Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.940
Filter
Add more filters

Publication year range
1.
Cell ; 183(2): 457-473.e20, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32979320

ABSTRACT

Rubisco, the key enzyme of CO2 fixation in photosynthesis, is prone to inactivation by inhibitory sugar phosphates. Inhibited Rubisco undergoes conformational repair by the hexameric AAA+ chaperone Rubisco activase (Rca) in a process that is not well understood. Here, we performed a structural and mechanistic analysis of cyanobacterial Rca, a close homolog of plant Rca. In the Rca:Rubisco complex, Rca is positioned over the Rubisco catalytic site under repair and pulls the N-terminal tail of the large Rubisco subunit (RbcL) into the hexamer pore. Simultaneous displacement of the C terminus of the adjacent RbcL opens the catalytic site for inhibitor release. An alternative interaction of Rca with Rubisco is mediated by C-terminal domains that resemble the small Rubisco subunit. These domains, together with the N-terminal AAA+ hexamer, ensure that Rca is packaged with Rubisco into carboxysomes. The cyanobacterial Rca is a dual-purpose protein with functions in Rubisco repair and carboxysome organization.


Subject(s)
Cyanobacteria/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism , Adenosine Triphosphate/metabolism , Bacterial Proteins/metabolism , Catalytic Domain , Crystallography, X-Ray , Models, Molecular , Molecular Chaperones/metabolism , Organelles/metabolism , Photosynthesis/physiology , Ribulose-Bisphosphate Carboxylase/physiology , Tissue Plasminogen Activator/chemistry , Tissue Plasminogen Activator/metabolism
2.
J Biol Chem ; 300(1): 105465, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37979915

ABSTRACT

Calreticulin (CRT) was originally identified as a key calcium-binding protein of the endoplasmic reticulum. Subsequently, CRT was shown to possess multiple intracellular functions, including roles in calcium homeostasis and protein folding. Recently, several extracellular functions have been identified for CRT, including roles in cancer cell invasion and phagocytosis of apoptotic and cancer cells by macrophages. In the current report, we uncover a novel function for extracellular CRT and report that CRT functions as a plasminogen-binding receptor that regulates the conversion of plasminogen to plasmin. We show that human recombinant or bovine tissue-derived CRT dramatically stimulated the conversion of plasminogen to plasmin by tissue plasminogen activator or urokinase-type plasminogen activator. Surface plasmon resonance analysis revealed that CRT-bound plasminogen (KD = 1.8 µM) with moderate affinity. Plasminogen binding and activation by CRT were inhibited by ε-aminocaproic acid, suggesting that an internal lysine residue of CRT interacts with plasminogen. We subsequently show that clinically relevant CRT variants (lacking four or eight lysines in carboxyl-terminal region) exhibited decreased plasminogen activation. Furthermore, CRT-deficient fibroblasts generated 90% less plasmin and CRT-depleted MDA MB 231 cells also demonstrated a significant reduction in plasmin generation. Moreover, treatment of fibroblasts with mitoxantrone dramatically stimulated plasmin generation by WT but not CRT-deficient fibroblasts. Our results suggest that CRT is an important cellular plasminogen regulatory protein. Given that CRT can empower cells with plasmin proteolytic activity, this discovery may provide new mechanistic insight into the established role of CRT in cancer.


Subject(s)
Calreticulin , Plasminogen , Animals , Cattle , Humans , Calreticulin/genetics , Calreticulin/isolation & purification , Calreticulin/metabolism , Fibrinolysin/metabolism , Plasminogen/genetics , Plasminogen/metabolism , Tissue Plasminogen Activator/metabolism , Urokinase-Type Plasminogen Activator/metabolism , Protein Domains/genetics , Mutation , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Gene Knockout Techniques , Cell Line, Tumor , Neoplasms/physiopathology
3.
FASEB J ; 38(4): e23489, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38407813

ABSTRACT

Physical activity-induced mechanical stimuli play a crucial role in preserving bone mass and structure by promoting bone formation. While the Wnt pathway is pivotal for mediating the osteoblast response to loading, the exact mechanisms are not fully understood. Here, we found that mechanical stimulation induces osteoblastic Wnt1 expression, resulting in an upregulation of key osteogenic marker genes, including Runx2 and Sp7, while Wnt1 knockdown using siRNA prevented these effects. RNAseq analysis identified Plat as a major target through which Wnt1 exerts its osteogenic influence. This was corroborated by Plat depletion using siRNA, confirming its positive role in osteogenic differentiation. Moreover, we demonstrated that mechanical stimulation enhances Plat expression, which, in turn leads to increased expression of osteogenic markers like Runx2 and Sp7. Notably, Plat depletion by siRNA prevented this effect. We have established that Wnt1 regulates Plat expression by activating ß-Catenin. Silencing Wnt1 impairs mechanically induced ß-Catenin activation, subsequently reducing Plat expression. Furthermore, our findings showed that Wnt1 is essential for osteoblasts to respond to mechanical stimulation and induce Runx2 and Sp7 expression, in part through the Wnt1/ß-Catenin/Plat signaling pathway. Additionally, we observed significantly reduced Wnt1 and Plat expression in bones from ovariectomy (OVX)-induced and age-related osteoporotic mouse models compared with non-OVX and young mice, respectively. Overall, our data suggested that Wnt1 and Plat play significant roles in mechanically induced osteogenesis. Their decreased expression in bones from OVX and aged mice highlights their potential involvement in post-menopausal and age-related osteoporosis, respectively.


