Cancer Sci ; 109(12): 4003-4014, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30238564

ABSTRACT

Aberrant activation of Wnt/ß-catenin signaling causes tumorigenesis and promotes the proliferation of colorectal cancer cells. Porcupine inhibitors, which block secretion of Wnt ligands, may have only limited clinical impact for the treatment of colorectal cancer, because most colorectal cancer is caused by loss-of-function mutations of the tumor suppressor adenomatous polyposis coli (APC) downstream of Wnt ligands. Tankyrase poly(ADP-ribosyl)ates (PARylates) Axin, a negative regulator of ß-catenin. This post-translational modification causes ubiquitin-dependent degradation of Axin, resulting in ß-catenin accumulation. Tankyrase inhibitors downregulate ß-catenin and suppress the growth of APC-mutated colorectal cancer cells. Herein, we report a novel tankyrase-specific inhibitor RK-287107, which inhibits tankyrase-1 and -2 four- and eight-fold more potently, respectively, than G007-LK, a tankyrase inhibitor that has been previously reported as effective in mouse xenograft models. RK-287107 causes Axin2 accumulation and downregulates ß-catenin, T-cell factor/lymphoid enhancer factor reporter activity and the target gene expression in colorectal cancer cells harboring the shortly truncated APC mutations. Consistently, RK-287107 inhibits the growth of APC-mutated (ß-catenin-dependent) colorectal cancer COLO-320DM and SW403 cells but not the APC-wild (ß-catenin-independent) colorectal cancer RKO cells. Intraperitoneal or oral administration of RK-287107 suppresses COLO-320DM tumor growth in NOD-SCID mice. Rates of tumor growth inhibition showed good correlation with the behavior of pharmacodynamic biomarkers, such as Axin2 accumulation and MYC downregulation. These observations indicate that RK-287107 exerts a proof-of-concept antitumor effect, and thus may have potential for tankyrase-directed molecular cancer therapy.


Subject(s)
Adenomatous Polyposis Coli Protein/genetics , Antineoplastic Agents/administration & dosage , Colorectal Neoplasms/drug therapy , Enzyme Inhibitors/administration & dosage , Tankyrases/antagonists & inhibitors , Administration, Oral , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Colorectal Neoplasms/enzymology , Colorectal Neoplasms/genetics , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , HCT116 Cells , Humans , Mice , Mutation , Treatment Outcome , Xenograft Model Antitumor Assays
17.
Bioorg Med Chem ; 26(14): 3953-3957, 2018 08 07.
Article in English | MEDLINE | ID: mdl-29934219

ABSTRACT

The natural product magnolol (1) and a selection of its bioinspired derivatives 2-5, were investigated by Inverse Virtual Screening in order to identify putative biological targets from a panel of 308 proteins involved in cancer processes. By this in silico analysis we selected tankyrase-2 (TNKS2), casein kinase 2 (CK2) and bromodomain 9 (Brd9) as potential targets for experimental evaluations. The Surface Plasmon Resonance assay revealed that 3-5 present a good affinity for tankyrase-2, and, in particular, 3 showed an antiproliferative activity on A549 cells higher than the well-known tankyrase-2 inhibitor XAV939 used as reference compound.


Subject(s)
Antineoplastic Agents/pharmacology , Biphenyl Compounds/pharmacology , Lignans/pharmacology , Tankyrases/antagonists & inhibitors , Algorithms , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Biphenyl Compounds/chemical synthesis , Biphenyl Compounds/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Drug Screening Assays, Antitumor , Humans , Lignans/chemical synthesis , Lignans/chemistry , Molecular Structure , Recombinant Proteins/metabolism , Structure-Activity Relationship , Surface Plasmon Resonance , Tankyrases/metabolism , Thermodynamics , Tumor Cells, Cultured
18.
Mol Divers ; 22(2): 359-381, 2018 May.
Article in English | MEDLINE | ID: mdl-29168093

ABSTRACT

In the present study, five important binary fingerprinting techniques were used to model novel flavones for the selective inhibition of Tankyrase I. From the fingerprints used: the fingerprint atom pairs resulted in a statistically significant 2D QSAR model using a kernel-based partial least square regression method. This model indicates that the presence of electron-donating groups positively contributes to activity, whereas the presence of electron withdrawing groups negatively contributes to activity. This model could be used to develop more potent as well as selective analogues for the inhibition of Tankyrase I. Schematic representation of 2D QSAR work flow.


