ABSTRACT
The hedonic value of salt fundamentally changes depending on the internal state. High concentrations of salt induce innate aversion under sated states, whereas such aversive stimuli transform into appetitive ones under sodium depletion. Neural mechanisms underlying this state-dependent salt valence switch are poorly understood. Using transcriptomics state-to-cell-type mapping and neural manipulations, we show that positive and negative valences of salt are controlled by anatomically distinct neural circuits in the mammalian brain. The hindbrain interoceptive circuit regulates sodium-specific appetitive drive , whereas behavioral tolerance of aversive salts is encoded by a dedicated class of neurons in the forebrain lamina terminalis (LT) expressing prostaglandin E2 (PGE2) receptor, Ptger3. We show that these LT neurons regulate salt tolerance by selectively modulating aversive taste sensitivity, partly through a PGE2-Ptger3 axis. These results reveal the bimodal regulation of appetitive and tolerance signals toward salt, which together dictate the amount of sodium consumption under different internal states.
Subject(s)
Neural Pathways , Sodium , Taste , Animals , Neural Pathways/physiology , Taste/physiology , Mice , Gene Expression ProfilingABSTRACT
Hardwired circuits encoding innate responses have emerged as an essential feature of the mammalian brain. Sweet and bitter evoke opposing predetermined behaviors. Sweet drives appetitive responses and consumption of energy-rich food sources, whereas bitter prevents ingestion of toxic chemicals. Here we identified and characterized the neurons in the brainstem that transmit sweet and bitter signals from the tongue to the cortex. Next we examined how the brain modulates this hardwired circuit to control taste behaviors. We dissect the basis for bitter-evoked suppression of sweet taste and show that the taste cortex and amygdala exert strong positive and negative feedback onto incoming bitter and sweet signals in the brainstem. Finally we demonstrate that blocking the feedback markedly alters responses to ethologically relevant taste stimuli. These results illustrate how hardwired circuits can be finely regulated by top-down control and reveal the neural basis of an indispensable behavioral response for all animals.
Subject(s)
Amygdala/physiology , Brain/physiology , Mammals/physiology , Taste/physiology , Animals , Brain Stem/physiology , Calbindin 2/metabolism , Cerebral Cortex/physiology , Feedback, Physiological , Mice, Inbred C57BL , Mutation/genetics , Neural Inhibition/physiology , Neurons/physiology , Solitary Nucleus/physiology , Somatostatin/metabolismABSTRACT
Comprehensively resolving neuronal identities in whole-brain images is a major challenge. We achieve this in C. elegans by engineering a multicolor transgene called NeuroPAL (a neuronal polychromatic atlas of landmarks). NeuroPAL worms share a stereotypical multicolor fluorescence map for the entire hermaphrodite nervous system that resolves all neuronal identities. Neurons labeled with NeuroPAL do not exhibit fluorescence in the green, cyan, or yellow emission channels, allowing the transgene to be used with numerous reporters of gene expression or neuronal dynamics. We showcase three applications that leverage NeuroPAL for nervous-system-wide neuronal identification. First, we determine the brainwide expression patterns of all metabotropic receptors for acetylcholine, GABA, and glutamate, completing a map of this communication network. Second, we uncover changes in cell fate caused by transcription factor mutations. Third, we record brainwide activity in response to attractive and repulsive chemosensory cues, characterizing multimodal coding for these stimuli.
Subject(s)
Atlases as Topic , Brain Mapping , Brain/physiology , Caenorhabditis elegans/physiology , Neurons/physiology , Software , Algorithms , Anatomic Landmarks , Animals , Cell Body/physiology , Cell Lineage , Drosophila/physiology , Mutation/genetics , Nerve Net/physiology , Phenotype , Receptors, Metabotropic Glutamate/metabolism , Receptors, Neurotransmitter/metabolism , Smell/physiology , Taste/physiology , Transcription Factors/metabolism , TransgenesABSTRACT
Biology is entering a new era in which techniques honed in model systems can be applied to the expanding array of organisms with sequenced genomes. In this issue of Cell, van Giesen et al. (2020) characterize the molecular foundation of the touch-taste sensory system in octopus suckers.