Subject(s)
Core Binding Factor Alpha 1 Subunit , Osteogenesis , Animals , Female , Mice , beta Catenin/genetics , Core Binding Factor Alpha 1 Subunit/genetics , Osteoblasts , RNA, Small Interfering , Wnt Signaling Pathway , Tissue Plasminogen Activator/metabolism
4.
Mol Cell ; 67(5): 744-756.e6, 2017 Sep 07.
Article in English | MEDLINE | ID: mdl-28803776

ABSTRACT

How AAA+ chaperones conformationally remodel specific target proteins in an ATP-dependent manner is not well understood. Here, we investigated the mechanism of the AAA+ protein Rubisco activase (Rca) in metabolic repair of the photosynthetic enzyme Rubisco, a complex of eight large (RbcL) and eight small (RbcS) subunits containing eight catalytic sites. Rubisco is prone to inhibition by tight-binding sugar phosphates, whose removal is catalyzed by Rca. We engineered a stable Rca hexamer ring and analyzed its functional interaction with Rubisco. Hydrogen/deuterium exchange and chemical crosslinking showed that Rca structurally destabilizes elements of the Rubisco active site with remarkable selectivity. Cryo-electron microscopy revealed that Rca docks onto Rubisco over one active site at a time, positioning the C-terminal strand of RbcL, which stabilizes the catalytic center, for access to the Rca hexamer pore. The pulling force of Rca is fine-tuned to avoid global destabilization and allow for precise enzyme repair.


Subject(s)
Bacterial Proteins/metabolism , Molecular Chaperones/metabolism , Plant Proteins/metabolism , Rhodobacter sphaeroides/enzymology , Ribulose-Bisphosphate Carboxylase/metabolism , Tissue Plasminogen Activator/metabolism , Adenosine Triphosphate/metabolism , Allosteric Regulation , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Binding Sites , Catalytic Domain , Cross-Linking Reagents/chemistry , Deuterium Exchange Measurement , Enzyme Stability , Molecular Chaperones/chemistry , Molecular Chaperones/genetics , Molecular Docking Simulation , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Quaternary , Protein Subunits , Rhodobacter sphaeroides/genetics , Ribulose-Bisphosphate Carboxylase/chemistry , Ribulose-Bisphosphate Carboxylase/genetics , Structure-Activity Relationship , Time Factors , Tissue Plasminogen Activator/chemistry , Tissue Plasminogen Activator/genetics
5.
Curr Opin Lipidol ; 35(2): 58-65, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-37962908

ABSTRACT

PURPOSE OF REVIEW: The angiopoietin-like (ANGPTL) proteins ANGPTL3 and ANGPTL4 are critical lipoprotein lipase (LPL) inhibitors. This review discusses the unique ability of the insulin-responsive protein ANGPTL8 to regulate triglyceride (TG) metabolism by forming ANGPTL3/8 and ANGPTL4/8 complexes that control tissue-specific LPL activities. RECENT FINDINGS: After feeding, ANGPTL4/8 acts locally in adipose tissue, has decreased LPL-inhibitory activity compared to ANGPTL4, and binds tissue plasminogen activator (tPA) and plasminogen to generate plasmin, which cleaves ANGPTL4/8 and other LPL inhibitors. This enables LPL to be fully active postprandially to promote efficient fatty acid (FA) uptake and minimize ectopic fat deposition. In contrast, liver-derived ANGPTL3/8 acts in an endocrine manner, has markedly increased LPL-inhibitory activity compared to ANGPTL3, and potently inhibits LPL in oxidative tissues to direct TG toward adipose tissue for storage. Circulating ANGPTL3/8 levels are strongly correlated with serum TG, and the ANGPTL3/8 LPL-inhibitory epitope is blocked by the TG-lowering protein apolipoprotein A5 (ApoA5). SUMMARY: ANGPTL8 plays a crucial role in TG metabolism by forming ANGPTL3/8 and ANGPTL4/8 complexes that differentially modulate LPL activities in oxidative and adipose tissues respectively. Selective ANGPTL8 inhibition in the context of the ANGPTL3/8 complex has the potential to be a promising strategy for treating dyslipidemia.


Subject(s)
Angiopoietin-Like Protein 8 , Peptide Hormones , Humans , Angiopoietin-like Proteins/metabolism , Tissue Plasminogen Activator/metabolism , Biological Transport , Lipoprotein Lipase/metabolism , Triglycerides/metabolism , Angiopoietin-Like Protein 3 , Peptide Hormones/metabolism
6.
Biophys J ; 123(5): 610-621, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38356261

ABSTRACT

We modify a three-dimensional multiscale model of fibrinolysis to study the effect of plasmin-mediated degradation of fibrin on tissue plasminogen activator (tPA) diffusion and fibrinolysis. We propose that tPA is released from a fibrin fiber by simple kinetic unbinding, as well as by "forced unbinding," which occurs when plasmin degrades fibrin to which tPA is bound. We show that, if tPA is bound to a small-enough piece of fibrin that it can diffuse into the clot, then plasmin can increase the effective diffusion of tPA. If tPA is bound to larger fibrin degradation products (FDPs) that can only diffuse along the clot, then plasmin can decrease the effective diffusion of tPA. We find that lysis rates are fastest when tPA is bound to fibrin that can diffuse into the clot, and slowest when tPA is bound to FDPs that can only diffuse along the clot. Laboratory experiments confirm that FDPs can diffuse into a clot, and they support the model hypothesis that forced unbinding of tPA results in a mix of FDPs, such that tPA bound to FDPs can diffuse both into and along the clot. Regardless of how tPA is released from a fiber, a tPA mutant with a smaller dissociation constant results in slower lysis (because tPA binds strongly to fibrin), and a tPA mutant with a larger dissociation constant results in faster lysis.


Subject(s)
Fibrinolysin , Fibrinolysis , Fibrinolysin/metabolism , Fibrinolysin/pharmacology , Tissue Plasminogen Activator/metabolism , Tissue Plasminogen Activator/pharmacology , Fibrin/metabolism , Kinetics , Plasminogen/metabolism
7.
Genesis ; 62(1): e23529, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37345818

ABSTRACT

Epithelial-mesenchymal transition (EMT) is an important biological process contributing to kidney fibrosis and chronic kidney disease. This process is characterized by decreased epithelial phenotypes/markers and increased mesenchymal phenotypes/markers. Tubular epithelial cells (TECs) are commonly susceptible to EMT by various stimuli, for example, transforming growth factor-ß (TGF-ß), cellular communication network factor 2, angiotensin-II, fibroblast growth factor-2, oncostatin M, matrix metalloproteinase-2, tissue plasminogen activator (t-PA), plasmin, interleukin-1ß, and reactive oxygen species. Similarly, glomerular podocytes can undergo EMT via these stimuli and by high glucose condition in diabetic kidney disease. EMT of TECs and podocytes leads to tubulointerstitial fibrosis and glomerulosclerosis, respectively. Signaling pathways involved in EMT-mediated kidney fibrosis are diverse and complex. TGF-ß1/Smad and Wnt/ß-catenin pathways are the major venues triggering EMT in TECs and podocytes. These two pathways thus serve as the major therapeutic targets against EMT-mediated kidney fibrosis. To date, a number of EMT inhibitors have been identified and characterized. As expected, the majority of these EMT inhibitors affect TGF-ß1/Smad and Wnt/ß-catenin pathways. In addition to kidney fibrosis, these EMT-targeted antifibrotic inhibitors are expected to be effective for treatment against fibrosis in other organs/tissues.


Subject(s)
Transforming Growth Factor beta1 , beta Catenin , Humans , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/pharmacology , beta Catenin/metabolism , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/pharmacology , Tissue Plasminogen Activator/metabolism , Tissue Plasminogen Activator/pharmacology , Epithelial Cells/metabolism , Wnt Signaling Pathway , Epithelial-Mesenchymal Transition , Kidney , Fibrosis
8.
Stroke ; 55(3): 747-756, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38288607

ABSTRACT

BACKGROUND: Intravenous injection of alteplase, a recombinant tPA (tissue-type plasminogen activator) as a thrombolytic agent has revolutionized ischemic stroke management. However, tPA is a more complex enzyme than expected, being for instance able to promote thrombolysis, but at the same time, also able to influence neuronal survival and to affect the integrity of the blood-brain barrier. Accordingly, the respective impact of endogenous tPA expressed/present in the brain parenchyma versus in the circulation during stroke remains debated. METHODS: To address this issue, we used mice with constitutive deletion of tPA (tPANull [tPA-deficient mice]) or conditional deletion of endothelial tPA (VECad [vascular endothelial-Cadherin-Cre-recombinase]-Cre∆tPA). We also developed parabioses between tPANull and wild-type mice (tPAWT), anticipating that a tPAWT donor would restore levels of tPA to normal ones, in the circulation but not in the brain parenchyma of a tPANull recipient. Stroke outcomes were investigated by magnetic resonance imaging in a thrombo-embolic or a thrombotic stroke model, induced by local thrombin injection or FeCl3 application on the endothelium, respectively. RESULTS: First, our data show that endothelial tPA, released into the circulation after stroke onset, plays an overall beneficial role following thrombo-embolic stroke. Accordingly, after 24 hours, tPANull/tPANull parabionts displayed less spontaneous recanalization and reperfusion and larger infarcts compared with tPAWT/tPAWT littermates. However, when associated to tPAWT littermates, tPANull mice had similar perfusion deficits, but less severe brain infarcts. In the thrombotic stroke model, homo- and hetero-typic parabionts did not differ in the extent of brain damages and did not differentially recanalize and reperfuse. CONCLUSIONS: Together, our data reveal that during thromboembolic stroke, endogenous circulating tPA from endothelial cells sustains a spontaneous recanalization and reperfusion of the tissue, thus, limiting the extension of ischemic lesions. In this context, the impact of endogenous parenchymal tPA is limited.


Subject(s)
Stroke , Thrombotic Stroke , Animals , Mice , Disease Models, Animal , Endothelial Cells , Endothelium , Mice, Knockout , Stroke/diagnostic imaging , Stroke/pathology , Tissue Plasminogen Activator/genetics , Tissue Plasminogen Activator/metabolism
9.
Photosynth Res ; 159(1): 69-78, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38329704

ABSTRACT

The combined stress of drought and salinity is prevalent in various regions of the world, affects several physiological and biochemical processes in crops, and causes their yield to decrease. Photosynthesis is one of the main processes that are disturbed by combined stress. Therefore, improving the photosynthetic efficiency of crops is one of the most promising strategies to overcome environmental stresses, making studying the molecular basis of regulation of photosynthesis a necessity. In this study, we sought a potential mechanism that regulated a major component of the combined stress response in the important crop barley (Hordeum vulgare L.), namely the Rubisco activase A (RcaA) gene. Promoter analysis of the RcaA gene led to identifying Jasmonic acid (JA)-responsive elements with a high occurrence. Specifically, a Myelocytomatosis oncogenes 2 (MYC2) transcription factor binding site was highlighted as a plausible functional promoter motif. We conducted a controlled greenhouse experiment with an abiotic stress-susceptible barley genotype and evaluated expression profiling of the RcaA and MYC2 genes, photosynthetic parameters, plant water status, and cell membrane damages under JA, combined drought and salinity stress (CS) and JA + CS treatments. Our results showed that applying JA enhances barley's photosynthetic efficiency and water relations and considerably compensates for the adverse effects of combined stress. Significant association was observed among gene expression profiles and evaluated physiochemical characteristics. The results showed a plausible regulatory route through the JA-dependent MYC2-RcaA module involved in photosynthesis regulation and combined stress tolerance. These findings provide valuable knowledge for further functional studies of the regulation of photosynthesis under abiotic stresses toward the development of multiple-stress-tolerant crops.


Subject(s)
Cyclopentanes , Hordeum , Oxylipins , Hordeum/genetics , Hordeum/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism , Tissue Plasminogen Activator/metabolism , Tissue Plasminogen Activator/pharmacology , Droughts , Photosynthesis/genetics , Salt Stress , Stress, Physiological , Water/metabolism , Salinity
10.
Blood ; 140(4): 388-400, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35576527

ABSTRACT

The current standard of care for moderate to severe ischemic stroke is thrombolytic therapy with tissue plasminogen activator (tPA). Treatment with tPA can significantly improve neurologic outcomes; however, thrombolytic therapy is associated with an increased risk of intracerebral hemorrhage (ICH). The risk of hemorrhage significantly limits the use of thrombolytic therapy, and identifying pathways induced by tPA that increase this risk could provide new therapeutic options to extend thrombolytic therapy to a wider patient population. Here, we investigate the role of protein kinase Cß (PKCß) phosphorylation of the tight junction protein occludin during ischemic stroke and its role in cerebrovascular permeability. We show that activation of this pathway by tPA is associated with an increased risk of ICH. Middle cerebral artery occlusion (MCAO) increased phosphorylation of occludin serine 490 (S490) in the ischemic penumbra in a tPA-dependent manner, as tPA-/- mice were significantly protected from MCAO-induced occludin phosphorylation. Intraventricular injection of tPA in the absence of ischemia was sufficient to induce occludin phosphorylation and vascular permeability in a PKCß-dependent manner. Blocking occludin phosphorylation, either by targeted expression of a non-phosphorylatable form of occludin (S490A) or by pharmacologic inhibition of PKCß, reduced MCAO-induced permeability and improved functional outcome. Furthermore, inhibiting PKCß after MCAO prevented ICH associated with delayed thrombolysis. These results show that PKCß phosphorylation of occludin is a downstream mediator of tPA-induced cerebrovascular permeability and suggest that PKCß inhibitors could improve stroke outcome and prevent ICH associated with delayed thrombolysis, potentially extending the window for thrombolytic therapy in stroke.


Subject(s)
Ischemic Stroke , Stroke , Animals , Cerebral Hemorrhage/drug therapy , Cerebral Hemorrhage/etiology , Fibrinolytic Agents/therapeutic use , Humans , Infarction, Middle Cerebral Artery/drug therapy , Mice , Occludin/genetics , Occludin/metabolism , Phosphorylation , Stroke/complications , Stroke/etiology , Thrombolytic Therapy/adverse effects , Thrombolytic Therapy/methods , Tissue Plasminogen Activator/metabolism
11.
Biochemistry (Mosc) ; 89(Suppl 1): S14-S33, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38621742

ABSTRACT

Reactive oxygen species (ROS) are constantly generated in a living organism. An imbalance between the amount of generated reactive species in the body and their destruction leads to the development of oxidative stress. Proteins are extremely vulnerable targets for ROS molecules, which can cause oxidative modifications of amino acid residues, thus altering structure and function of intra- and extracellular proteins. The current review considers the effect of oxidation on the structural rearrangements and functional activity of hemostasis proteins: coagulation system proteins such as fibrinogen, prothrombin/thrombin, factor VII/VIIa; anticoagulant proteins - thrombomodulin and protein C; proteins of the fibrinolytic system such as plasminogen, tissue plasminogen activator and plasminogen activator inhibitor-1. Structure and function of the proteins, oxidative modifications, and their detrimental consequences resulting from the induced oxidation or oxidative stress in vivo are described. Possible effects of oxidative modifications of proteins in vitro and in vivo leading to disruption of the coagulation and fibrinolysis processes are summarized and systematized, and the possibility of a compensatory mechanism in maintaining hemostasis under oxidative stress is analyzed.


Subject(s)
Hemostasis , Tissue Plasminogen Activator , Tissue Plasminogen Activator/metabolism , Reactive Oxygen Species , Blood Coagulation , Blood Coagulation Factors/metabolism , Oxidative Stress
12.
Am J Respir Crit Care Med ; 207(6): 731-739, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36191254

ABSTRACT

Rationale: Sonographic septations are assumed to be important clinical predictors of outcome in pleural infection, but the evidence for this is sparse. The inflammatory and fibrinolysis-associated intrapleural pathway(s) leading to septation formation have not been studied in a large cohort of pleural fluid (PF) samples with confirmed pleural infection matched with ultrasound and clinical outcome data. Objectives: To assess the presence and severity of septations against baseline PF PAI-1 (Plasminogen-Activator Inhibitor-1) and other inflammatory and fibrinolysis-associated proteins as well as to correlate these with clinically important outcomes. Methods: We analyzed 214 pleural fluid samples from PILOT (Pleural Infection Longitudinal Outcome Study), a prospective observational pleural infection study, for inflammatory and fibrinolysis-associated proteins using the Luminex platform. Multivariate regression analyses were used to assess the association of pleural biological markers with septation presence and severity (on ultrasound) and clinical outcomes. Measurements and Main Results: PF PAI-1 was the only protein independently associated with septation presence (P < 0.001) and septation severity (P = 0.003). PF PAI-1 concentrations were associated with increased length of stay (P = 0.048) and increased 12-month mortality (P = 0.003). Sonographic septations alone had no relation to clinical outcomes. Conclusions: In a large and well-characterized cohort, this is the first study to associate pleural biological parameters with a validated sonographic septation outcome in pleural infection. PF PAI-1 is the first biomarker to demonstrate an independent association with mortality. Although PF PAI-1 plays an integral role in driving septation formation, septations themselves are not associated with clinically important outcomes. These novel findings now require prospective validation.


Subject(s)
Infections , Plasminogen Activator Inhibitor 1 , Pleural Diseases , Humans , Fibrinolysis , Infections/metabolism , Plasminogen Activator Inhibitor 1/analysis , Plasminogen Activator Inhibitor 1/metabolism , Pleura/diagnostic imaging , Pleura/metabolism , Pleural Diseases/diagnostic imaging , Pleural Diseases/metabolism , Pleural Effusion/genetics , Prospective Studies , Tissue Plasminogen Activator/analysis , Tissue Plasminogen Activator/metabolism , Ultrasonography
13.
J Biol Chem ; 298(8): 102146, 2022 08.
Article in English | MEDLINE | ID: mdl-35716777

ABSTRACT

Ovarian clear cell carcinoma (OCCC) is an understudied poor prognosis subtype of ovarian cancer lacking in effective targeted therapies. Efforts to define molecular drivers of OCCC malignancy may lead to new therapeutic targets and approaches. Among potential targets are secreted proteases, enzymes which in many cancers serve as key drivers of malignant progression. Here, we found that inhibitors of trypsin-like serine proteases suppressed malignant phenotypes of OCCC cell lines. To identify the proteases responsible for malignancy in OCCC, we employed activity-based protein profiling to directly analyze enzyme activity. We developed an activity-based probe featuring an arginine diphenylphosphonate warhead to detect active serine proteases of trypsin-like specificity and a biotin handle to facilitate affinity purification of labeled proteases. Using this probe, we identified active trypsin-like serine proteases within the complex proteomes secreted by OCCC cell lines, including two proteases in common, tissue plasminogen activator and urokinase-type plasminogen activator. Further interrogation of these proteases showed that both were involved in cancer cell invasion and proliferation of OCCC cells and were also detected in in vivo models of OCCC. We conclude the detection of tissue plasminogen activator and urokinase-type plasminogen activator as catalytically active proteases and significant drivers of the malignant phenotype may point to these enzymes as targets for new therapeutic strategies in OCCC. Our activity-based probe and profiling methodology will also serve as a valuable tool for detection of active trypsin-like serine proteases in models of other cancers and other diseases.


Subject(s)
Adenocarcinoma, Clear Cell , Ovarian Neoplasms , Serine Proteases , Adenocarcinoma, Clear Cell/enzymology , Adenocarcinoma, Clear Cell/pathology , Female , Humans , Ovarian Neoplasms/enzymology , Ovarian Neoplasms/pathology , Serine Proteases/metabolism , Tissue Plasminogen Activator/metabolism , Trypsin , Urokinase-Type Plasminogen Activator/metabolism
14.
J Biol Chem ; 298(3): 101712, 2022 03.
Article in English | MEDLINE | ID: mdl-35150738

ABSTRACT

Alpha-tocopherol (vitamin E) is an essential nutrient that functions as a major lipid-soluble antioxidant in humans. The alpha-tocopherol transfer protein (TTP) binds α-tocopherol with high affinity and selectivity and regulates whole-body distribution of the vitamin. Heritable mutations in the TTPA gene result in familial vitamin E deficiency, elevated indices of oxidative stress, and progressive neurodegeneration that manifest primarily in spinocerebellar ataxia. Although the essential role of vitamin E in neurological health has been recognized for over 50 years, the mechanisms by which this essential nutrient is transported in the central nervous system are poorly understood. Here we found that, in the murine cerebellum, TTP is selectively expressed in glial fibrillary acidic protein-positive astrocytes, where it facilitates efflux of vitamin E to neighboring neurons. We also show that induction of oxidative stress enhances the transcription of the TtpA gene in cultured cerebellar astrocytes. Furthermore, secretion of vitamin E from astrocytes is mediated by an ABC-type transporter, and uptake of the vitamin into neurons involves the low-density lipoprotein receptor-related protein 1. Taken together, our data indicate that TTP-expressing astrocytes control the delivery of vitamin E from astrocytes to neurons, and that this process is homeostatically responsive to oxidative stress. These are the first observations that address the detailed molecular mechanisms of vitamin E transport in the central nervous system, and these results have important implications for understanding the molecular underpinnings of oxidative stress-related neurodegenerative diseases.


Subject(s)
Astrocytes , Carrier Proteins , Cerebellum , Neurons , Vitamin E , alpha-Tocopherol , ATP-Binding Cassette Transporters/metabolism , Animals , Astrocytes/cytology , Astrocytes/metabolism , Carrier Proteins/metabolism , Cerebellum/cytology , Cerebellum/metabolism , Humans , Mice , Neurons/cytology , Neurons/metabolism , Tissue Plasminogen Activator/metabolism , Tocopherols , Vitamin E/metabolism , Vitamins , alpha-Tocopherol/metabolism
15.
Plant J ; 110(3): 673-687, 2022 05.
Article in English | MEDLINE | ID: mdl-35106849

ABSTRACT

The transcription factor Ghd2 increases rice yield potential under normal conditions and accelerates leaf senescence under drought stress. However, its mechanism on the regulation of leaf senescence under drought stress remains unclear. In the present study, to unveil the mechanism, one target of Ghd2, the Rubisco activase gene RCA, was identified through the combined analysis of Ghd2-CRISPR transcriptome data and Ghd2-overexpression microarray data. Ghd2 binds to the 'CACA' motif in the RCA promoter by its CCT domain and upregulates RCA expression. RCA has alternative transcripts, RCAS and RCAL, which are predominantly expressed under normal conditions and drought stress, respectively. Similar to Ghd2-overexpressing plants, RCAL-overexpressing plants were more sensitive to drought stress than the wild-type. However, the plants overexpressing RCAS showed a weak drought-sensitive phenotype. Moreover, RCAL knockdown and knockout plants did not show yield loss under normal conditions, but exhibited enhanced drought tolerance and delayed leaf senescence. The chlorophyll content, the free amino acid content and the expression of senescence-related genes in the RCAL mutant were lower than those in the wild-type plants under drought stress. In summary, Ghd2 induces leaf senescence by upregulating RCAL expression under drought stress, and the RCAL mutant has important values in breeding drought-tolerant varieties.


Subject(s)
Oryza , Droughts , Gene Expression Regulation, Plant/genetics , Oryza/metabolism , Plant Breeding , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Ribulose-Bisphosphate Carboxylase/metabolism , Stress, Physiological , Tissue Plasminogen Activator/genetics , Tissue Plasminogen Activator/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
16.
J Cell Biochem ; 124(7): 1040-1049, 2023 07.
Article in English | MEDLINE | ID: mdl-37288821

ABSTRACT

The acute ischemic stroke therapy of choice is the application of Alteplase, a drug containing the enzyme tissue-type plasminogen activator (tPa) which rapidly destabilizes blood clots. A central hallmark of stroke pathology is blood-brain barrier (BBB) breakdown associated with tight junction (TJ) protein degradation, which seems to be significantly more severe under therapeutic conditions. The exact mechanisms how tPa facilitates BBB breakdown are not entirely understood. There is evidence that an interaction with the lipoprotein receptor-related protein 1 (LRP1), allowing tPa transport across the BBB into the central nervous system, is necessary for this therapeutic side effect. Whether tPa-mediated disruption of BBB integrity is initiated directly on microvascular endothelial cells or other brain cell types is still elusive. In this study we could not observe any changes of barrier properties in microvascular endothelial cells after tPa incubation. However, we present evidence that tPa causes changes in microglial activation and BBB breakdown after LRP1-mediated transport across the BBB. Using a monoclonal antibody targeting the tPa binding sites of LRP1 decreased tPa transport across an endothelial barrier. Our results indicate that limiting tPa transport from the vascular system into the brain by coapplication of a LRP1-blocking monoclonal antibody might be a novel approach to minimize tPa-related BBB damage during acute stroke therapy.


Subject(s)
Ischemic Stroke , Stroke , Humans , Tissue Plasminogen Activator/adverse effects , Tissue Plasminogen Activator/metabolism , Endothelial Cells/metabolism , Ischemic Stroke/chemically induced , Ischemic Stroke/complications , Ischemic Stroke/drug therapy , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Low Density Lipoprotein Receptor-Related Protein-1/therapeutic use , Stroke/drug therapy , Stroke/pathology , Antibodies, Monoclonal/therapeutic use , Lipoproteins, LDL
17.
Biochem Soc Trans ; 51(2): 627-637, 2023 04 26.
Article in English | MEDLINE | ID: mdl-36929563

ABSTRACT

Rubisco activase (RCA) catalyzes the release of inhibitory sugar phosphates from ribulose-1,6-biphosphate carboxylase/oxygenase (Rubisco) and can play an important role in biochemical limitations of photosynthesis under dynamic light and elevated temperatures. There is interest in increasing RCA activity to improve crop productivity, but a lack of understanding about the regulation of photosynthesis complicates engineering strategies. In this review, we discuss work relevant to improving RCA with a focus on advances in understanding the structural cause of RCA instability under heat stress and the regulatory interactions between RCA and components of photosynthesis. This reveals substantial variation in RCA thermostability that can be influenced by single amino acid substitutions, and that engineered variants can perform better in vitro and in vivo under heat stress. In addition, there are indications RCA activity is controlled by transcriptional, post-transcriptional, post-translational, and spatial regulation, which may be important for balancing between carbon fixation and light capture. Finally, we provide an overview of findings from recent field experiments and consider the requirements for commercial validation as part of efforts to increase crop yields in the face of global climate change.


Subject(s)
Ribulose-Bisphosphate Carboxylase , Tissue Plasminogen Activator , Ribulose-Bisphosphate Carboxylase/metabolism , Tissue Plasminogen Activator/metabolism , Photosynthesis/physiology , Plant Proteins/metabolism
18.
Exp Eye Res ; 230: 109465, 2023 05.
Article in English | MEDLINE | ID: mdl-37030582

ABSTRACT

Vitreomacular traction syndrome results from persistent vitreoretinal adhesions in the setting of partial posterior vitreous detachment (PVD). Vitrectomy and reattachment of retina is an effective therapeutic approach. The adhesion between vitreous cortex and internal limiting membrane (ILM) of the retina is stronger in youth, which brings difficulties to induce PVD in vitrectomy. Several clinical investigations demonstrated that intravitreous injection of plasmin before vitrectomy could reduce the risk of detachment. In our study, a novel recombinant human microplasminogen (rhµPlg) was expressed by Pichia pastoris. Molecular docking showed that the binding of rhµPlg with tissue plasminogen activator (t-PA) was similar to plasminogen, suggesting rh µPlg could be activated by t-PA to generate microplasmin (µPlm). Moreover, rhµPlg had higher catalytic activity than plasminogen in amidolytic assays. Complete PVD was found at vitreous posterior pole of 125 µg rhµPlg-treated eyes without morphological change of retina in juvenile rabbits via intraocular injection. Our results demonstrate that rhµPlg has a potential value in the treatment of vitreoretinopathy.


Subject(s)
Retinal Diseases , Vitreous Detachment , Animals , Humans , Rabbits , Adolescent , Vitreous Detachment/drug therapy , Tissue Plasminogen Activator/metabolism , Tissue Plasminogen Activator/pharmacology , Vitreous Body/metabolism , Molecular Docking Simulation , Retina , Vitrectomy/methods , Plasminogen/metabolism , Plasminogen/pharmacology , Injections, Intraocular , Retinal Diseases/metabolism , Serine Proteases
19.
Cell Mol Neurobiol ; 43(1): 99-113, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35066715

ABSTRACT

As the second-leading cause of death, stroke faces several challenges in terms of treatment because of the limited therapeutic interventions available. Previous studies primarily focused on metabolic and blood flow properties as a target for treating stroke, including recombinant tissue plasminogen activator and mechanical thrombectomy, which are the only USFDA approved therapies. These interventions have the limitation of a narrow therapeutic time window, the possibility of hemorrhagic complications, and the expertise required for performing these interventions. Thus, it is important to identify the contributing factors that exacerbate the ischemic outcome and to develop therapies targeting them for regulating cellular homeostasis, mainly neuronal survival and regeneration. Glial cells, primarily microglia, astrocytes, and oligodendrocytes, have been shown to have a crucial role in the prognosis of ischemic brain injury, contributing to inflammatory responses. They play a dual role in both the onset as well as resolution of the inflammatory responses. Understanding the different mechanisms driving these effects can aid in the development of therapeutic targets and further mitigate the damage caused. In this review, we summarize the functions of various glial cells and their contribution to stroke pathology. The review highlights the therapeutic options currently being explored and developed that primarily target glial cells and can be used as neuroprotective agents for the treatment of ischemic stroke.


Subject(s)
Brain Ischemia , Stroke , Humans , Brain Ischemia/metabolism , Tissue Plasminogen Activator/metabolism , Tissue Plasminogen Activator/therapeutic use , Stroke/therapy , Stroke/complications , Neuroglia/metabolism , Astrocytes/metabolism
20.
Mol Psychiatry ; 27(1): 525-533, 2022 01.
Article in English | MEDLINE | ID: mdl-34404914

ABSTRACT

Fibrinolysis occurs when plasminogen activators, such as tissue plasminogen activator (tPA), convert plasminogen to plasmin, which dissolves the fibrin clot. The proteolytic activity of tPA and plasmin is not restricted to fibrin degradation. In the extravascular space, these two proteases modify a variety of substrates other than fibrin, playing a crucial role in physiological and pathological tissue remodeling. In the brain, for example, tPA and plasmin mediate the conversion of brain-derived neurotrophic factor precursor (proBDNF) to mature brain-derived neurotrophic factor precursor (BDNF). Thus, the fibrinolytic system influences processes reported to be dysfunctional in depression, including neurogenesis, synaptic plasticity, and reward processing. The hypothesis that decreased fibrinolytic activity is an important element in the pathogenesis of depression is supported by the association between depression and increased levels of plasminogen activator inhibitor (PAI)-1, the main inhibitor of tPA. Also, various biochemical markers of depression induce PAI-1 synthesis, including hypercortisolism, hyperinsulinemia, hyperleptinemia, increased levels of cytokines, and hyperhomocysteinemia. Moreover, hypofibrinolysis provides a link between depression and emotional eating, binge eating, vegetarianism, and veganism. This paper discusses the role of reduced fibrinolytic activity in the bidirectional interplay between depression and its somatic manifestations and complications. It also reviews evidence that abnormal fibrinolysis links heterogeneous conditions associated with treatment-resistant depression. Understanding the role of hypofibrinolysis in depression may open new avenues for its treatment.


Subject(s)
Fibrinolysis , Tissue Plasminogen Activator , Brain/metabolism , Depression , Fibrin/metabolism , Fibrinolysin/metabolism , Fibrinolysis/physiology , Tissue Plasminogen Activator/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL