Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107.192
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 42(1): 427-53, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38360547

ABSTRACT

The role of the autoimmune regulator (Aire) in central immune tolerance and thymic self-representation was first described more than 20 years ago, but fascinating new insights into its biology continue to emerge, particularly in the era of advanced single-cell genomics. We briefly describe the role of human genetics in the discovery of Aire, as well as insights into its function gained from genotype-phenotype correlations and the spectrum of Aire-associated autoimmunity-including insights from patients with Aire mutations with broad and diverse implications for human health. We then highlight emerging trends in Aire biology, focusing on three topic areas. First, we discuss medullary thymic epithelial diversity and the role of Aire in thymic epithelial development. Second, we highlight recent developments regarding the molecular mechanisms of Aire and its binding partners. Finally, we describe the rapidly evolving biology of the identity and function of extrathymic Aire-expressing cells (eTACs), and a novel eTAC subset called Janus cells, as well as their potential roles in immune homeostasis.


Subject(s)
AIRE Protein , Autoimmunity , Transcription Factors , Humans , Transcription Factors/metabolism , Transcription Factors/genetics , Animals , Thymus Gland/immunology , Thymus Gland/metabolism , Mutation , Immune Tolerance , Epithelial Cells/metabolism , Epithelial Cells/immunology , Autoimmune Diseases/immunology , Autoimmune Diseases/genetics , Autoimmune Diseases/metabolism
2.
Annu Rev Immunol ; 42(1): 235-258, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38271641

ABSTRACT

The choice of developing thymocytes to become CD8+ cytotoxic or CD4+ helper T cells has been intensely studied, but many of the underlying mechanisms remain to be elucidated. Recent multiomics approaches have provided much higher resolution analysis of gene expression in developing thymocytes than was previously achievable, thereby offering a fresh perspective on this question. Focusing on our recent studies using CITE-seq (cellular indexing of transcriptomes and epitopes) analyses of mouse thymocytes, we present a detailed timeline of RNA and protein expression changes during CD8 versus CD4 T cell differentiation. We also revisit our current understanding of the links between T cell receptor signaling and expression of the lineage-defining transcription factors ThPOK and RUNX3. Finally, we propose a sequential selection model to explain the tight linkage between MHC-I versus MHC-II recognition and T cell lineage choice. This model incorporates key aspects of previously proposed kinetic signaling, instructive, and stochastic/selection models.


Subject(s)
CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Cell Differentiation , Cell Lineage , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Humans , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , Core Binding Factor Alpha 3 Subunit/metabolism , Core Binding Factor Alpha 3 Subunit/genetics , Mice , Transcription Factors/metabolism , Transcriptome , Multiomics
3.
Annu Rev Biochem ; 93(1): 47-77, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38594940

ABSTRACT

Mammalian mitochondrial DNA (mtDNA) is replicated and transcribed by phage-like DNA and RNA polymerases, and our understanding of these processes has progressed substantially over the last several decades. Molecular mechanisms have been elucidated by biochemistry and structural biology and essential in vivo roles established by cell biology and mouse genetics. Single molecules of mtDNA are packaged by mitochondrial transcription factor A into mitochondrial nucleoids, and their level of compaction influences the initiation of both replication and transcription. Mutations affecting the molecular machineries replicating and transcribing mtDNA are important causes of human mitochondrial disease, reflecting the critical role of the genome in oxidative phosphorylation system biogenesis. Mechanisms controlling mtDNA replication and transcription still need to be clarified, and future research in this area is likely to open novel therapeutic possibilities for treating mitochondrial dysfunction.


Subject(s)
DNA Replication , DNA, Mitochondrial , Transcription, Genetic , Humans , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Animals , Mitochondria/metabolism , Mitochondria/genetics , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/pathology , Transcription Factors/metabolism , Transcription Factors/genetics , Mutation , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics
4.
Annu Rev Immunol ; 35: 85-118, 2017 04 26.
Article in English | MEDLINE | ID: mdl-28226225

ABSTRACT

Intrathymic T cell development is a complex process that depends upon continuous guidance from thymus stromal cell microenvironments. The thymic epithelium within the thymic stroma comprises highly specialized cells with a high degree of anatomic, phenotypic, and functional heterogeneity. These properties are collectively required to bias thymocyte development toward production of self-tolerant and functionally competent T cells. The importance of thymic epithelial cells (TECs) is evidenced by clear links between their dysfunction and multiple diseases where autoimmunity and immunodeficiency are major components. Consequently, TECs are an attractive target for cell therapies to restore effective immune system function. The pathways and molecular regulators that control TEC development are becoming clearer, as are their influences on particular stages of T cell development. Here, we review both historical and the most recent advances in our understanding of the cellular and molecular mechanisms controlling TEC development, function, dysfunction, and regeneration.