Subject(s)
Octopodiformes , Animals , TasteABSTRACT
Hunger and thirst have distinct goals but control similar ingestive behaviors, and little is known about neural processes that are shared between these behavioral states. We identify glutamatergic neurons in the peri-locus coeruleus (periLCVGLUT2 neurons) as a polysynaptic convergence node from separate energy-sensitive and hydration-sensitive cell populations. We develop methods for stable hindbrain calcium imaging in free-moving mice, which show that periLCVGLUT2 neurons are tuned to ingestive behaviors and respond similarly to food or water consumption. PeriLCVGLUT2 neurons are scalably inhibited by palatability and homeostatic need during consumption. Inhibition of periLCVGLUT2 neurons is rewarding and increases consumption by enhancing palatability and prolonging ingestion duration. These properties comprise a double-negative feedback relationship that sustains food or water consumption without affecting food- or water-seeking. PeriLCVGLUT2 neurons are a hub between hunger and thirst that specifically controls motivation for food and water ingestion, which is a factor that contributes to hedonic overeating and obesity.
Subject(s)
Appetite Regulation/physiology , Drinking/physiology , Eating/physiology , Locus Coeruleus/cytology , Nerve Net/physiology , Neurons/physiology , Rhombencephalon/physiology , Single-Cell Analysis/methods , Animals , Appetite/physiology , Behavior Rating Scale , Feedback , Feeding Behavior/physiology , Female , Glutamine/metabolism , Glutamine/physiology , Homeostasis/physiology , Hunger/physiology , Male , Mice , Mice, Knockout , Motivation/physiology , Neurons/drug effects , Recombinant Proteins , Reward , Rhombencephalon/cytology , Rhombencephalon/diagnostic imaging , Taste/physiology , Thirst/physiologyABSTRACT
The ability to sense sour provides an important sensory signal to prevent the ingestion of unripe, spoiled, or fermented foods. Taste and somatosensory receptors in the oral cavity trigger aversive behaviors in response to acid stimuli. Here, we show that the ion channel Otopetrin-1, a proton-selective channel normally involved in the sensation of gravity in the vestibular system, is essential for sour sensing in the taste system. We demonstrate that knockout of Otop1 eliminates acid responses from sour-sensing taste receptor cells (TRCs). In addition, we show that mice engineered to express otopetrin-1 in sweet TRCs have sweet cells that also respond to sour stimuli. Next, we genetically identified the taste ganglion neurons mediating each of the five basic taste qualities and demonstrate that sour taste uses its own dedicated labeled line from TRCs in the tongue to finely tuned taste neurons in the brain to trigger aversive behaviors.
Subject(s)
Brain/physiology , Membrane Proteins/metabolism , Taste Buds/metabolism , Taste , Acids/pharmacology , Afferent Pathways/cytology , Afferent Pathways/metabolism , Afferent Pathways/physiology , Animals , Brain/cytology , Brain/metabolism , Female , Male , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Taste Buds/drug effects , Taste Buds/physiology , Taste PerceptionABSTRACT
Ingestion is a highly regulated behavior that integrates taste and hunger cues to balance food intake with metabolic needs. To study the dynamics of ingestion in the vinegar fly Drosophila melanogaster, we developed Expresso, an automated feeding assay that measures individual meal-bouts with high temporal resolution at nanoliter scale. Flies showed discrete, temporally precise ingestion that was regulated by hunger state and sucrose concentration. We identify 12 cholinergic local interneurons (IN1, for "ingestion neurons") necessary for this behavior. Sucrose ingestion caused a rapid and persistent increase in IN1 interneuron activity in fasted flies that decreased proportionally in response to subsequent feeding bouts. Sucrose responses of IN1 interneurons in fed flies were significantly smaller and lacked persistent activity. We propose that IN1 neurons monitor ingestion by connecting sugar-sensitive taste neurons in the pharynx to neural circuits that control the drive to ingest. Similar mechanisms for monitoring and regulating ingestion may exist in vertebrates.
Subject(s)
Drosophila melanogaster/cytology , Drosophila melanogaster/physiology , Interneurons/metabolism , Neural Pathways , Taste Perception , Animals , Appetitive Behavior , Feeding Behavior , Female , Hunger , Male , Neurons/metabolism , Optogenetics , Pharynx/metabolism , Sucrose/metabolism , TasteABSTRACT
Taste and smell play a key role in our ability to perceive foods. Overconsumption of highly palatable energy-dense foods can lead to increased caloric intake and obesity. Thus there is growing interest in the study of the biological mediators of fat taste and associated olfaction as potential targets for pharmacologic and nutritional interventions in the context of obesity and health. The number of studies examining mechanisms underlying fat taste and smell has grown rapidly in the last 5 years. Therefore, the purpose of this systematic review is to summarize emerging evidence examining the biological mechanisms of fat taste and smell. A literature search was conducted of studies published in English between 2014 and 2021 in adult humans and animal models. Database searches were conducted using PubMed, EMBASE, Scopus, and Web of Science for key terms including fat/lipid, taste, and olfaction. Initially, 4,062 articles were identified through database searches, and a total of 84 relevant articles met inclusion and exclusion criteria and are included in this review. Existing literature suggests that there are several proteins integral to fat chemosensation, including cluster of differentiation 36 (CD36) and G protein-coupled receptor 120 (GPR120). This systematic review will discuss these proteins and the signal transduction pathways involved in fat detection. We also review neural circuits, key brain regions, ingestive cues, postingestive signals, and genetic polymorphism that play a role in fat perception and consumption. Finally, we discuss the role of fat taste and smell in the context of eating behavior and obesity.
Subject(s)
Smell , Taste Buds , Taste , Animals , Humans , Feeding Behavior , Obesity/metabolism , Smell/physiology , Taste/physiologyABSTRACT
The cephalic phase insulin response (CPIR) is classically defined as a head receptor-induced early release of insulin during eating that precedes a postabsorptive rise in blood glucose. Here we discuss, first, the various stimuli that elicit the CPIR and the sensory signaling pathways (sensory limb) involved; second, the efferent pathways that control the various endocrine events associated with eating (motor limb); and third, what is known about the central integrative processes linking the sensory and motor limbs. Fourth, in doing so, we identify open questions and problems with respect to the CPIR in general. Specifically, we consider test conditions that allow, or may not allow, the stimulus to reach the potentially relevant taste receptors and to trigger a CPIR. The possible significance of sweetness and palatability as crucial stimulus features and whether conditioning plays a role in the CPIR are also discussed. Moreover, we ponder the utility of the strict classical CPIR definition based on what is known about the effects of vagal motor neuron activation and thereby acetylcholine on the ß-cells, together with the difficulties of the accurate assessment of insulin release. Finally, we weigh the evidence of the physiological and clinical relevance of the cephalic contribution to the release of insulin that occurs during and after a meal. These points are critical for the interpretation of the existing data, and they support a sharper focus on the role of head receptors in the overall insulin response to eating rather than relying solely on the classical CPIR definition.
Subject(s)
Insulin , Taste Buds , Humans , Insulin/metabolism , Taste/physiology , Blood Glucose/metabolism , Signal TransductionABSTRACT
The tongue is a complex multifunctional organ that interacts and senses both interoceptively and exteroceptively. Although it is easily visible to almost all of us, it is relatively understudied and what is in the literature is often contradictory or is not comprehensively reported. The tongue is both a motor and a sensory organ: motor in that it is required for speech and mastication, and sensory in that it receives information to be relayed to the central nervous system pertaining to the safety and quality of the contents of the oral cavity. Additionally, the tongue and its taste apparatus form part of an innate immune surveillance system. For example, loss or alteration in taste perception can be an early indication of infection as became evident during the present global SARS-CoV-2 pandemic. Here, we particularly emphasize the latest updates in the mechanisms of taste perception, taste bud formation and adult taste bud renewal, and the presence and effects of hormones on taste perception, review the understudied lingual immune system with specific reference to SARS-CoV-2, discuss nascent work on tongue microbiome, as well as address the effect of systemic disease on tongue structure and function, especially in relation to taste.
Subject(s)
COVID-19 , Population Health , Taste Buds , Humans , Taste Perception , Taste/physiology , SARS-CoV-2 , Tongue , Taste Buds/physiologyABSTRACT
Microbial communities of fermented foods have provided humans with tools for preservation and flavor development for thousands of years. These simple, reproducible, accessible, culturable, and easy-to-manipulate systems also provide opportunities for dissecting the mechanisms of microbial community formation. Fermented foods can be valuable models for processes in less tractable microbiota.
Subject(s)
Ecosystem , Fermentation , Food Microbiology , Microbial Interactions , TasteABSTRACT
Chefs and scientists exploring biophysical processes have given rise to molecular gastronomy. In this Commentary, we describe how a scientific understanding of recipes and techniques facilitates the development of new textures and expands the flavor palette. The new dishes that result engage our senses in unexpected ways. PAPERCLIP.
Subject(s)
Dietary Proteins/chemistry , Food Analysis , Taste , Biophysics , Cooking , Fermentation , Food , HumansABSTRACT
The perception of flavor is perhaps the most multisensory of our everyday experiences. The latest research by psychologists and cognitive neuroscientists increasingly reveals the complex multisensory interactions that give rise to the flavor experiences we all know and love, demonstrating how they rely on the integration of cues from all of the human senses. This Perspective explores the contributions of distinct senses to our perception of food and the growing realization that the same rules of multisensory integration that have been thoroughly explored in interactions between audition, vision, and touch may also explain the combination of the (admittedly harder to study) flavor senses. Academic advances are now spilling out into the real world, with chefs and food industry increasingly taking the latest scientific findings on board in their food design.
Subject(s)
Sensation , Taste Perception , Taste , Culture , Food Industry , HumansABSTRACT
Bitter taste sensing is mediated by type 2 taste receptors (TAS2Rs (also known as T2Rs)), which represent a distinct class of G-protein-coupled receptors1. Among the 26 members of the TAS2Rs, TAS2R14 is highly expressed in extraoral tissues and mediates the responses to more than 100 structurally diverse tastants2-6, although the molecular mechanisms for recognizing diverse chemicals and initiating cellular signalling are still poorly understood. Here we report two cryo-electron microscopy structures for TAS2R14 complexed with Ggust (also known as gustducin) and Gi1. Both structures have an orthosteric binding pocket occupied by endogenous cholesterol as well as an intracellular allosteric site bound by the bitter tastant cmpd28.1, including a direct interaction with the α5 helix of Ggust and Gi1. Computational and biochemical studies validate both ligand interactions. Our functional analysis identified cholesterol as an orthosteric agonist and the bitter tastant cmpd28.1 as a positive allosteric modulator with direct agonist activity at TAS2R14. Moreover, the orthosteric pocket is connected to the allosteric site via an elongated cavity, which has a hydrophobic core rich in aromatic residues. Our findings provide insights into the ligand recognition of bitter taste receptors and suggest activities of TAS2R14 beyond bitter taste perception via intracellular allosteric tastants.
Subject(s)
Cholesterol , Intracellular Space , Receptors, G-Protein-Coupled , Taste , Humans , Allosteric Regulation/drug effects , Allosteric Site , Cholesterol/chemistry , Cholesterol/metabolism , Cholesterol/pharmacology , Cryoelectron Microscopy , Hydrophobic and Hydrophilic Interactions , Intracellular Space/chemistry , Intracellular Space/metabolism , Ligands , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/ultrastructure , Reproducibility of Results , Taste/drug effects , Taste/physiology , Transducin/chemistry , Transducin/metabolism , Transducin/ultrastructureABSTRACT
Bitter taste receptors, particularly TAS2R14, play central roles in discerning a wide array of bitter substances, ranging from dietary components to pharmaceutical agents1,2. TAS2R14 is also widely expressed in extragustatory tissues, suggesting its extra roles in diverse physiological processes and potential therapeutic applications3. Here we present cryogenic electron microscopy structures of TAS2R14 in complex with aristolochic acid, flufenamic acid and compound 28.1, coupling with different G-protein subtypes. Uniquely, a cholesterol molecule is observed occupying what is typically an orthosteric site in class A G-protein-coupled receptors. The three potent agonists bind, individually, to the intracellular pockets, suggesting a distinct activation mechanism for this receptor. Comprehensive structural analysis, combined with mutagenesis and molecular dynamic simulation studies, elucidate the broad-spectrum ligand recognition and activation of the receptor by means of intricate multiple ligand-binding sites. Our study also uncovers the specific coupling modes of TAS2R14 with gustducin and Gi1 proteins. These findings should be instrumental in advancing knowledge of bitter taste perception and its broader implications in sensory biology and drug discovery.
Subject(s)
Aristolochic Acids , Cholesterol , Flufenamic Acid , Receptors, G-Protein-Coupled , Taste , Humans , Aristolochic Acids/metabolism , Aristolochic Acids/chemistry , Aristolochic Acids/pharmacology , Binding Sites/drug effects , Cholesterol/chemistry , Cholesterol/metabolism , Cholesterol/pharmacology , Cryoelectron Microscopy , Flufenamic Acid/chemistry , Flufenamic Acid/metabolism , Flufenamic Acid/pharmacology , GTP-Binding Protein alpha Subunits, Gi-Go/chemistry , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Ligands , Models, Molecular , Molecular Dynamics Simulation , Mutation , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/ultrastructure , Taste/drug effects , Taste/physiology , Transducin/chemistry , Transducin/metabolismABSTRACT
Animals crave sugars because of their energy potential and the pleasurable sensation of tasting sweetness. Yet all sugars are not metabolically equivalent, requiring mechanisms to detect and differentiate between chemically similar sweet substances. Insects use a family of ionotropic gustatory receptors to discriminate sugars1, each of which is selectively activated by specific sweet molecules2-6. Here, to gain insight into the molecular basis of sugar selectivity, we determined structures of Gr9, a gustatory receptor from the silkworm Bombyx mori (BmGr9), in the absence and presence of its sole activating ligand, D-fructose. These structures, along with structure-guided mutagenesis and functional assays, illustrate how D-fructose is enveloped by a ligand-binding pocket that precisely matches the overall shape and pattern of chemical groups in D-fructose. However, our computational docking and experimental binding assays revealed that other sugars also bind BmGr9, yet they are unable to activate the receptor. We determined the structure of BmGr9 in complex with one such non-activating sugar, L-sorbose. Although both sugars bind a similar position, only D-fructose is capable of engaging a bridge of two conserved aromatic residues that connects the pocket to the pore helix, inducing a conformational change that allows the ion-conducting pore to open. Thus, chemical specificity does not depend solely on the selectivity of the ligand-binding pocket, but it is an emergent property arising from a combination of receptor-ligand interactions and allosteric coupling. Our results support a model whereby coarse receptor tuning is derived from the size and chemical characteristics of the pocket, whereas fine-tuning of receptor activation is achieved through the selective engagement of an allosteric pathway that regulates ion conduction.
Subject(s)
Bombyx , Insect Proteins , Receptors, G-Protein-Coupled , Sugars , Taste , Animals , Allosteric Regulation , Binding Sites , Bombyx/metabolism , Bombyx/chemistry , Cryoelectron Microscopy , Fructose/metabolism , Fructose/chemistry , Insect Proteins/chemistry , Insect Proteins/genetics , Insect Proteins/metabolism , Insect Proteins/ultrastructure , Ligands , Models, Molecular , Molecular Docking Simulation , Protein Binding , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/ultrastructure , Sorbose/chemistry , Sorbose/metabolism , Substrate Specificity , Sugars/metabolism , Sugars/chemistry , Taste/physiologyABSTRACT
The recent assembly of the adult Drosophila melanogaster central brain connectome, containing more than 125,000 neurons and 50 million synaptic connections, provides a template for examining sensory processing throughout the brain1,2. Here we create a leaky integrate-and-fire computational model of the entire Drosophila brain, on the basis of neural connectivity and neurotransmitter identity3, to study circuit properties of feeding and grooming behaviours. We show that activation of sugar-sensing or water-sensing gustatory neurons in the computational model accurately predicts neurons that respond to tastes and are required for feeding initiation4. In addition, using the model to activate neurons in the feeding region of the Drosophila brain predicts those that elicit motor neuron firing5-a testable hypothesis that we validate by optogenetic activation and behavioural studies. Activating different classes of gustatory neurons in the model makes accurate predictions of how several taste modalities interact, providing circuit-level insight into aversive and appetitive taste processing. Additionally, we applied this model to mechanosensory circuits and found that computational activation of mechanosensory neurons predicts activation of a small set of neurons comprising the antennal grooming circuit, and accurately describes the circuit response upon activation of different mechanosensory subtypes6-10. Our results demonstrate that modelling brain circuits using only synapse-level connectivity and predicted neurotransmitter identity generates experimentally testable hypotheses and can describe complete sensorimotor transformations.
Subject(s)
Brain , Computer Simulation , Connectome , Drosophila melanogaster , Feedback, Sensory , Feeding Behavior , Grooming , Models, Neurological , Animals , Female , Male , Brain/physiology , Brain/cytology , Drosophila melanogaster/cytology , Drosophila melanogaster/physiology , Feeding Behavior/physiology , Grooming/physiology , Motor Neurons/physiology , Optogenetics , Synapses/physiology , Taste/physiology , Models, Anatomic , Neural Pathways/cytology , Neural Pathways/physiology , Neurotransmitter Agents/metabolism , Reproducibility of Results , Neurons/classification , Neurons/physiology , Appetitive Behavior/physiology , Arthropod Antennae , Feedback, Sensory/physiologyABSTRACT
The evolution of new traits enables expansion into new ecological and behavioural niches. Nonetheless, demonstrated connections between divergence in protein structure, function and lineage-specific behaviours remain rare. Here we show that both octopus and squid use cephalopod-specific chemotactile receptors (CRs) to sense their respective marine environments, but structural adaptations in these receptors support the sensation of specific molecules suited to distinct physiological roles. We find that squid express ancient CRs that more closely resemble related nicotinic acetylcholine receptors, whereas octopuses exhibit a more recent expansion in CRs consistent with their elaborated 'taste by touch' sensory system. Using a combination of genetic profiling, physiology and behavioural analyses, we identify the founding member of squid CRs that detects soluble bitter molecules that are relevant in ambush predation. We present the cryo-electron microscopy structure of a squid CR and compare this with octopus CRs1 and nicotinic receptors2. These analyses demonstrate an evolutionary transition from an ancestral aromatic 'cage' that coordinates soluble neurotransmitters or tastants to a more recent octopus CR hydrophobic binding pocket that traps insoluble molecules to mediate contact-dependent chemosensation. Thus, our study provides a foundation for understanding how adaptation of protein structure drives the diversification of organismal traits and behaviour.
Subject(s)
Behavior, Animal , Decapodiformes , Octopodiformes , Receptors, Nicotinic , Sensory Receptor Cells , Taste , Touch , Animals , Behavior, Animal/physiology , Binding Sites , Cryoelectron Microscopy , Decapodiformes/chemistry , Decapodiformes/physiology , Decapodiformes/ultrastructure , Evolution, Molecular , Hydrophobic and Hydrophilic Interactions , Neurotransmitter Agents/metabolism , Octopodiformes/chemistry , Octopodiformes/physiology , Octopodiformes/ultrastructure , Receptors, Nicotinic/chemistry , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/ultrastructure , Taste/physiology , Touch/physiology , Sensory Receptor Cells/chemistry , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/ultrastructureABSTRACT
The termination of a meal is controlled by dedicated neural circuits in the caudal brainstem. A key challenge is to understand how these circuits transform the sensory signals generated during feeding into dynamic control of behaviour. The caudal nucleus of the solitary tract (cNTS) is the first site in the brain where many meal-related signals are sensed and integrated1-4, but how the cNTS processes ingestive feedback during behaviour is unknown. Here we describe how prolactin-releasing hormone (PRLH) and GCG neurons, two principal cNTS cell types that promote non-aversive satiety, are regulated during ingestion. PRLH neurons showed sustained activation by visceral feedback when nutrients were infused into the stomach, but these sustained responses were substantially reduced during oral consumption. Instead, PRLH neurons shifted to a phasic activity pattern that was time-locked to ingestion and linked to the taste of food. Optogenetic manipulations revealed that PRLH neurons control the duration of seconds-timescale feeding bursts, revealing a mechanism by which orosensory signals feed back to restrain the pace of ingestion. By contrast, GCG neurons were activated by mechanical feedback from the gut, tracked the amount of food consumed and promoted satiety that lasted for tens of minutes. These findings reveal that sequential negative feedback signals from the mouth and gut engage distinct circuits in the caudal brainstem, which in turn control elements of feeding behaviour operating on short and long timescales.