Subject(s)
Drug Design , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Informatics , Tankyrases/antagonists & inhibitors
19.
Biol Res ; 51(1): 3, 2018 Jan 09.
Article in English | MEDLINE | ID: mdl-29316982

ABSTRACT

BACKGROUND: The WNT pathway regulates intestinal stem cells and is frequently disrupted in intestinal adenomas. The pathway contains several potential biotargets for interference, including the poly-ADP ribosyltransferase enzymes tankyrase1 and 2. LGR5 is a known WNT pathway target gene and marker of intestinal stem cells. The LGR5+ stem cells are located in the crypt base and capable of regenerating all intestinal epithelial cell lineages. RESULTS: We treated Lgr5-EGFP-Ires-CreERT2;R26R-Confetti mice with the tankyrase inhibitor G007-LK for up to 3 weeks to assess the effect on duodenal stem cell homeostasis and on the integrity of intestinal epithelium. At the administered doses, G007-LK treatment inhibited WNT signalling in LGR5+ stem cells and reduced the number and distribution of cells traced from duodenal LGR5+ stem cells. However, the gross morphology of the duodenum remained unaltered and G007-LK-treated mice showed no signs of weight loss or any other visible morphological changes. The inhibitory effect on LGR5+ stem cell proliferation was reversible. CONCLUSION: We show that the tankyrase inhibitor G007-LK is well tolerated by the mice, although proliferation of the LGR5+ intestinal stem cells was inhibited. Our observations suggest the presence of a tankyrase inhibitor-resistant cell population in the duodenum, able to rescue tissue integrity in the presence of G007-LK-mediated inhibition of the WNT signalling dependent LGR5+ intestinal epithelial stem cells.


Subject(s)
Cell Proliferation/drug effects , Duodenum/drug effects , Intestine, Small/drug effects , Receptors, G-Protein-Coupled/drug effects , Stem Cells/drug effects , Sulfones/pharmacology , Tankyrases/antagonists & inhibitors , Triazoles/pharmacology , Animals , Duodenum/cytology , Fluorescent Antibody Technique , Immunohistochemistry , Male , Mice , Mice, Transgenic , Microscopy, Confocal , Receptors, G-Protein-Coupled/genetics , Sulfones/pharmacokinetics , Tankyrases/pharmacokinetics , Tankyrases/pharmacology , Triazoles/pharmacokinetics
20.
J Biol Chem ; 291(29): 15256-66, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27231341

ABSTRACT

YAP signaling pathway plays critical roles in tissue homeostasis, and aberrant activation of YAP signaling has been implicated in cancers. To identify tractable targets of YAP pathway, we have performed a pathway-based pooled CRISPR screen and identified tankyrase and its associated E3 ligase RNF146 as positive regulators of YAP signaling. Genetic ablation or pharmacological inhibition of tankyrase prominently suppresses YAP activity and YAP target gene expression. Using a proteomic approach, we have identified angiomotin family proteins, which are known negative regulators of YAP signaling, as novel tankyrase substrates. Inhibition of tankyrase or depletion of RNF146 stabilizes angiomotins. Angiomotins physically interact with tankyrase through a highly conserved motif at their N terminus, and mutation of this motif leads to their stabilization. Tankyrase inhibitor-induced stabilization of angiomotins reduces YAP nuclear translocation and decreases downstream YAP signaling. We have further shown that knock-out of YAP sensitizes non-small cell lung cancer to EGFR inhibitor Erlotinib. Tankyrase inhibitor, but not porcupine inhibitor, which blocks Wnt secretion, enhances growth inhibitory activity of Erlotinib. This activity is mediated by YAP inhibition and not Wnt/ß-catenin inhibition. Our data suggest that tankyrase inhibition could serve as a novel strategy to suppress YAP signaling for combinatorial targeted therapy.


Subject(s)
Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , ErbB Receptors/antagonists & inhibitors , Intercellular Signaling Peptides and Proteins/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Membrane Proteins/metabolism , Phosphoproteins/antagonists & inhibitors , Tankyrases/antagonists & inhibitors , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Angiomotins , Antineoplastic Agents/pharmacology , CRISPR-Cas Systems , Cell Line, Tumor , Down-Regulation , Erlotinib Hydrochloride/pharmacology , Gene Knockout Techniques , HEK293 Cells , Humans , Intercellular Signaling Peptides and Proteins/chemistry , Intercellular Signaling Peptides and Proteins/genetics , Membrane Proteins/chemistry , Membrane Proteins/genetics , Microfilament Proteins , Phosphoproteins/genetics , Phosphoproteins/metabolism , Protein Interaction Domains and Motifs , Protein Stability/drug effects , RNA, Small Interfering/genetics , Signal Transduction/drug effects , Tankyrases/chemistry , Tankyrases/genetics , Transcription Factors , Ubiquitin-Protein Ligases/metabolism , YAP-Signaling Proteins
SELECTION OF CITATIONS
SEARCH DETAIL