Subject(s)
Epithelial Cells/metabolism , T-Lymphocytes/physiology , Thymus Gland/pathology , Animals , Autoimmunity , Cell Differentiation , Epithelial Cells/immunology , Forkhead Transcription Factors/metabolism , Humans , Immune Tolerance , Thymus Gland/immunology , Transcription Factors/metabolism , AIRE Protein
5.
Cell ; 187(10): 2411-2427.e25, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38608704

ABSTRACT

We set out to exhaustively characterize the impact of the cis-chromatin environment on prime editing, a precise genome engineering tool. Using a highly sensitive method for mapping the genomic locations of randomly integrated reporters, we discover massive position effects, exemplified by editing efficiencies ranging from ∼0% to 94% for an identical target site and edit. Position effects on prime editing efficiency are well predicted by chromatin marks, e.g., positively by H3K79me2 and negatively by H3K9me3. Next, we developed a multiplex perturbational framework to assess the interaction of trans-acting factors with the cis-chromatin environment on editing outcomes. Applying this framework to DNA repair factors, we identify HLTF as a context-dependent repressor of prime editing. Finally, several lines of evidence suggest that active transcriptional elongation enhances prime editing. Consistent with this, we show we can robustly decrease or increase the efficiency of prime editing by preceding it with CRISPR-mediated silencing or activation, respectively.


Subject(s)
CRISPR-Cas Systems , Chromatin , Epigenesis, Genetic , Gene Editing , Humans , Chromatin/metabolism , Chromatin/genetics , CRISPR-Cas Systems/genetics , Gene Editing/methods , Histones/metabolism , Transcription Factors/metabolism , Histone Code
6.
Cell ; 187(11): 2746-2766.e25, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38631355

ABSTRACT

Precise control of gene expression levels is essential for normal cell functions, yet how they are defined and tightly maintained, particularly at intermediate levels, remains elusive. Here, using a series of newly developed sequencing, imaging, and functional assays, we uncover a class of transcription factors with dual roles as activators and repressors, referred to as condensate-forming level-regulating dual-action transcription factors (TFs). They reduce high expression but increase low expression to achieve stable intermediate levels. Dual-action TFs directly exert activating and repressing functions via condensate-forming domains that compartmentalize core transcriptional unit selectively. Clinically relevant mutations in these domains, which are linked to a range of developmental disorders, impair condensate selectivity and dual-action TF activity. These results collectively address a fundamental question in expression regulation and demonstrate the potential of level-regulating dual-action TFs as powerful effectors for engineering controlled expression levels.


Subject(s)
Transcription Factors , Animals , Humans , Mice , Gene Expression Regulation , Mutation , Repressor Proteins/metabolism , Repressor Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Line
7.
Cell ; 187(3): 692-711.e26, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38262408

ABSTRACT

Transcription factors (TFs) can define distinct cellular identities despite nearly identical DNA-binding specificities. One mechanism for achieving regulatory specificity is DNA-guided TF cooperativity. Although in vitro studies suggest that it may be common, examples of such cooperativity remain scarce in cellular contexts. Here, we demonstrate how "Coordinator," a long DNA motif composed of common motifs bound by many basic helix-loop-helix (bHLH) and homeodomain (HD) TFs, uniquely defines the regulatory regions of embryonic face and limb mesenchyme. Coordinator guides cooperative and selective binding between the bHLH family mesenchymal regulator TWIST1 and a collective of HD factors associated with regional identities in the face and limb. TWIST1 is required for HD binding and open chromatin at Coordinator sites, whereas HD factors stabilize TWIST1 occupancy at Coordinator and titrate it away from HD-independent sites. This cooperativity results in the shared regulation of genes involved in cell-type and positional identities and ultimately shapes facial morphology and evolution.


Subject(s)
DNA-Binding Proteins , Embryonic Development , Transcription Factors , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Binding Sites , DNA/metabolism , DNA-Binding Proteins/metabolism , Gene Expression Regulation , Mesoderm/metabolism , Transcription Factors/metabolism , Humans , Animals , Mice , Extremities/growth & development
8.
Cell ; 187(15): 4010-4029.e16, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38917790

ABSTRACT

Mammalian blastocyst formation involves the specification of the trophectoderm followed by the differentiation of the inner cell mass into embryonic epiblast and extra-embryonic primitive endoderm (PrE). During this time, the embryo maintains a window of plasticity and can redirect its cellular fate when challenged experimentally. In this context, we found that the PrE alone was sufficient to regenerate a complete blastocyst and continue post-implantation development. We identify an in vitro population similar to the early PrE in vivo that exhibits the same embryonic and extra-embryonic potency and can form complete stem cell-based embryo models, termed blastoids. Commitment in the PrE is suppressed by JAK/STAT signaling, collaborating with OCT4 and the sustained expression of a subset of pluripotency-related transcription factors that safeguard an enhancer landscape permissive for multi-lineage differentiation. Our observations support the notion that transcription factor persistence underlies plasticity in regulative development and highlight the importance of the PrE in perturbed development.


Subject(s)
Blastocyst , Cell Differentiation , Endoderm , Animals , Endoderm/metabolism , Endoderm/cytology , Mice , Blastocyst/metabolism , Blastocyst/cytology , Cell Lineage , Octamer Transcription Factor-3/metabolism , Octamer Transcription Factor-3/genetics , Signal Transduction , Embryonic Development , Janus Kinases/metabolism , Gene Expression Regulation, Developmental , STAT Transcription Factors/metabolism , Transcription Factors/metabolism , Female , Embryo, Mammalian/metabolism , Embryo, Mammalian/cytology
9.
Cell ; 187(18): 4859-4876.e22, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39047726

ABSTRACT

Chloroplast biogenesis is dependent on master regulators from the GOLDEN2-LIKE (GLK) family of transcription factors. However, glk mutants contain residual chlorophyll, indicating that other proteins must be involved. Here, we identify MYB-related transcription factors as regulators of chloroplast biogenesis in the liverwort Marchantia polymorpha and angiosperm Arabidopsis thaliana. In both species, double-mutant alleles in MYB-related genes show very limited chloroplast development, and photosynthesis gene expression is perturbed to a greater extent than in GLK mutants. Genes encoding enzymes of chlorophyll biosynthesis are controlled by MYB-related and GLK proteins, whereas those allowing CO2 fixation, photorespiration, and photosystem assembly and repair require MYB-related proteins. Regulation between the MYB-related and GLK transcription factors appears more extensive in A. thaliana than in M. polymorpha. Thus, MYB-related and GLK genes have overlapping as well as distinct targets. We conclude that MYB-related and GLK transcription factors orchestrate chloroplast development in land plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Chloroplasts , Gene Expression Regulation, Plant , Transcription Factors , Chloroplasts/metabolism , Chloroplasts/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Marchantia/genetics , Marchantia/metabolism , Photosynthesis/genetics , Chlorophyll/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Mutation , Organelle Biogenesis
10.
Cell ; 187(13): 3409-3426.e24, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38744281

ABSTRACT

Alterations in extracellular matrix (ECM) architecture and stiffness represent hallmarks of cancer. Whether the biomechanical property of ECM impacts the functionality of tumor-reactive CD8+ T cells remains largely unknown. Here, we reveal that the transcription factor (TF) Osr2 integrates biomechanical signaling and facilitates the terminal exhaustion of tumor-reactive CD8+ T cells. Osr2 expression is selectively induced in the terminally exhausted tumor-specific CD8+ T cell subset by coupled T cell receptor (TCR) signaling and biomechanical stress mediated by the Piezo1/calcium/CREB axis. Consistently, depletion of Osr2 alleviates the exhaustion of tumor-specific CD8+ T cells or CAR-T cells, whereas forced Osr2 expression aggravates their exhaustion in solid tumor models. Mechanistically, Osr2 recruits HDAC3 to rewire the epigenetic program for suppressing cytotoxic gene expression and promoting CD8+ T cell exhaustion. Thus, our results unravel Osr2 functions as a biomechanical checkpoint to exacerbate CD8+ T cell exhaustion and could be targeted to potentiate cancer immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes , Transcription Factors , Animals , Female , Humans , Mice , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Cyclic AMP Response Element-Binding Protein/metabolism , Extracellular Matrix/metabolism , Histone Deacetylases/metabolism , Mice, Inbred C57BL , Neoplasms/immunology , Neoplasms/metabolism , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , T-Cell Exhaustion , Transcription Factors/metabolism , Tumor Microenvironment , Stress, Mechanical
11.
Cell ; 187(13): 3390-3408.e19, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38754421

ABSTRACT

Clinical trials have identified ARID1A mutations as enriched among patients who respond favorably to immune checkpoint blockade (ICB) in several solid tumor types independent of microsatellite instability. We show that ARID1A loss in murine models is sufficient to induce anti-tumor immune phenotypes observed in ARID1A mutant human cancers, including increased CD8+ T cell infiltration and cytolytic activity. ARID1A-deficient cancers upregulated an interferon (IFN) gene expression signature, the ARID1A-IFN signature, associated with increased R-loops and cytosolic single-stranded DNA (ssDNA). Overexpression of the R-loop resolving enzyme, RNASEH2B, or cytosolic DNase, TREX1, in ARID1A-deficient cells prevented cytosolic ssDNA accumulation and ARID1A-IFN gene upregulation. Further, the ARID1A-IFN signature and anti-tumor immunity were driven by STING-dependent type I IFN signaling, which was required for improved responsiveness of ARID1A mutant tumors to ICB treatment. These findings define a molecular mechanism underlying anti-tumor immunity in ARID1A mutant cancers.


Subject(s)
CD8-Positive T-Lymphocytes , DNA-Binding Proteins , Interferon Type I , Membrane Proteins , Neoplasms , Signal Transduction , Transcription Factors , Animals , Humans , Mice , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , DNA-Binding Proteins/metabolism , Exodeoxyribonucleases/metabolism , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Interferon Type I/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice, Inbred C57BL , Mutation , Neoplasms/immunology , Neoplasms/genetics , Nuclear Proteins/metabolism , Phosphoproteins/metabolism , Transcription Factors/metabolism , Male , Chemokines/genetics , Chemokines/metabolism
12.
Cell ; 187(17): 4713-4732.e19, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-38968937

ABSTRACT

Immune tolerance mechanisms are shared in cancer and pregnancy. Through cross-analyzing single-cell RNA-sequencing data from multiple human cancer types and the maternal-fetal interface, we found B7-H4 (VTCN1) is an onco-fetal immune tolerance checkpoint. We showed that genetic deficiency of B7-H4 resulted in immune activation and fetal resorption in allogeneic pregnancy models. Analogously, B7-H4 contributed to MPA/DMBA-induced breast cancer progression, accompanied by CD8+ T cell exhaustion. Female hormone screening revealed that progesterone stimulated B7-H4 expression in placental and breast cancer cells. Mechanistically, progesterone receptor (PR) bound to a newly identified -58 kb enhancer, thereby mediating B7-H4 transcription via the PR-P300-BRD4 axis. PR antagonist or BRD4 degrader potentiated immunotherapy in a murine B7-H4+ breast cancer model. Thus, our work unravels a mechanistic and biological connection of a female sex hormone (progesterone) to onco-fetal immune tolerance via B7-H4 and suggests that the PR-P300-BRD4 axis is targetable for treating B7-H4+ cancer.


Subject(s)
Immune Tolerance , Progesterone , Progestins , V-Set Domain-Containing T-Cell Activation Inhibitor 1 , Animals , Female , V-Set Domain-Containing T-Cell Activation Inhibitor 1/metabolism , Humans , Mice , Pregnancy , Progestins/pharmacology , Progestins/metabolism , Progesterone/metabolism , Breast Neoplasms/immunology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Receptors, Progesterone/metabolism , Transcription Factors/metabolism , Cell Line, Tumor , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Mice, Inbred C57BL , Placenta/metabolism , Placenta/immunology
13.
Cell ; 186(1): 209-229.e26, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36608654

ABSTRACT

Transcription factors (TFs) regulate gene programs, thereby controlling diverse cellular processes and cell states. To comprehensively understand TFs and the programs they control, we created a barcoded library of all annotated human TF splice isoforms (>3,500) and applied it to build a TF Atlas charting expression profiles of human embryonic stem cells (hESCs) overexpressing each TF at single-cell resolution. We mapped TF-induced expression profiles to reference cell types and validated candidate TFs for generation of diverse cell types, spanning all three germ layers and trophoblasts. Targeted screens with subsets of the library allowed us to create a tailored cellular disease model and integrate mRNA expression and chromatin accessibility data to identify downstream regulators. Finally, we characterized the effects of combinatorial TF overexpression by developing and validating a strategy for predicting combinations of TFs that produce target expression profiles matching reference cell types to accelerate cellular engineering efforts.


Subject(s)
Cell Differentiation , Transcription Factors , Humans , Chromatin , Gene Expression Regulation , Human Embryonic Stem Cells/metabolism , Transcription Factors/metabolism , Atlases as Topic
14.
Cell ; 186(9): 1817-1818, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37116466

ABSTRACT

Proper regulation of protein degradation is essential for cell physiology. In the current issue of Cell, Baek et al. elucidated how a large class of ubiquitin ligase, known as CRL, is assembled and disassembled through a key regulator, CAND1.


Subject(s)
Transcription Factors , Ubiquitin-Protein Ligases , Cullin Proteins/metabolism , Proteolysis , Transcription Factors/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism
15.
Cell ; 186(24): 5290-5307.e26, 2023 11 22.
Article in English | MEDLINE | ID: mdl-37922899

ABSTRACT

Mammalian SWI/SNF chromatin remodeling complexes move and evict nucleosomes at gene promoters and enhancers to modulate DNA access. Although SWI/SNF subunits are commonly mutated in disease, therapeutic options are limited by our inability to predict SWI/SNF gene targets and conflicting studies on functional significance. Here, we leverage a fast-acting inhibitor of SWI/SNF remodeling to elucidate direct targets and effects of SWI/SNF. Blocking SWI/SNF activity causes a rapid and global loss of chromatin accessibility and transcription. Whereas repression persists at most enhancers, we uncover a compensatory role for the EP400/TIP60 remodeler, which reestablishes accessibility at most promoters during prolonged loss of SWI/SNF. Indeed, we observe synthetic lethality between EP400 and SWI/SNF in cancer cell lines and human cancer patient data. Our data define a set of molecular genomic features that accurately predict gene sensitivity to SWI/SNF inhibition in diverse cancer cell lines, thereby improving the therapeutic potential of SWI/SNF inhibitors.


Subject(s)
Nuclear Proteins , Transcription Factors , Animals , Humans , Chromatin , Chromatin Assembly and Disassembly , Nuclear Proteins/metabolism , Nucleosomes , Transcription Factors/genetics , Transcription Factors/metabolism , Mice
16.
Cell ; 186(16): 3460-3475.e23, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37478862

ABSTRACT

All eukaryotes require intricate protein networks to translate developmental signals into accurate cell fate decisions. Mutations that disturb interactions between network components often result in disease, but how the composition and dynamics of complex networks are established remains poorly understood. Here, we identify the E3 ligase UBR5 as a signaling hub that helps degrade unpaired subunits of multiple transcriptional regulators that act within a network centered on the c-Myc oncoprotein. Biochemical and structural analyses show that UBR5 binds motifs that only become available upon complex dissociation. By rapidly turning over unpaired transcription factor subunits, UBR5 establishes dynamic interactions between transcriptional regulators that allow cells to effectively execute gene expression while remaining receptive to environmental signals. We conclude that orphan quality control plays an essential role in establishing dynamic protein networks, which may explain the conserved need for protein degradation during transcription and offers opportunities to modulate gene expression in disease.


Subject(s)
Transcription Factors , Ubiquitin-Protein Ligases , Humans , Gene Expression , HEK293 Cells , HeLa Cells , Mutation , Signal Transduction , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/metabolism
17.
Cell ; 186(26): 5826-5839.e18, 2023 12 21.
Article in English | MEDLINE | ID: mdl-38101409

ABSTRACT

Super-enhancers are compound regulatory elements that control expression of key cell identity genes. They recruit high levels of tissue-specific transcription factors and co-activators such as the Mediator complex and contact target gene promoters with high frequency. Most super-enhancers contain multiple constituent regulatory elements, but it is unclear whether these elements have distinct roles in activating target gene expression. Here, by rebuilding the endogenous multipartite α-globin super-enhancer, we show that it contains bioinformatically equivalent but functionally distinct element types: classical enhancers and facilitator elements. Facilitators have no intrinsic enhancer activity, yet in their absence, classical enhancers are unable to fully upregulate their target genes. Without facilitators, classical enhancers exhibit reduced Mediator recruitment, enhancer RNA transcription, and enhancer-promoter interactions. Facilitators are interchangeable but display functional hierarchy based on their position within a multipartite enhancer. Facilitators thus play an important role in potentiating the activity of classical enhancers and ensuring robust activation of target genes.


Subject(s)
Gene Expression Regulation , Super Enhancers , Transcription, Genetic , alpha-Globins , Enhancer Elements, Genetic , Promoter Regions, Genetic , Transcription Factors/metabolism , alpha-Globins/genetics
18.
Cell ; 186(22): 4936-4955.e26, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37788668

ABSTRACT

Intrinsically disordered regions (IDRs) represent a large percentage of overall nuclear protein content. The prevailing dogma is that IDRs engage in non-specific interactions because they are poorly constrained by evolutionary selection. Here, we demonstrate that condensate formation and heterotypic interactions are distinct and separable features of an IDR within the ARID1A/B subunits of the mSWI/SNF chromatin remodeler, cBAF, and establish distinct "sequence grammars" underlying each contribution. Condensation is driven by uniformly distributed tyrosine residues, and partner interactions are mediated by non-random blocks rich in alanine, glycine, and glutamine residues. These features concentrate a specific cBAF protein-protein interaction network and are essential for chromatin localization and activity. Importantly, human disease-associated perturbations in ARID1B IDR sequence grammars disrupt cBAF function in cells. Together, these data identify IDR contributions to chromatin remodeling and explain how phase separation provides a mechanism through which both genomic localization and functional partner recruitment are achieved.


Subject(s)
Chromatin Assembly and Disassembly , Multiprotein Complexes , Nuclear Proteins , Humans , Chromatin , DNA-Binding Proteins/chemistry , Intrinsically Disordered Proteins/genetics , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism
19.
Cell ; 186(20): 4386-4403.e29, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37774678

ABSTRACT

Altered microglial states affect neuroinflammation, neurodegeneration, and disease but remain poorly understood. Here, we report 194,000 single-nucleus microglial transcriptomes and epigenomes across 443 human subjects and diverse Alzheimer's disease (AD) pathological phenotypes. We annotate 12 microglial transcriptional states, including AD-dysregulated homeostatic, inflammatory, and lipid-processing states. We identify 1,542 AD-differentially-expressed genes, including both microglia-state-specific and disease-stage-specific alterations. By integrating epigenomic, transcriptomic, and motif information, we infer upstream regulators of microglial cell states, gene-regulatory networks, enhancer-gene links, and transcription-factor-driven microglial state transitions. We demonstrate that ectopic expression of our predicted homeostatic-state activators induces homeostatic features in human iPSC-derived microglia-like cells, while inhibiting activators of inflammation can block inflammatory progression. Lastly, we pinpoint the expression of AD-risk genes in microglial states and differential expression of AD-risk genes and their regulators during AD progression. Overall, we provide insights underlying microglial states, including state-specific and AD-stage-specific microglial alterations at unprecedented resolution.


Subject(s)
Alzheimer Disease , Microglia , Humans , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Gene Expression Regulation , Inflammation/pathology , Microglia/metabolism , Transcription Factors/metabolism , Transcriptome , Epigenome
20.
Cell ; 186(9): 1895-1911.e21, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37028429

ABSTRACT

Cells respond to environmental cues by remodeling their inventories of multiprotein complexes. Cellular repertoires of SCF (SKP1-CUL1-F box protein) ubiquitin ligase complexes, which mediate much protein degradation, require CAND1 to distribute the limiting CUL1 subunit across the family of ∼70 different F box proteins. Yet, how a single factor coordinately assembles numerous distinct multiprotein complexes remains unknown. We obtained cryo-EM structures of CAND1-bound SCF complexes in multiple states and correlated mutational effects on structures, biochemistry, and cellular assays. The data suggest that CAND1 clasps idling catalytic domains of an inactive SCF, rolls around, and allosterically rocks and destabilizes the SCF. New SCF production proceeds in reverse, through SKP1-F box allosterically destabilizing CAND1. The CAND1-SCF conformational ensemble recycles CUL1 from inactive complexes, fueling mixing and matching of SCF parts for E3 activation in response to substrate availability. Our data reveal biogenesis of a predominant family of E3 ligases, and the molecular basis for systemwide multiprotein complex assembly.


Subject(s)
Cullin Proteins , F-Box Proteins , SKP Cullin F-Box Protein Ligases , Transcription Factors , Humans , Cullin Proteins/chemistry , Cullin Proteins/metabolism , F-Box Proteins/metabolism , Molecular Conformation , SKP Cullin F-Box Protein Ligases/chemistry , SKP Cullin F-Box Protein Ligases/metabolism , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL