Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.043
Filter
Add more filters

Publication year range
1.
Annu Rev Biochem ; 82: 531-50, 2013.
Article in English | MEDLINE | ID: mdl-23746262

ABSTRACT

Methylamine dehydrogenase (MADH) catalyzes the oxidative deamination of methylamine to formaldehyde and ammonia. Tryptophan tryptophylquinone (TTQ) is the protein-derived cofactor of MADH required for this catalytic activity. TTQ is biosynthesized through the posttranslational modification of two tryptophan residues within MADH, during which the indole rings of two tryptophan side chains are cross-linked and two oxygen atoms are inserted into one of the indole rings. MauG is a c-type diheme enzyme that catalyzes the final three reactions in TTQ formation. In total, this is a six-electron oxidation process requiring three cycles of MauG-dependent two-electron oxidation events using either H2O2 or O2. The MauG redox form responsible for the catalytic activity is an unprecedented bis-Fe(IV) species. The amino acids of MADH that are modified are ≈ 40 Å from the site where MauG binds oxygen, and the reaction proceeds by a hole hopping electron transfer mechanism. This review addresses these highly unusual aspects of the long-range catalytic reaction mediated by MauG.


Subject(s)
Heme/metabolism , Indolequinones/biosynthesis , Oxidoreductases Acting on CH-NH Group Donors/metabolism , Paracoccus denitrificans/enzymology , Protein Processing, Post-Translational/physiology , Tryptophan/analogs & derivatives , Tryptophan/metabolism , Catalysis , Electron Transport , Oxidation-Reduction , Paracoccus denitrificans/genetics , Paracoccus denitrificans/metabolism , Tryptophan/biosynthesis
2.
J Am Chem Soc ; 146(19): 13641-13650, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38687675

ABSTRACT

The substitution of a single hydrogen atom in a protein by fluorine yields a site-specific probe for sensitive detection by 19F nuclear magnetic resonance (NMR) spectroscopy, where the absence of background signal from the protein facilitates the detection of minor conformational species. We developed genetic encoding systems for the site-selective incorporation of 4-fluorotryptophan, 5-fluorotryptophan, 6-fluorotryptophan, and 7-fluorotryptophan in response to an amber stop codon and used them to investigate conformational heterogeneity in a designed amino acid binding protein and in flaviviral NS2B-NS3 proteases. These proteases have been shown to present variable conformations in X-ray crystal structures, including flips of the indole side chains of tryptophan residues. The 19F NMR spectra of different fluorotryptophan isomers installed at the conserved site of Trp83 indicate that the indole ring flip is common in flaviviral NS2B-NS3 proteases in the apo state and suppressed by an active-site inhibitor.


Subject(s)
Protein Conformation , Tryptophan , Tryptophan/chemistry , Tryptophan/analogs & derivatives , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Fluorine/chemistry , Proteins/chemistry
3.
BMC Cancer ; 24(1): 248, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38388902

ABSTRACT

BACKGROUND: Lung cancer is a leading cause of cancer-related mortality worldwide, and effective therapies are limited. Lung cancer is a leading cause of cancer-related mortality worldwide with limited effective therapy. Sorafenib is a multi-tyrosine kinase inhibitor frequently used to treat numerous types of malignant tumors. However, it has been demonstrated that sorafenib showed moderate antitumor activity and is associated with several side effects in lung cancer, which restricted its clinical application. This study aimed to examine the antitumor effect of the combination treatment of sorafenib and 5-methoxytryptophan (5-MTP) on cell growth and metastasis of Lewis lung carcinoma (LLC) cells. METHOD: The anticancer effect of the combination treatment of sorafenib and 5-MTP was determined through cytotoxicity assay and colony forming assays. The mechanism was elucidated using flow cytometry and western blotting. Wound healing and Transwell assays were conducted to evaluate the impact of the combination treatment on migration and invasion abilities. An in vivo model was employed to analyze the effect of the combination treatment on the tumorigenic ability of LLC cells. RESULT: Our results demonstrated that the sorafenib and 5-MTP combination synergistically reduced viability and proliferation compared to sorafenib or 5-MTP treatment alone. Reduction of cyclin D1 expression was observed in the sorafenib alone or combination treatments, leading to cell cycle arrest. Furthermore, the sorafenib-5-MTP combination significantly increased the inhibitory effect on migration and invasion of LLC cells compared to the single treatments. The combination also significantly downregulated vimentin and MMP9 levels, contributing to the inhibition of metastasis. The reduction of phosphorylated Akt and STAT3 expression may further contribute to the inhibitory effect on proliferation and metastasis. In vivo, the sorafenib-5-MTP combination further reduced tumor growth and metastasis compared to the treatment of sorafenib alone. CONCLUSIONS: In conclusion, our data indicate that 5-MTP sensitizes the antitumor activity of sorafenib in LLC cells in vitro and in vivo, suggesting that sorafenib-5-MTP has the potential to serve as a therapeutic option for patients with lung cancer.


Subject(s)
Lung Neoplasms , Tryptophan/analogs & derivatives , Humans , Sorafenib/pharmacology , Sorafenib/therapeutic use , Lung Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Xenograft Model Antitumor Assays , Phenylurea Compounds/pharmacology , Phenylurea Compounds/therapeutic use , Apoptosis
4.
Bioorg Med Chem Lett ; 105: 129744, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38614152

ABSTRACT

Two tryptophan compound classes 5- and 6-borono PEGylated boronotryptophan derivatives have been prepared for assessing their aqueous solubility as formulation of injections for boron neutron capture therapy (BNCT). The PEGylation has improved their aqueous solubility thereby increasing their test concentration in 1 mM without suffering from toxicity. In-vitro uptake assay of PEGylated 5- and 6-boronotryptophan showed that the B-10 concentration can reach 15-50 ppm in U87 cell whereas the uptake in LN229 cell varies. Shorter PEG compound 6-boronotryptophanPEG200[18F] was obtained in 1.7 % radiochemical yield and the PET-derived radioradioactivity percentage in 18 % was taken up by U87 tumor at the limb of xenograft mouse. As high as tumor to normal uptake ratio in 170 (T/N) was obtained while an inferior radioactivity uptake of 3 % and T/N of 8 was observed in LN229 xenografted mouse.


Subject(s)
Boron Neutron Capture Therapy , Brain Neoplasms , Fluorine Radioisotopes , Polyethylene Glycols , Positron-Emission Tomography , Animals , Mice , Humans , Fluorine Radioisotopes/chemistry , Polyethylene Glycols/chemistry , Cell Line, Tumor , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/radiotherapy , Brain Neoplasms/metabolism , Boron Compounds/chemistry , Boron Compounds/pharmacokinetics , Boron Compounds/chemical synthesis , Tryptophan/chemistry , Tryptophan/analogs & derivatives , Tryptophan/pharmacokinetics , Tryptophan/chemical synthesis , Molecular Structure
5.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Article in English | MEDLINE | ID: mdl-34074763

ABSTRACT

Maintaining stable tryptophan levels is required to control neuronal and immune activity. We report that tryptophan homeostasis is largely controlled by the stability of tryptophan 2,3-dioxygenase (TDO), the hepatic enzyme responsible for tryptophan catabolism. High tryptophan levels stabilize the active tetrameric conformation of TDO through binding noncatalytic exosites, resulting in rapid catabolism of tryptophan. In low tryptophan, the lack of tryptophan binding in the exosites destabilizes the tetramer into inactive monomers and dimers and unmasks a four-amino acid degron that triggers TDO polyubiquitination by SKP1-CUL1-F-box complexes, resulting in proteasome-mediated degradation of TDO and rapid interruption of tryptophan catabolism. The nonmetabolizable analog alpha-methyl-tryptophan stabilizes tetrameric TDO and thereby stably reduces tryptophanemia. Our results uncover a mechanism allowing a rapid adaptation of tryptophan catabolism to ensure quick degradation of excess tryptophan while preventing further catabolism below physiological levels. This ensures a tight control of tryptophanemia as required for both neurological and immune homeostasis.


Subject(s)
Tryptophan Oxygenase/metabolism , Tryptophan/blood , Tryptophan/metabolism , Ubiquitination , Animals , HEK293 Cells , Homeostasis , Humans , Mice , Mice, Inbred C57BL , Tryptophan/analogs & derivatives
6.
Ecotoxicol Environ Saf ; 280: 116520, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38833985

ABSTRACT

Early studies have shown that the gut microbiota is a critical target during cadmium exposure. The prebiotic activity of epigallocatechin-3-gallate (EGCG) plays an essential role in treating intestinal inflammation and damage. However, the exact intestinal barrier protection mechanism of EGCG against cadmium exposure remains unclear. In this experiment, four-week-old mice were exposed to cadmium (5 mg kg-1) for four weeks. Through 16 S rDNA analysis, we found that cadmium disrupted the gut microbiota and inhibited the indole metabolism pathway of tryptophan (TRP), which serves as the principal microbial production route for endogenous ligands to activate the aryl hydrocarbon receptor (AhR). Additionally, cadmium downregulated the intestinal AhR signaling pathway and harmed the intestinal barrier function. Treatment with EGCG (20 mg kg-1) and the AhR agonist 6-Formylindolo[3,2-b] carbazole (FICZ) (1 µg/d) significantly activated the AhR pathway and alleviated intestinal barrier injury. Notably, EGCG partially restored the gut microbiota and upregulated the TRP-indole metabolism pathway to increase the level of indole-related AhR agonists. Our findings demonstrate that cadmium dysregulates common gut microbiota to disrupt TRP metabolism, impairing the AhR signaling pathway and intestinal barrier. EGCG reduces cadmium-induced intestinal functional impairment by intervening in the intestinal microbiota to metabolize AhR agonists. This study offers insights into the toxic mechanisms of environmental cadmium and a potential mechanism to protect the intestinal barrier with EGCG.


Subject(s)
Cadmium , Catechin , Gastrointestinal Microbiome , Receptors, Aryl Hydrocarbon , Signal Transduction , Tryptophan , Animals , Catechin/analogs & derivatives , Catechin/pharmacology , Receptors, Aryl Hydrocarbon/metabolism , Gastrointestinal Microbiome/drug effects , Mice , Tryptophan/metabolism , Tryptophan/analogs & derivatives , Cadmium/toxicity , Signal Transduction/drug effects , Male , Intestines/drug effects , Intestines/pathology , Mice, Inbred C57BL , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Indoles/pharmacology , Carbazoles/pharmacology
7.
Arch Pharm (Weinheim) ; 357(5): e2300603, 2024 May.
Article in English | MEDLINE | ID: mdl-38290060

ABSTRACT

Alzheimer's disease (AD) is a multifactorial neurological disease, and the multitarget directed ligand (MTDL) strategy may be an effective approach to delay its progression. Based on this strategy, 27 derivatives of l-tryptophan, 3a-1-3d-1, were designed, synthesized, and evaluated for their biological activity. Among them, IC50 (inhibitor concentration resulting in 50% inhibitory activity) values of compounds 3a-18 and 3b-1 were 0.58 and 0.44 µM for human serum butyrylcholinesterase (hBuChE), respectively, and both of them exhibited more than 30-fold selectivity for human serum acetylcholinesterase. Enzyme kinetics studies showed that these two compounds were mixed inhibitors of hBuChE. In addition, these two derivatives possessed extraordinary antioxidant activity in OH radical scavenging and oxygen radical absorption capacity fluorescein assays. Meanwhile, these compounds could also prevent ß-amyloid (Aß) self-aggregation and possessed low toxicity on PC12 and AML12 cells. Molecular modeling studies revealed that these two compounds could interact with the choline binding site, acetyl binding site, and peripheral anionic site to exert submicromolar BuChE inhibitory activity. In the vitro blood-brain barrier permeation assay, compounds 3a-18 and 3b-1 showed enough blood-brain barrier permeability. In drug-likeness prediction, compounds 3a-18 and 3b-1 showed good gastrointestinal absorption and a low risk of human ether-a-go-go-related gene toxicity. Therefore, compounds 3a-18 and 3b-1 are potential multitarget anti-AD lead compounds, which could work as powerful antioxidants with submicromolar selective inhibitory activity for hBuChE as well as prevent Aß self-aggregation.


Subject(s)
Acetylcholinesterase , Alzheimer Disease , Amyloid beta-Peptides , Antioxidants , Blood-Brain Barrier , Butyrylcholinesterase , Cholinesterase Inhibitors , Drug Design , Tryptophan , Alzheimer Disease/drug therapy , Humans , Antioxidants/pharmacology , Antioxidants/chemical synthesis , Antioxidants/chemistry , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Structure-Activity Relationship , Blood-Brain Barrier/metabolism , Butyrylcholinesterase/metabolism , Animals , Tryptophan/pharmacology , Tryptophan/chemistry , Tryptophan/analogs & derivatives , Tryptophan/chemical synthesis , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Rats , Acetylcholinesterase/metabolism , Molecular Structure , PC12 Cells , Dose-Response Relationship, Drug , Models, Molecular
8.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731937

ABSTRACT

Due to the favorable features obtained through the incorporation of fluorine atom(s), fluorinated drugs are a group with emerging pharmaceutical importance. As their commercial availability is still very limited, to expand the range of possible candidates, new fluorinated tryptophan analogs were synthesized. Control of enantiopurity during the synthesis procedure requires that highly efficient enantioseparation methods be available. In this work, the enantioseparation of seven fluorinated tryptophans and tryptophan was studied and compared systematically to (i) develop analytical methods for enantioselective separations and (ii) explore the chromatographic features of the fluorotrytophans. For enantioresolution, macrocyclic glycopeptide-based selectors linked to core-shell particles were utilized, applying liquid chromatography-based methods. Application of the polar-ionic mode resulted in asymmetric and broadened peaks, while reversed-phase conditions, together with mobile-phase additives, resulted in baseline separation for all studied fluorinated tryptophans. The marked differences observed between the methanol and acetonitrile-containing eluent systems can be explained by the different solvation abilities of the bulk solvents of the applied mobile phases. Among the studied chiral selectors, teicoplanin and teicoplanin aglycone were found to work effectively. Under optimized conditions, baseline separations were achieved within 6 min. Ionic interactions were semi-quantitatively characterized and found to not influence enantiorecognition. Interestingly, fluorination of the analytes does not lead to marked changes in the chromatographic characteristics of the methanol-containing eluents, while larger differences were noticed when the polar but aprotic acetonitrile was applied. Experiments conducted on the influence of the separation temperature indicated that the separations are enthalpically driven, with only one exception. Enantiomeric elution order was found to be constant on both teicoplanin and teicoplanin aglycone-based chiral stationary phases (L < D) under all applied chromatographic conditions.


Subject(s)
Glycopeptides , Halogenation , Teicoplanin , Tryptophan , Tryptophan/chemistry , Tryptophan/analogs & derivatives , Glycopeptides/chemistry , Stereoisomerism , Teicoplanin/chemistry , Teicoplanin/analogs & derivatives , Chromatography, Liquid/methods , Chromatography, High Pressure Liquid/methods , Macrocyclic Compounds/chemistry
9.
J Biol Chem ; 296: 100360, 2021.
Article in English | MEDLINE | ID: mdl-33539924

ABSTRACT

Fibronectin (FN) is an abundant glycoprotein found in plasma and the extracellular matrix (ECM). It is present at high concentrations at sites of tissue damage, where it is exposed to oxidants generated by activated leukocytes, including peroxynitrous acid (ONOOH) formed from nitric oxide (from inducible nitric oxide synthase) and superoxide radicals (from NADPH oxidases and other sources). ONOOH reacts rapidly with the abundant tyrosine and tryptophan residues in ECM proteins, resulting in the formation of 3-nitrotyrosine, di-tyrosine, and 6-nitrotryptophan. We have shown previously that human plasma FN is readily modified by ONOOH, but the extent and location of modifications, and the role of FN structure (compact versus extended) in determining these factors is poorly understood. Here, we provide a detailed LC-MS analysis of ONOOH-induced FN modifications, including the extent of their formation and the sites of intramolecular and intermolecular cross-links, including Tyr-Tyr, Trp-Trp, and Tyr-Trp linkages. The localization of these cross-links to specific domains provides novel data on the interactions between different modules in the compact conformation of plasma FN and allows us to propose a model of its unknown quaternary structure. Interestingly, the pattern of modifications is significantly different to that generated by another inflammatory oxidant, HOCl, in both extent and sites. The characterization and quantification of these modifications offers the possibility of the use of these materials as specific biomarkers of ECM modification and turnover in the many pathologies associated with inflammation-associated fibrosis.


Subject(s)
Fibronectins/metabolism , Fibronectins/physiology , Peroxynitrous Acid/chemistry , Atherosclerosis/metabolism , Cells, Cultured , Chromatography, Gel/methods , Extracellular Matrix/metabolism , Extracellular Matrix/physiology , Fibronectins/chemistry , Humans , Inflammation/metabolism , Oxidants/metabolism , Oxidation-Reduction , Peroxynitrous Acid/pharmacology , Protein Domains/physiology , Tryptophan/analogs & derivatives , Tryptophan/chemistry , Tyrosine/analogs & derivatives , Tyrosine/chemistry
10.
Neuroimage ; 247: 118842, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34942366

ABSTRACT

Degradation products of the essential amino acid tryptophan (Trp) are important signaling molecules in the mammalian brain. Trp is metabolized either through the kynurenine pathway or enters serotonin and melatonin syntheses. The aim of the present work was to examine the potential of the novel PET tracer 7-[18F]fluorotryptophan ([18F]FTrp) to visualize all three pathways in a unilateral 6-OHDA rat model. [18F]FDOPA-PET scans were performed in nine 6-OHDA-injected and six sham-operated rats to assess unilateral dopamine depletion severity four weeks after lesion placement. Afterwards, 7-[18F]FTrp-PET scans were conducted at different timepoints up to seven months after 6-OHDA injection. In addition, two 6-OHDA-injected rats were examined for neuroinflammation using [18F]DAA1106-PET. 7-[18F]FTrp-PET showed significantly increased tracer uptake at the 6-OHDA injection site which was negatively correlated to time after lesion placement. Accumulation of [18F]DAA1106 at the injection site was increased as well, suggesting that 7-[18F]FTrp uptake in this region may reflect kynurenine pathway activity associated with inflammation. Bilaterally in the dorsal hippocampus, 7-[18F]FTrp uptake was significantly decreased and was inversely correlated to dopamine depletion severity, indicating that it reflects reduced serotonin synthesis. Finally, 7-[18F]FTrp uptake in the pineal gland was significantly increased in relation with dopamine depletion severity, providing evidence that melatonin synthesis is increased in the 6-OHDA rat model. We conclude that 7-[18F]FTrp is able to detect alterations in both serotonin/melatonin and kynurenine metabolic pathways, and can be applied to visualize pathologic changes related to neurodegenerative processes.


Subject(s)
Oxidopamine/metabolism , Parkinson Disease/diagnostic imaging , Parkinson Disease/metabolism , Positron-Emission Tomography , Radiopharmaceuticals/metabolism , Tryptophan/metabolism , Animals , Disease Models, Animal , Fluorine Radioisotopes , Hippocampus/metabolism , Kynurenine/metabolism , Male , Melatonin/metabolism , Oxidopamine/pharmacology , Pineal Gland/metabolism , Rats , Rats, Long-Evans , Serotonin/metabolism , Tryptophan/analogs & derivatives
11.
Cereb Cortex ; 31(4): 1998-2012, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33230530

ABSTRACT

Emerging evidence suggests that epigenetic mechanisms regulate aberrant gene transcription in stress-associated mental disorders. However, it remains to be elucidated about the role of DNA methylation and its catalyzing enzymes, DNA methyltransferases (DNMTs), in this process. Here, we found that male rats exposed to chronic (2-week) unpredictable stress exhibited a substantial reduction of Dnmt3a after stress cessation in the prefrontal cortex (PFC), a key target region of stress. Treatment of unstressed control rats with DNMT inhibitors recapitulated the effect of chronic unpredictable stress on decreased AMPAR expression and function in PFC. In contrast, overexpression of Dnmt3a in PFC of stressed animals prevented the loss of glutamatergic responses. Moreover, the stress-induced behavioral abnormalities, including the impaired recognition memory, heightened aggression, and hyperlocomotion, were partially attenuated by Dnmt3a expression in PFC of stressed animals. Finally, we found that there were genome-wide DNA methylation changes and transcriptome alterations in PFC of stressed rats, both of which were enriched at several neural pathways, including glutamatergic synapse and microtubule-associated protein kinase signaling. These results have therefore recognized the potential role of DNA epigenetic modification in stress-induced disturbance of synaptic functions and cognitive and emotional processes.


Subject(s)
DNA Methyltransferase 3A/metabolism , Locomotion/physiology , Prefrontal Cortex/enzymology , Stress, Psychological/enzymology , Stress, Psychological/psychology , Synapses/enzymology , Animals , Chronic Disease , DNA Methyltransferase 3A/antagonists & inhibitors , Exploratory Behavior/drug effects , Exploratory Behavior/physiology , Locomotion/drug effects , Male , Mice , Phthalimides/pharmacology , Prefrontal Cortex/drug effects , Rats , Rats, Sprague-Dawley , Tryptophan/analogs & derivatives , Tryptophan/pharmacology
12.
Biochem J ; 478(7): 1347-1358, 2021 04 16.
Article in English | MEDLINE | ID: mdl-33720280

ABSTRACT

α-Methyl-L-tryptophan (α-MLT) is currently in use as a tracer in its 11C-labeled form to monitor the health of serotonergic neurons in humans. In the present study, we found this compound to function as an effective weight-loss agent at pharmacological doses in multiple models of obesity in mice. The drug was able to reduce the body weight when given orally in drinking water (1 mg/ml) in three different models of obesity: normal mice on high-fat diet, Slc6a14-null mice on high-fat diet, and ob/ob mice on normal diet. Only the l-enantiomer (α-MLT) was active while the d-enantiomer (α-MDT) had negligible activity. The weight-loss effect was freely reversible, with the weight gain resuming soon after the withdrawal of the drug. All three models of obesity were associated with hyperglycemia, insulin resistance, and hepatic steatosis; α-MLT reversed these features. There was a decrease in food intake in the treatment group. Mice on a high-fat diet showed decreased cholesterol and protein in the serum when treated with α-MLT; there was however no evidence of liver and kidney dysfunction. Plasma amino acid profile indicated a significant decrease in the levels of specific amino acids, including tryptophan; but the levels of arginine were increased. We conclude that α-MLT is an effective, reversible, and orally active drug for the treatment of obesity and metabolic syndrome.


Subject(s)
Amino Acid Transport Systems/physiology , Anti-Obesity Agents/pharmacology , Disease Models, Animal , Insulin Resistance , Non-alcoholic Fatty Liver Disease/prevention & control , Obesity/drug therapy , Tryptophan/analogs & derivatives , Animals , Diet, High-Fat , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Obese , Non-alcoholic Fatty Liver Disease/etiology , Obesity/etiology , Obesity/pathology , Tryptophan/pharmacology
13.
Dokl Biochem Biophys ; 503(1): 47-51, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35538277

ABSTRACT

The data available to date indicate that the activation of nicotinic acetylcholine receptors (nAChR) of α7 type can reduce heart damage resulting from ischemia and subsequent reperfusion. We have studied two new synthetic D-analogs of 6-bromohypaphorine, which are selective agonists of α7 nAChR, in a rat model of myocardial ischemia. Acute myocardial infarction in animals was induced by occlusion of the left coronary artery with its subsequent reperfusion under mechanical lung ventilation. It was found that one of the analogs was more active, and treatment with it at the onset of reperfusion statistically reduced infarct size. This analog also prevented changes in the concentration of potassium and sodium ions in the blood, occurring during occlusion/reperfusion injury. The data obtained indicate that hypaphorine analogs are promising for the development of drugs that reduce the adverse effects of myocardial infarction.


Subject(s)
Heart Injuries , Myocardial Infarction , Myocardial Ischemia , Myocardial Reperfusion Injury , Receptors, Nicotinic , Animals , Myocardial Infarction/drug therapy , Myocardial Ischemia/drug therapy , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/prevention & control , Rats , Reperfusion , Tryptophan/analogs & derivatives
14.
J Mol Cell Cardiol ; 158: 101-114, 2021 09.
Article in English | MEDLINE | ID: mdl-34087195

ABSTRACT

AIMS: Myocardial infarction (MI) remains a major cause of heart failure. 5-Methoxytryptophan (5-MTP), a 5-methoxyindole metabolite of L-tryptophan, exerts anti-inflammatory and antifibrotic effects, but MI impairs the biosynthesis of cardiac 5-MTP. Therefore, we evaluated the effect of exogenous 5-MTP administration on rescuing post-MI cardiac injury. METHODS AND RESULTS: After a detailed pharmacokinetic analysis of 5-MTP, Sprague Dawley rats that had undergone left anterior descending coronary artery ligation received intraperitoneal administration of either 17 mg/kg 5-MTP or saline at 0.5 and 24 h after MI. Cardiac systolic function, infarction size, and fibrosis were evaluated using echocardiography, triphenyltetrazolium chloride staining, and Masson trichrome staining, respectively. Myocardial apoptosis was analyzed by staining for caspase-3 and cardiac troponin I. 5-MTP treatment decreased the infarct area and myocardial apoptosis; attenuated systolic dysfunction and left ventricular dilatation; and reduced cardiomyocyte hypertrophy, myocardial fibrosis, and infarct expansion. Crucially, 5-MTP alleviated oxidative stress by preserving mitochondrial antioxidant enzymes and downregulating reactive oxygen species-generating NADPH oxidase isoforms and endothelin-1. Consequently, 5-MTP-treated MI rat hearts exhibited lower levels of chemokines and cytokines, namely interleukin (IL)-1ß, IL-18, IL-6, C-C motif chemokine ligand (CCL)-2, and CCL5, accompanied by reduced infiltration of CD11b+ cells and CD4+ T cells. Notably, 5-MTP protected against H2O2-induced damage in HL-1 cardiomyocytes and human umbilical vein endothelial cells in vitro. CONCLUSION: 5-MTP prevented post-MI cardiac injury by promoting mitochondrial stabilization and controlling redox imbalance. This cytoprotective effect ameliorated macrophage and T-cell infiltration, thus reducing the infarct size, attenuating fibrosis, and restoring myocardial function.


Subject(s)
Immunity/drug effects , Myocardial Infarction/drug therapy , Myocardial Infarction/immunology , Oxidative Stress/drug effects , Tryptophan/analogs & derivatives , Animals , Apoptosis/drug effects , Cell Line, Transformed , Disease Models, Animal , Female , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Hydrogen Peroxide/metabolism , Myocardial Infarction/complications , Myocardial Infarction/metabolism , Myocarditis/drug therapy , Myocarditis/etiology , Myocardium/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Treatment Outcome , Tryptophan/administration & dosage , Tryptophan/biosynthesis , Tryptophan/pharmacokinetics , Ventricular Function, Left/drug effects , Ventricular Remodeling/drug effects
15.
Biochemistry ; 60(25): 1995-2010, 2021 06 29.
Article in English | MEDLINE | ID: mdl-34100595

ABSTRACT

Soluble methane monooxygenase (sMMO) is a multicomponent metalloenzyme capable of catalyzing the fissure of the C-H bond of methane and the insertion of one atom of oxygen from O2 to yield methanol. Efficient multiple-turnover catalysis occurs only in the presence of all three sMMO protein components: hydroxylase (MMOH), reductase (MMOR), and regulatory protein (MMOB). The complex series of sMMO protein component interactions that regulate the formation and decay of sMMO reaction cycle intermediates is not fully understood. Here, the two tryptophan residues in MMOB and the single tryptophan residue in MMOR are converted to 5-fluorotryptophan (5FW) by expression in defined media containing 5-fluoroindole. In addition, the mechanistically significant N-terminal region of MMOB is 19F-labeled by reaction of the K15C variant with 3-bromo-1,1,1-trifluoroacetone (BTFA). The 5FW and BTFA modifications cause minimal structural perturbation, allowing detailed studies of the interactions with sMMOH using 19F NMR. Resonances from the 275 kDa complexes of sMMOH with 5FW-MMOB and BTFA-K15C-5FW-MMOB are readily detected at 5 µM labeled protein concentration. This approach shows directly that MMOR and MMOB competitively bind to sMMOH with similar KD values, independent of the oxidation state of the sMMOH diiron cluster. These findings suggest a new model for regulation in which the dynamic equilibration of MMOR and MMOB with sMMOH allows a transient formation of key reactive complexes that irreversibly pull the reaction cycle forward. The slow kinetics of exchange of the sMMOH:MMOB complex is proposed to prevent MMOR-mediated reductive quenching of the high-valent reaction cycle intermediate Q before it can react with methane.


Subject(s)
Bacterial Proteins/metabolism , Oxygenases/metabolism , Protein Subunits/metabolism , Bacterial Proteins/chemistry , Fluorine/chemistry , Kinetics , Methylosinus trichosporium/enzymology , Nuclear Magnetic Resonance, Biomolecular , Oxygenases/chemistry , Protein Binding , Protein Structure, Quaternary , Protein Subunits/chemistry , Tryptophan/analogs & derivatives , Tryptophan/chemistry
16.
Biochemistry ; 60(21): 1722-1730, 2021 06 01.
Article in English | MEDLINE | ID: mdl-34010565

ABSTRACT

The fluorescent reporters commonly used to visualize proteins can perturb both protein structure and function. Recently, we found that 4-cyanotryptophan (4CN-Trp), a blue fluorescent amino acid, is suitable for one-photon imaging applications. Here, we demonstrate its utility in two-photon fluorescence microscopy by using it to image integrins on cell surfaces. Specifically, we used solid-phase peptide synthesis to generate CHAMP peptides labeled with 4-cyanoindole (4CNI) at their N-termini to image integrins on cell surfaces. CHAMP (computed helical anti-membrane protein) peptides spontaneously insert into membrane bilayers to target integrin transmembrane domains and cause integrin activation. We found that 4CNI labeling did not perturb the ability of CHAMP peptides to insert into membranes, bind to integrins, or cause integrin activation. We then used two-photon fluorescence microscopy to image 4CNI-containing integrins on the surface of platelets. Compared to a 4CNI-labeled scrambled peptide that uniformly decorated cell surfaces, 4CNI-labeled CHAMP peptides were present in discrete blue foci. To confirm that these foci represented CN peptide-containing integrins, we co-stained platelets with integrin-specific fluorescent monoclonal antibodies and found that CN peptide and antibody fluorescence coincided. Because 4CNI can readily be biosynthetically incorporated into proteins with little if any effect on protein structure and function, it provides a facile way to directly monitor protein behavior and protein-protein interactions in cellular environments. In addition, these results clearly demonstrate that the two-photon excitation cross section of 4CN-Trp is sufficiently large to make it a useful two-photon fluorescence reporter for biological applications.


Subject(s)
Integrins/metabolism , Microscopy, Fluorescence, Multiphoton/methods , Tryptophan/analogs & derivatives , Amino Acids/metabolism , Blood Platelets/metabolism , Cell Membrane/metabolism , Integrins/physiology , Peptides/chemical synthesis , Peptides/chemistry , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Protein Binding/physiology , Protein Domains/physiology , Tryptophan/chemical synthesis , Tryptophan/chemistry
17.
Biochemistry ; 60(31): 2436-2446, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34319079

ABSTRACT

TxtE is a cytochrome P450 (CYP) homologue that mediates the nitric oxide (NO)-dependent direct nitration of l-tryptophan (Trp) to form 4-nitro-l-tryptophan (4-NO2-Trp). A recent report showed evidence that TxtE activity requires NO to react with a ferric-superoxo intermediate. Given this minimal mechanism, it is not clear how TxtE avoids Trp hydroxylation, a mechanism that also traverses the ferric-superoxo intermediate. To provide insight into canonical CYP intermediates that TxtE can access, electron coupling efficiencies to form 4-NO2-Trp under single- or limited-turnover conditions were measured and compared to steady-state efficiencies. As previously reported, Trp nitration by TxtE is supported by the engineered self-sufficient variant, TB14, as well as by reduced putidaredoxin. Ferrous (FeII) TxtE exhibits excellent electron coupling (70%), which is 50-fold higher than that observed under turnover conditions. In addition, two- or four-electron reduced TB14 exhibits electron coupling (∼6%) that is 2-fold higher than that of one-electron reduced TB14 (3%). The combined results suggest (1) autoxidation is the sole TxtE uncoupling pathway and (2) the TxtE ferric-superoxo intermediate cannot be reduced by these electron transfer partners. The latter conclusion is further supported by ultraviolet-visible absorption spectral time courses showing neither spectral nor kinetic evidence for reduction of the ferric-superoxo intermediate. We conclude that resistance of the ferric-superoxo intermediate to reduction is a key feature of TxtE that increases the lifetime of the intermediate and enables its reaction with NO and efficient nitration activity.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Ferric Compounds/metabolism , Nitrates/metabolism , Nitric Oxide/metabolism , Nitro Compounds/metabolism , Biocatalysis , Cytochrome P-450 Enzyme System/chemistry , Electron Transport , Ferric Compounds/chemistry , Hydroxylation , Iron , Kinetics , Nitrates/chemistry , Nitro Compounds/chemistry , Oxidation-Reduction , Spectrophotometry, Ultraviolet , Tryptophan/analogs & derivatives , Tryptophan/metabolism
18.
J Proteome Res ; 20(1): 433-443, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32989989

ABSTRACT

The activation of induced resistance in plants may enhance the production of defensive proteins to avoid the invasion of pathogens. In this way, the composition of the apoplastic fluid could represent an important layer of defense that plants can modify to avoid the attack. In this study, we performed a proteomic study of the apoplastic fluid from plants treated with the resistance inducer 1-methyltryptophan (1-MT) as well as infected with Pseudomonas syringae pv. tomato (Pst). Our results showed that both the inoculation with Pst and the application of the inducer provoke changes in the proteomic composition in the apoplast enhancing the accumulation of proteins involved in plant defense. Finally, one of the identified proteins that are overaccumulated upon the treatment have been expressed in Escherichia coli and purified in order to test their antimicrobial effect. The result showed that the tested protein is able to reduce the growth of Pst in vitro. Taken together, in this work, we described the proteomic changes in the apoplast induced by the treatment and by the inoculation, as well as demonstrated that the proteins identified have a role in the plant protection.


Subject(s)
Solanum lycopersicum , Gene Expression Regulation, Plant , Solanum lycopersicum/genetics , Plant Diseases/genetics , Proteomics , Pseudomonas syringae , Tryptophan/analogs & derivatives
19.
Chembiochem ; 22(2): 330-335, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33463878

ABSTRACT

A generalized synthetic strategy is proposed here for the synthesis of asymmetric ß-indoylated amino acids by 8-aminoquinoline (8AQ)-directed C(sp3)-H functionalization of suitably protected precursors. Peptides containing one of the four stereoisomers of (indol-3-yl)-3-phenylalanine at position 2 of the parent peptide KwFwLL-NH2 (w=d-Trp) cover a wide range of activities as ghrelin receptor inverse agonists, among them the most active described until now. This application exemplarily shows how ß-indoylated amino acids can be used for the systematic variation of the position of an indole group in a bioactive peptide.


Subject(s)
Tryptophan/chemistry , Indoles/chemistry , Molecular Structure , Peptides/chemistry , Tryptophan/analogs & derivatives , Tryptophan/chemical synthesis
20.
J Biomed Sci ; 28(1): 74, 2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34749728

ABSTRACT

BACKGROUND: Toll-like receptor-2 (TLR2) promotes vascular smooth muscle cell (VSMC) transdifferentiation to chondrocytes and calcification in a p38 MAPK-dependent manner. Vascular 5-methoxytryptophan (5-MTP) is a newly identified factor with anti-inflammatory actions. As 5-MTP targets p38 MAPK for its actions, we postulated that 5-MTP protects against vascular chondrogenesis and calcification. METHODS: High-fat diet-induced advanced atherosclerosis in mice were performed to investigate the effect of 5-MTP on atherosclerotic lesions and calcification. VSMCs were used to determine the role of 5-MTP in VSMC chondrogenic differentiation and calcification. Alizarin red S and Alcian blue staining were used to measure VSMC calcification and chondrogenic differentiation, respectively. RESULTS: 5-MTP was detected in aortic tissues of ApoE-/- mice fed control chow. It was reduced in ApoE-/- mice fed high-fat diet (HFD), but was restored in ApoE-/-Tlr2-/- mice, suggesting that HFD reduces vascular 5-MTP production via TLR2. Intraperitoneal injection of 5-MTP or its analog into ApoE-/- mice fed HFD reduced aortic atherosclerotic lesions and calcification which was accompanied by reduction of chondrogenesis and calcium deposition. Pam3CSK4 (Pam3), ligand of TLR2, induced SMC phenotypic switch to chondrocytes. Pretreatment with 5-MTP preserved SMC contractile proteins and blocked Pam3-induced chondrocyte differentiation and calcification. 5-MTP inhibited HFD-induced p38 MAPK activation in vivo and Pam3-induced p38 MAPK activation in SMCs. 5-MTP suppressed HFD-induced CREB activation in aortic tissues and Pam3-induced CREB and NF-κB activation in SMCs. CONCLUSIONS: These findings suggest that 5-MTP is a vascular arsenal against atherosclerosis and calcification by inhibiting TLR2-mediated SMC phenotypic switch to chondrocytes and the consequent calcification. 5-MTP exerts these effects by blocking p38 MAPK activation and inhibiting CREB and NF-κB transactivation activity.


Subject(s)
Atherosclerosis/prevention & control , Calcinosis/prevention & control , Chondrogenesis , Diet, High-Fat/adverse effects , Tryptophan/analogs & derivatives , Animals , Atherosclerosis/metabolism , Atherosclerosis/physiopathology , Calcinosis/metabolism , Calcinosis/physiopathology , Mice , Tryptophan/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL