Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 160
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 590(7845): 284-289, 2021 02.
Article in English | MEDLINE | ID: mdl-33461212

ABSTRACT

Lungfishes belong to lobe-fined fish (Sarcopterygii) that, in the Devonian period, 'conquered' the land and ultimately gave rise to all land vertebrates, including humans1-3. Here we determine the chromosome-quality genome of the Australian lungfish (Neoceratodus forsteri), which is known to have the largest genome of any animal. The vast size of this genome, which is about 14× larger than that of humans, is attributable mostly to huge intergenic regions and introns with high repeat content (around 90%), the components of which resemble those of tetrapods (comprising mainly long interspersed nuclear elements) more than they do those of ray-finned fish. The lungfish genome continues to expand independently (its transposable elements are still active), through mechanisms different to those of the enormous genomes of salamanders. The 17 fully assembled lungfish macrochromosomes maintain synteny to other vertebrate chromosomes, and all microchromosomes maintain conserved ancient homology with the ancestral vertebrate karyotype. Our phylogenomic analyses confirm previous reports that lungfish occupy a key evolutionary position as the closest living relatives to tetrapods4,5, underscoring the importance of lungfish for understanding innovations associated with terrestrialization. Lungfish preadaptations to living on land include the gain of limb-like expression in developmental genes such as hoxc13 and sall1 in their lobed fins. Increased rates of evolution and the duplication of genes associated with obligate air-breathing, such as lung surfactants and the expansion of odorant receptor gene families (which encode proteins involved in detecting airborne odours), contribute to the tetrapod-like biology of lungfishes. These findings advance our understanding of this major transition during vertebrate evolution.


Subject(s)
Adaptation, Physiological/genetics , Biological Evolution , Fishes/genetics , Gait/genetics , Genome/genetics , Lung , Vertebrates/genetics , Air , Animal Fins/anatomy & histology , Animals , Bayes Theorem , Chromosomes/genetics , Extremities/anatomy & histology , Female , Fishes/physiology , Gene Expression Regulation, Developmental , Genes, Homeobox/genetics , Genomics , Humans , Long Interspersed Nucleotide Elements/genetics , Lung/anatomy & histology , Lung/physiology , Mice , Molecular Sequence Annotation , Phylogeny , Respiration , Smell/physiology , Synteny , Vertebrates/physiology , Vomeronasal Organ/anatomy & histology
2.
J Anat ; 241(3): 809-819, 2022 09.
Article in English | MEDLINE | ID: mdl-35437747

ABSTRACT

In contrast to the main olfactory system that detects volatile chemicals in the nasal air, the vomeronasal system can detect nonvolatile chemicals as well as volatiles. In the vomeronasal system, chemicals are perceived by the vomeronasal organ (VNO) projecting axons to the accessory olfactory bulb (AOB). Beavers (Castor spp.) are semiaquatic mammals that have developed chemical communication. It is possible that the beaver's anal gland secretions, nonvolatile and insoluble substances, may work as a messenger in the water and that beavers may detect the nonvolatile chemicals floating on the water surface via the VNO. The present study aimed to clarify the specificities of the beaver vomeronasal system by histologically and immunohistochemically analyzing the VNO and AOB of 12 Eurasian beavers (C. fiber). The VNO directly opened to the nasal cavity and was independent of a narrow nasopalatine duct connecting the oral and nasal cavities. The VNO comprised soft tissues including sensory and nonsensory epithelium, glands, a venous sinus, an artery, as well as cartilage inner, and bone outer enclosures. The AOB had distinct six layers, and anti-G protein α-i2 and α-o subunits were, respectively, immunoreactive in rostral and caudal glomeruli layers indicating expressions of V1Rs and V2Rs. According to gene repertories analysis, the beavers had 23 and six intact V1R and V2R genes respectively. These findings suggested that beavers recognize volatile odorants and nonvolatile substances using the vomeronasal system. The beaver VNO was developed as well as in other rodents, and it had two specific morphological features, namely, disadvantaged contact with the oral cavity because of a tiny nasopalatine duct, and a double bone and cartilage envelope. Our results highlight the importance of the vomeronasal system in beaver chemical communication and support the possibility that beavers can detect chemicals floating on the water surface via the VNO.


Subject(s)
Vomeronasal Organ , Animals , Olfactory Bulb/metabolism , Rodentia , Vomeronasal Organ/anatomy & histology , Water/analysis , Water/metabolism
3.
J Anat ; 237(5): 890-906, 2020 11.
Article in English | MEDLINE | ID: mdl-32584430

ABSTRACT

The vomeronasal system (VNS) has been extensively studied within specific animal families, such as Rodentia. However, the study of the VNS in other families, such as Canidae, has long been neglected. Among canids, the vomeronasal organ (VNO) has only been studied in detail in the dog, and no studies have examined the morphofunctional or immunohistochemical characteristics of the VNS in wild canids, which is surprising, given the well-known importance of chemical senses for the dog and fox and the likelihood that the VNS plays roles in the socio-reproductive physiology and behaviours of these species. In addition, characterising the fox VNS could contribute to a better understanding of the domestication process that occurred in the dog, as the fox would represent the first wild canid to be studied in depth. Therefore, the aim of this study was to analyze the morphological and immunohistochemical characteristics of the fox VNO. Tissue dissection and microdissection techniques were employed, followed by general and specific histological staining techniques, including with immunohistochemical and lectin-histochemical labelling strategies, using antibodies against olfactory marker protein (OMP), growth-associated protein 43 (GAP-43), calbindin (CB), calretinin (CR), α-tubulin, Gαo, and Gαi2 proteins, to highlight the specific features of the VNO in the fox. This study found significant differences in the VNS between the fox and the dog, particularly concerning the expression of Gαi2 and Gαo proteins, which were associated with the expression of the type 1 vomeronasal receptors (V1R) and type 2 vomeronasal receptors (V2R), respectively, in the vomeronasal epithelium. Both are immunopositive in foxes, as opposed to the dog, which only expresses Gαi2. This finding suggests that the fox possesses a well-developed VNO and supports the hypothesis that a profound transformation in the VNS is associated with domestication in the canid family. Furthermore, the unique features identified in the fox VNO confirm the necessity of studying the VNS system in different species to better comprehend specific phylogenetic aspects of the VNS.


Subject(s)
Foxes/anatomy & histology , Vomeronasal Organ/anatomy & histology , Animals , Female , Foxes/metabolism , Male , Receptors, G-Protein-Coupled/metabolism , Vomeronasal Organ/metabolism
4.
J Anat ; 233(6): 814-827, 2018 12.
Article in English | MEDLINE | ID: mdl-30255591

ABSTRACT

The characterization of the rabbit mammary pheromone, which is sensed by the main olfactory system, has made this species a unique model for the study of pheromonal communication in mammals. This discovery has brought attention to the global understanding of chemosensory communication in this species. Chemocommunication is mediated by two distinct organs located in the nasal cavity, the main olfactory epithelium and the vomeronasal organ (VNO). However, there is a lack of knowledge about the vomeronasal system in rabbits. To understand the role of this system, an exhaustive anatomical and histological study of the rabbit VNO was performed. The rabbit VNO was studied macroscopically by light microscopy, and by histochemical and immunohistochemical techniques. We employed specific histological staining techniques (periodic acid-Schiff, Alcian blue, Gallego's trichrome), confocal autofluorescence, histochemical labelling with the lectin Ulex europaeus agglutinin (UEA-I), and immunohistochemical studies of the expression of the Gαi2 and Gαo proteins and olfactory marker protein. The opening of the vomeronasal duct into the nasal cavity and its indirect communication with the oral cavity through a functional nasopalatine duct was demonstrated by classical dissection and microdissection. In a series of transverse histological sections, special attention was paid to the general distribution of the various soft-tissue components of this organ (duct, glands, connective tissue, blood vessels and nerves) and to the nature of the capsule of the organ. Among the main morphological features that distinguish the rabbit VNO, the presence of a double envelope, which is bony externally and cartilaginous internally, and highly developed venous sinuses stand out. This observation indicates the crucial role played in this species by the pumping mechanism that introduces chemical signals into the vomeronasal duct. The functional properties of the organ are also confirmed by the presence of a well-developed neuroepithelium and profuse glandular tissue that is positive for neutral mucopolysaccharides. The role of glycoconjugates was assessed by the identification of the α1-2 fucose glycan system in the neuroepithelium of the VNO employing UEA-I lectin. The pattern of labelling, which was concentrated around the commissures of the sensory epithelium and more diffuse in the central segments, is different from that found in most mammals studied. According to the expression of G-proteins, two pathways have been described in the VNOs of mammals: neuroreceptor cells expressing the Gαi2 protein (associated with vomeronasal receptor type 1); and cells expressing Gαo (associated with vomeronasal receptor type 2). The latter pathway is absent in most mammals studied. The expression of both G-protein families in the rabbit VNO places Lagomorpha together with rodents and insectivores in a small group of mammals belonging to the two-path model. These findings support the notion that the rabbit possesses a highly developed VNO, with many specific morphological features, which highlights the significance of chemocommunication in this species.


Subject(s)
Rabbits/anatomy & histology , Rabbits/physiology , Vomeronasal Organ/anatomy & histology , Vomeronasal Organ/physiology , Animals , Immunohistochemistry , Vomeronasal Organ/metabolism
5.
J Anat ; 231(5): 749-757, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28786107

ABSTRACT

The vomeronasal organ (VNO) is a peripheral receptor structure that is involved in reproductive behavior and is part of the vomeronasal system. Male bears exhibit flehmen behavior that is regarded as the uptake of pheromones into the VNO to detect estrus in females. However, the morphological and histological features of the VNO in bears have not been comprehensively studied. The present study investigated the properties and degree of development of the VNO of the brown bear by histological, histochemical and ultrastructural methods. The VNO of bears was located at the same position as that of many other mammals, and it opened to the mouth like the VNO of most carnivores. The shape of the vomeronasal cartilages and the histological features of the sensory epithelium in the bear VNO were essentially similar to those of dogs. Receptor cells in the VNO of the bear possessed both cilia and microvilli like those of dogs. The dendritic knobs of receptor cells were positive for anti-G protein alpha-i2 subunit (Gαi2 ) but negative for anti-G protein alpha-o subunit, indicating preferential use of the V1R-Gαi2 pathway in the vomeronasal system of bears, as in other carnivores. The VNO of the bear possessed three types of secretory cells (secretory cells of the vomeronasal gland, multicellular intraepithelial gland cells and goblet cells), and the present findings showed that the secretory granules in these cells also had various properties. The vomeronasal lumen at the middle region of the VNO invaginated toward the ventral region, and this invagination contained tightly packed multicellular intraepithelial gland cells. To our knowledge, this invagination and intraepithelial gland masses in the VNO are unique features of brown bears. The VNO in the brown bear, especially the secretory system, is morphologically well-developed, suggesting that this organ is significant for information transmission in this species.


Subject(s)
Ursidae/anatomy & histology , Vomeronasal Organ/anatomy & histology , Animals , Female , Male
6.
Vestn Otorinolaringol ; 82(2): 90-94, 2017.
Article in Russian | MEDLINE | ID: mdl-28514374

ABSTRACT

This review deals with the structure and function of the vomeronasal system and evaluation of its influence on the sexual sphere of humans and animals. Special attention is given to the role of pheromones in the regulation of the sexual behaviour. The data concerning the function of the vomeronasal organ following surgical interventions in the nasal cavity are discussed.


Subject(s)
Nasal Surgical Procedures/adverse effects , Sensation Disorders , Sex Attractants/physiology , Sexual Behavior/physiology , Vomeronasal Organ , Animals , Humans , Postoperative Complications/physiopathology , Postoperative Complications/psychology , Sensation Disorders/etiology , Sensation Disorders/physiopathology , Sensation Disorders/psychology , Vomeronasal Organ/anatomy & histology , Vomeronasal Organ/physiology
7.
Am J Primatol ; 77(2): 229-38, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25220179

ABSTRACT

The vomeronasal organ (VNO), also known as the Jacobson's organ, is a bilateral chemosensory organ found at the base of the nasal cavity specialized for the detection of higher-molecular weight (non-volatile) chemostimuli. It has been linked to pheromone detection. The VNO has been well studied in nocturnal lemurs and lorises, but poorly studied in diurnal/cathemeral species despite the large repertoire of olfactory behaviors noted in species such as Lemur catta. Here, the VNO and associated structures were studied microanatomically in one adult female and one adult male L. catta. Traditional and immunohistochemical procedures demonstrate the VNO epithelium consists of multiple rows of sensory neurons. Immunoreactivity to Growth-associated protein 43 (GAP43) indicates the VNO is postnatally neurogenic. In volume, the VNO neuroepithelium scales similarly to palatal length compared to nocturnal strepsirrhines. Numerous taste buds present at the oral opening to the nasopalatine duct, with which the VNO communicates, provide an additional (or alternative) explanation for the flehmen behavior that has been observed in this species. The VNO of L. catta is shown to be microanatomically comparable to that of nocturnal strepsirrhines. Like nocturnal strepsirrhines, the VNO of L. catta may be functional in the reception of high-molecular weight secretions.


Subject(s)
Lemur/anatomy & histology , Vomeronasal Organ/anatomy & histology , Animals , Female , GAP-43 Protein , Immunohistochemistry , Lemur/physiology , Male , Olfactory Receptor Neurons/cytology , Taste Buds/anatomy & histology , Vomeronasal Organ/physiology
8.
Eur J Neurosci ; 39(1): 141-58, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24188795

ABSTRACT

Most mammals possess a vomeronasal system that detects predominantly chemical signals of biological relevance. Vomeronasal information is relayed to the accessory olfactory bulb (AOB), whose unique cortical target is the posteromedial cortical nucleus of the amygdala. This cortical structure should therefore be considered the primary vomeronasal cortex. In the present work, we describe the afferent and efferent connections of the posteromedial cortical nucleus of the amygdala in female mice, using anterograde (biotinylated dextranamines) and retrograde (Fluorogold) tracers, and zinc selenite as a tracer specific for zinc-enriched (putative glutamatergic) projections. The results show that the posteromedial cortical nucleus of the amygdala is strongly interconnected not only with the rest of the vomeronasal system (AOB and its target structures in the amygdala), but also with the olfactory system (piriform cortex, olfactory-recipient nuclei of the amygdala and entorhinal cortex). Therefore, the posteromedial cortical nucleus of the amygdala probably integrates olfactory and vomeronasal information. In addition, the posteromedial cortical nucleus of the amygdala shows moderate interconnections with the associative (basomedial) amygdala and with the ventral hippocampus, which may be involved in emotional and spatial learning (respectively) induced by chemical signals. Finally, the posteromedial cortical nucleus of the amygdala gives rise to zinc-enriched projections to the ventrolateral septum and the ventromedial striatum (including the medial islands of Calleja). This pattern of intracortical connections (with the olfactory cortex and hippocampus, mainly) and cortico-striatal excitatory projections (with the olfactory tubercle and septum) is consistent with its proposed nature as the primary vomeronasal cortex.


Subject(s)
Amygdala/physiology , Vomeronasal Organ/physiology , Afferent Pathways/anatomy & histology , Afferent Pathways/physiology , Amygdala/anatomy & histology , Animals , Efferent Pathways/anatomy & histology , Efferent Pathways/physiology , Entorhinal Cortex/anatomy & histology , Entorhinal Cortex/physiology , Female , Mice , Vomeronasal Organ/anatomy & histology
9.
Proc Biol Sci ; 281(1783): 20132828, 2014 May 22.
Article in English | MEDLINE | ID: mdl-24718758

ABSTRACT

Mammalian olfaction comprises two chemosensory systems: the odorant-detecting main olfactory system (MOS) and the pheromone-detecting vomeronasal system (VNS). Mammals are diverse in their anatomical and genomic emphases on olfactory chemosensation, including the loss or reduction of these systems in some orders. Despite qualitative evidence linking the genomic evolution of the olfactory systems to specific functions and phenotypes, little work has quantitatively tested whether the genomic aspects of the mammalian olfactory chemosensory systems are correlated to anatomical diversity. We show that the genomic and anatomical variation in these systems is tightly linked in both the VNS and the MOS, though the signature of selection is different in each system. Specifically, the MOS appears to vary based on absolute organ and gene family size while the VNS appears to vary according to the relative proportion of functional genes and relative anatomical size and complexity. Furthermore, there is little evidence that these two systems are evolving in a linked fashion. The relationships between genomic and anatomical diversity strongly support a role for natural selection in shaping both the anatomical and genomic evolution of the olfactory chemosensory systems in mammals.


Subject(s)
Genetic Variation , Mammals/physiology , Olfactory Mucosa/physiology , Olfactory Perception/genetics , Vomeronasal Organ/physiology , Animals , Least-Squares Analysis , Mammals/anatomy & histology , Mammals/genetics , Olfactory Mucosa/anatomy & histology , Phylogeny , Vomeronasal Organ/anatomy & histology
10.
Clin Anat ; 27(6): 856-60, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24554552

ABSTRACT

The mammalian vomeronasal organ (VNO) is a well-adjusted chemosensory structure that facilitates social and reproductive behavior in mammals. The existence, locality, and function of this organ in human adults remain a matter of discussion. Most authors now agree that a neuroreceptive function of the adult human VNO can be excluded due to the absence of both neural receptive cells associated with the VNO in other mammals despite the enigmatic reports on the effects of pheromones on human behavior. Adult cadavers form European (Caucasoid) descent were used in this article and parasagittal dissection of the heads allowed access to the nasal septa, which were grossly examined for the VNO openings. Tissue samples were collected, embedded in gelatin and serially sectioned through cryomicrotomy. Nissl staining was performed as well as immunohistochemically stained with an antibody against calcium-binding protein. The findings presented here confirm the bilateral presence of the VNO in adult cadavers and demonstrate morphological connections of VNO receptor cells with the underlying capillaries. In addition, possible endocrine activity associated with the epithelium of this chemosensory structure has been demonstrated by the expression of calcium-binding protein in a part of these receptor cells.


Subject(s)
Olfactory Mucosa/cytology , Vomeronasal Organ/anatomy & histology , Adult , Calcium-Binding Proteins/metabolism , Humans , Olfactory Mucosa/metabolism , Vomeronasal Organ/physiology
11.
J Vet Med Sci ; 86(5): 458-462, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38508726

ABSTRACT

Little is known about the neuronal structure of the vomeronasal organ (VNO), a receptor organ responsible for pheromone perception, in the alpaca (Vicugna pacos). This study was performed to determine the localization of neuronal elements, including protein gene product 9.5 (PGP 9.5), a pan-neuronal marker, olfactory marker protein (OMP), a marker of mature olfactory receptor cells, and phospholipase C beta 2 (PLC-ß2), a marker of solitary chemoreceptor cells (SCCs), in the VNO. OMP was identified in receptor cells of the vomeronasal sensory epithelium (VSE), while PGP 9.5 and PLC-ß2 were localized in both the VSE and vomeronasal non-sensory epithelium. Collectively, these results suggested that the alpaca VNO possesses SCCs and olfactory receptor cells, which recognize both harmful substances and pheromones.


Subject(s)
Camelids, New World , Olfactory Marker Protein , Vomeronasal Organ , Animals , Vomeronasal Organ/anatomy & histology , Vomeronasal Organ/cytology , Camelids, New World/anatomy & histology , Male , Olfactory Marker Protein/metabolism , Phospholipase C beta/metabolism , Female , Olfactory Receptor Neurons , Chemoreceptor Cells , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics
12.
Sci Rep ; 14(1): 11779, 2024 05 23.
Article in English | MEDLINE | ID: mdl-38783070

ABSTRACT

Most terrestrial mammals have a vomeronasal system to detect specific chemicals. The peripheral organ of this system is a vomeronasal organ (VNO) opening to the incisive duct, and its primary integrative center is an accessory olfactory bulb (AOB). The VNO in seals is thought to be degenerated like whales and manatees, unlike otariids, because of the absence of the AOB. However, olfaction plays pivotal roles in seals, and thus we conducted a detailed morphological evaluation of the vomeronasal system of three harbor seals (Phoca vitulina). The VNO lumen was not found, and the incisive duct did not open into the oral cavity but was recognized as a fossa on the anteroventral side of the nasal cavity. This fossa is rich in mucous glands that secrete acidic mucopolysaccharides, which might originate from the vomeronasal glands. The olfactory bulb consisted only of a main olfactory bulb that received projections from the olfactory mucosa, but an AOB region was not evident. These findings clarified that harbor seals do not have a VNO to detect some chemicals, but the corresponding region is a specialized secretory organ.


Subject(s)
Nasal Cavity , Olfactory Bulb , Phoca , Vomeronasal Organ , Animals , Vomeronasal Organ/metabolism , Vomeronasal Organ/anatomy & histology , Phoca/metabolism , Phoca/anatomy & histology , Nasal Cavity/anatomy & histology , Nasal Cavity/metabolism , Olfactory Bulb/metabolism , Olfactory Bulb/anatomy & histology , Mucus/metabolism , Olfactory Mucosa/metabolism , Olfactory Mucosa/anatomy & histology , Male , Smell/physiology , Female
13.
J Anat ; 222(4): 481-5, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23368671

ABSTRACT

The lungfish, the closest fish to tetrapods, has two types of sensory epithelia in the olfactory organ: the lamellar olfactory epithelium and the recess epithelium. The former resembles the olfactory epithelium of ordinary teleosts and the latter resembles the vomeronasal organ of tetrapods with respect to the G-protein expressions and the morphological properties of olfactory receptor cells. In contrast to the lamellar olfactory epithelium covering the surface of olfactory lamella, the recess epithelium, together with the glandular epithelium, lines the recesses at the base of olfactory lamellae and is separated from the surrounding tissues by nonsensory epithelium. In the present study, we examined the distribution of these recesses and the relationship between the recess epithelium and the associated gland in the nasal sac of lungfish. We found that the posterior part of the nasal sac contained more recesses than the anterior one, and the medial one contained more recesses than the lateral one. In addition, virtually all recesses consisted of both the recess epithelium and the glandular epithelium. Furthermore, the glandular epithelium was invariably situated proximal to the midline raphe of the nasal sac, and the recess epithelium distal to it. Possible roles of the recess epithelium and the glandular epithelium are discussed.


Subject(s)
Fishes/anatomy & histology , Vomeronasal Organ/anatomy & histology , Animals , Female , Fishes/classification , Immunohistochemistry , Male , Olfactory Bulb/anatomy & histology , Olfactory Mucosa/cytology
14.
Anat Rec (Hoboken) ; 306(11): 2765-2780, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37523493

ABSTRACT

The extensive diversity observed in bat nasal chemosensory systems has been well-documented at the histological level. Understanding how this diversity evolved and developing hypotheses as to why particular patterns exist require a phylogenetic perspective, which was first outlined in the work of anatomist Kunwar Bhatnagar. With the onset of genetics and genomics, it might be assumed that the puzzling patterns observed in the morphological data have been clarified. However, there is still a widespread mismatch of genetic and morphological correlations among bat chemosensory systems. Novel genomic evidence has set up new avenues to explore that demand more evidence from anatomical structures. Here, we outline the progress that has been made in both morphological and molecular studies on the olfactory and vomeronasal systems in bats since the work of Bhatnagar. Genomic data of olfactory and vomeronasal receptors demonstrate the strong need for further morphological sampling, with a particular focus on receiving brain regions, glands, and ducts.


Subject(s)
Chiroptera , Vomeronasal Organ , Animals , Vomeronasal Organ/anatomy & histology , Chiroptera/genetics , Chiroptera/anatomy & histology , Phylogeny , Smell , Carrier Proteins
15.
J Anat ; 221(4): 364-72, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22774780

ABSTRACT

We investigated the occurrence and anatomy of the vomeronasal system (VNS) in tadpoles of 13 different anuran species. All of the species possessed a morphologically fully developed VNS with a highly conserved anatomical organisation. We found that a bean-shaped vomeronasal organ (VNO) developed early in the tadpoles, during the final embryonic stages, and was located in the anteromedial nasal region. Histology revealed the presence of bipolar chemosensory neurones in the VNO that were immunoreactive for the Gαo protein. Tract-tracing experiments demonstrated that chemosensory neurones from the VNO reach specific areas in the brain, where a discernible accessory olfactory bulb (AOB) could be observed. The AOB was located in the ventrolateral side of the anterior telencephalon, somewhat caudal to the main olfactory bulb. Synaptophysin-like immunodetection revealed that synaptic contacts between VNO and AOB are established during early larval stages. Moreover, using lectin staining, we identified glomerular structures in the AOB in most of the species that we examined. According to our findings, a significant maturation in the VNS is achieved in anuran larvae. Recent published evidence strongly suggests that the VNS appeared early in vertebrate evolution and was already present in the aquatic last common ancestor of lungfish and tetrapods. In this context, tadpoles may be a good model in which to investigate the anatomical, biochemical and functional aspects of the VNS in an aquatic environment.


Subject(s)
Anura/anatomy & histology , Vomeronasal Organ/anatomy & histology , Animals , Anura/growth & development , Immunohistochemistry , Larva/anatomy & histology , Olfactory Bulb/anatomy & histology , Species Specificity , Vomeronasal Organ/growth & development
16.
Chem Senses ; 37(4): 335-46, 2012 May.
Article in English | MEDLINE | ID: mdl-22104031

ABSTRACT

G-protein-coupled receptors are responsible for binding to chemosensory cues and initiating responses in vertebrate olfactory neurons. We investigated the genetic diversity and expression of one family of G-protein-coupled receptors in a terrestrial caudate amphibian (the red-legged salamander, Plethodon shermani). We used degenerate RT-PCR to isolate vomeronasal type 2 receptors (V2Rs)--including full-length sequences--and compared them with other vertebrate V2Rs with phylogenetic analyses. We also amplified a salamander Golf, a G-protein usually expressed in the main olfactory epithelium (MOE) of vertebrates, and an ion channel expressed in the rodent vomeronasal organ: trpc2. We then localized mRNA expression of V2Rs, trpc2, and Golf in the olfactory and vomeronasal epithelia with in situ hybridization. The mRNA transcripts of V2Rs and trpc2 were detected solely in the vomeronasal epithelium of P. shermani. Furthermore, there were differences in the density of cells that expressed particular subclasses of V2Rs: 2 probes showed sexually dimorphic expression, whereas a third did not. Although Golf mRNA was expressed primarily in the MOE, Golf transcripts also were found in the vomeronasal epithelium. Thus, some aspects of mRNA expression of vomeronasal receptors and related molecules differ between salamanders and frogs, and between salamanders and mice.


Subject(s)
Nasal Cavity/physiology , Olfactory Mucosa/physiology , Receptors, Odorant/genetics , TRPC Cation Channels/genetics , Urodela/physiology , Vomeronasal Organ/physiology , Amino Acid Sequence , Animals , Cell Count , Female , Gene Expression , Genetic Variation , Male , Molecular Sequence Data , Nasal Cavity/anatomy & histology , Olfactory Mucosa/anatomy & histology , Phylogeny , RNA, Messenger/biosynthesis , Receptors, Odorant/metabolism , Sequence Alignment , Sex Factors , Signal Transduction/physiology , TRPC Cation Channels/metabolism , Urodela/anatomy & histology , Vomeronasal Organ/anatomy & histology
17.
Toxicol Pathol ; 40(4): 656-66, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22301951

ABSTRACT

Histopathological examination of the nasal passages requires a standardized approach for recording lesion distribution patterns. Nasal diagrams provide guidance to map the lesions. Information on lesions exists for rodents, dogs, and monkeys, which all have been used in inhalation studies. Recently, minipigs have garnered interest as an inhalation model because minipigs resemble humans in many features of anatomy, physiology, and biochemistry and may be a good alternative to monkeys and dogs. The present work explored the microanatomy and histology of the nasal passages of Göttingen minipigs from postnatal day 1 until 6 months of age. Six nasal levels were selected, which allow examination of the squamous, transitional (nonciliated) and ciliated respiratory, and olfactory epithelia; the nasopharynx; and relevant structures such as the vomeronasal organ, olfactory bulb, and nasal/nasopharynx-associated lymphoid tissue.


Subject(s)
Nasal Cavity/anatomy & histology , Olfactory Mucosa/anatomy & histology , Swine, Miniature/anatomy & histology , Age Factors , Animals , Animals, Newborn , Disease Models, Animal , Histocytochemistry , Male , Nasal Cavity/chemistry , Nasal Cavity/growth & development , Olfactory Mucosa/chemistry , Swine , Swine, Miniature/growth & development , Vomeronasal Organ/anatomy & histology , Vomeronasal Organ/chemistry
18.
J Morphol ; 283(8): 1080-1093, 2022 08.
Article in English | MEDLINE | ID: mdl-35723180

ABSTRACT

The nasolacrimal apparatus (NLA) is a feature common to many sauropsid amniotes. It consists of an orbital Harderian gland (HG)whose secretions drain into the nasal cavity, in the vicinity of the vomeronasal organ (VNO), an accessory olfactory organ derived from the olfactory epithelium, and a connecting nasolacrimal duct (NLD). Though not all features are present in all posthatchling sauropsids (i.e., no VNO in crocodilomorphs), it is not clear if this system either never existed or failed to develop during the embryonic stages. The purpose of this study is to histologically describe the ontogeny of the NLA and the main olfactory organ in Alligator mississippiensis. Alligator specimens, from embryonic stage 9 to hatchling, were serially histologically sectioned, stained, photographed, and segmented into different tissues using Abobe Photoshop and then reconstructed using Amira for 3D analysis and quantitative nasal epithelial distribution. Though there was no evidence of a VNO, the rest of the NLA was present. The development of the NLA could be subdivided into four phases: (1) inception of NLD, (2) establishment of orbitonasal connections of NLD, (3) bone development, and (4) nasal cavity growth. Glands mature during this last phase and the nasal region rapidly grows, rotates, and is displaced anteriorly. The gradual proportional increase in nonolfactory epithelial distribution during ontogeny is consistent with the literature. Alligator embryonic nasal and NLD growth differs from that of mammals and squamates. The NLD is connected to the anterior third of the nasal region during its initial attachment, but as anterior nasal growth exceeds posterior growth, it is gradually displaced into the posterior third of the nasal region by hatching. It is unknown whether this is a derived archosaur condition or just another example of the morphological variation seen within sauropsid amniotes.


Subject(s)
Alligators and Crocodiles , Lacrimal Apparatus , Nasolacrimal Duct , Vomeronasal Organ , Alligators and Crocodiles/anatomy & histology , Animals , Mammals , Nasolacrimal Duct/anatomy & histology , Nose , Vomeronasal Organ/anatomy & histology
19.
BMC Mol Biol ; 12: 39, 2011 Aug 19.
Article in English | MEDLINE | ID: mdl-21854574

ABSTRACT

BACKGROUND: The vomeronasal organ (VNO) detects pheromones via two large families of vomeronasal receptors: vomeronasal receptor 1 (V1R) and vomeronasal receptor 2 (V2R). Both VRs have a common receptor activation cascade involving transient receptor potential channel, subfamily C, member 2 (TRPC2). RESULTS: We characterised the TRPC2 locus in a marsupial, the tammar wallaby (Macropus eugenii), and identified two independently regulated genes not previously recognised as distinct. 3'-located exons comprise bona fide TRPC2 whilst 5'-located exons, previously identified as part of TRPC2, comprise a distinct gene, which we term XNDR (XRCC1 N-terminal domain-related). The two genes show contrasting expression patterns in the tammar: TRPC2 is specifically expressed in adult and developing VNO, whereas XNDR is widely expressed in many tissues suggesting a non-VNO-specific role. Strong expression of TRPC2 was detected only after about day 30 post-partum, suggesting that the VNO may not be functional during early pouch life of the tammar. Similarly restricted expression of TRPC2 and widespread expression of XNDR was also detected in the platypus. Bioinformatic analysis of the genomes of a wide range of species suggests that the identity of XNDR and TRPC2 as distinct genes is conserved among vertebrates. Finally, we analysed the promoter of mammalian TRPC2 and identified a conserved binding site for NHLH1, a transcription factor previously implicated in VNO receptor neuron development. CONCLUSIONS: Two functionally distinct vertebrate genes-XNDR and TRPC2 - occupy a genomic locus that was previously defined as a single gene in the mouse. The former is widely expressed with a putative role in DNA repair, while the latter shows VNO-specific expression under the probable regulation of NHLH1.


Subject(s)
Marsupialia/genetics , Monotremata/genetics , Protein Isoforms/genetics , TRPC Cation Channels/genetics , Vertebrates/genetics , Alternative Splicing , Animals , Base Sequence , Exons , Female , Humans , Molecular Sequence Data , Protein Isoforms/metabolism , Sequence Alignment , Synteny , TRPC Cation Channels/metabolism , Tissue Distribution , Vomeronasal Organ/anatomy & histology , Vomeronasal Organ/physiology
20.
Toxicol Pathol ; 39(5): 893-900, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21628717

ABSTRACT

The rabbit is occasionally used for inhalation and intranasal safety assessment studies, but there are no detailed descriptions of the anatomy or histology of the rabbit nose. To address this deficit, the nasal cavities of thirty-two control adult rabbits were sectioned and examined to provide mapping of the main epithelial types and histological structures present within the cavity and turbinates. Four levels of the nasal cavity were prepared and examined using anatomic landmarks. Level I was sectioned immediately posterior to the incisors, Level II at the first palatal ridge, Level III immediately anterior to the first upper premolar teeth, and Level IV immediately anterior to the first upper molar. Level I was lined predominantly by squamous epithelium with small amounts of thick transitional epithelium, and examination is recommended only for studies involving test article administration via instillation. Level II was lined primarily with transitional and respiratory epithelia, whereas Levels III and IV were lined with respiratory and olfactory epithelia and often contained nasal-associated lymphoid tissue. The vomeronasal organs were evident only in Level II. The similarities and differences of these features are compared with those of other common laboratory species (rat, mouse, dog, and cynomolgus monkey) and man.


Subject(s)
Models, Animal , Nasal Cavity/anatomy & histology , Rabbits/anatomy & histology , Turbinates/anatomy & histology , Administration, Inhalation , Administration, Intranasal , Animals , Biomedical Research/standards , Dogs , Female , Histology, Comparative , Humans , Macaca fascicularis , Male , Mice , Olfactory Mucosa/anatomy & histology , Rats , Vomeronasal Organ/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL