ABSTRACT
Raised peatlands, or bogs, are gently mounded landforms that are composed entirely of organic matter1-4 and store the most carbon per area of any terrestrial ecosystem5. The shapes of bogs are critically important because their domed morphology4,6,7 accounts for much of the carbon that bogs store and determines how they will respond to interventions8,9 to stop greenhouse gas emissions and fires after anthropogenic drainage10-13. However, a general theory to infer the morphology of bogs is still lacking4,6,7. Here we show that an equation based on the processes universal to bogs explains their morphology across biomes, from Alaska, through the tropics, to New Zealand. In contrast to earlier models of bog morphology that attempted to describe only long-term equilibrium shapes4,6,7 and were, therefore, inapplicable to most bogs14-16, our approach makes no such assumption and makes it possible to infer full shapes of bogs from a sample of elevations, such as a single elevation transect. Our findings provide a foundation for quantitative inference about the morphology, hydrology and carbon storage of bogs through Earth's history, as well as a basis for planning natural climate solutions by rewetting damaged bogs around the world.
Subject(s)
Carbon Sequestration , Carbon , Soil , Wetlands , Altitude , Carbon/metabolism , Climate , Geographic Mapping , Global Warming/prevention & control , Greenhouse Gases/metabolism , Hydrology , WildfiresABSTRACT
Current hypotheses of early tetrapod evolution posit close ecological and biogeographic ties to the extensive coal-producing wetlands of the Carboniferous palaeoequator with rapid replacement of archaic tetrapod groups by relatives of modern amniotes and lissamphibians in the late Carboniferous (about 307 million years ago). These hypotheses draw on a tetrapod fossil record that is almost entirely restricted to palaeoequatorial Pangea (Laurussia)1,2. Here we describe a new giant stem tetrapod, Gaiasia jennyae, from high-palaeolatitude (about 55° S) early Permian-aged (about 280 million years ago) deposits in Namibia that challenges this scenario. Gaiasia is represented by several large, semi-articulated skeletons characterized by a weakly ossified skull with a loosely articulated palate dominated by a broad diamond-shaped parasphenoid, a posteriorly projecting occiput, and enlarged, interlocking dentary and coronoid fangs. Phylogenetic analysis resolves Gaiasia within the tetrapod stem group as the sister taxon of the Carboniferous Colosteidae from Euramerica. Gaiasia is larger than all previously described digited stem tetrapods and provides evidence that continental tetrapods were well established in the cold-temperate latitudes of Gondwana during the final phases of the Carboniferous-Permian deglaciation. This points to a more global distribution of continental tetrapods during the Carboniferous-Permian transition and indicates that previous hypotheses of global tetrapod faunal turnover and dispersal at this time2,3 must be reconsidered.
Subject(s)
Fossils , Ice Cover , Predatory Behavior , Vertebrates , Animals , History, Ancient , Namibia , Palate/anatomy & histology , Phylogeny , Skull/anatomy & histology , Tooth/anatomy & histology , Vertebrates/anatomy & histology , Vertebrates/classification , Wetlands , Body SizeABSTRACT
The recovery of top predators is thought to have cascading effects on vegetated ecosystems and their geomorphology1,2, but the evidence for this remains correlational and intensely debated3,4. Here we combine observational and experimental data to reveal that recolonization of sea otters in a US estuary generates a trophic cascade that facilitates coastal wetland plant biomass and suppresses the erosion of marsh edges-a process that otherwise leads to the severe loss of habitats and ecosystem services5,6. Monitoring of the Elkhorn Slough estuary over several decades suggested top-down control in the system, because the erosion of salt marsh edges has generally slowed with increasing sea otter abundance, despite the consistently increasing physical stress in the system (that is, nutrient loading, sea-level rise and tidal scour7-9). Predator-exclusion experiments in five marsh creeks revealed that sea otters suppress the abundance of burrowing crabs, a top-down effect that cascades to both increase marsh edge strength and reduce marsh erosion. Multi-creek surveys comparing marsh creeks pre- and post-sea otter colonization confirmed the presence of an interaction between the keystone sea otter, burrowing crabs and marsh creeks, demonstrating the spatial generality of predator control of ecosystem edge processes: densities of burrowing crabs and edge erosion have declined markedly in creeks that have high levels of sea otter recolonization. These results show that trophic downgrading could be a strong but underappreciated contributor to the loss of coastal wetlands, and suggest that restoring top predators can help to re-establish geomorphic stability.
Subject(s)
Brachyura , Estuaries , Otters , Predatory Behavior , Soil Erosion , Wetlands , Animals , Biomass , Brachyura/physiology , Otters/physiology , United States , Plants , Sea Level Rise , Tidal Waves , Nutrients/metabolism , Food ChainABSTRACT
Wetlands have long been drained for human use, thereby strongly affecting greenhouse gas fluxes, flood control, nutrient cycling and biodiversity1,2. Nevertheless, the global extent of natural wetland loss remains remarkably uncertain3. Here, we reconstruct the spatial distribution and timing of wetland loss through conversion to seven human land uses between 1700 and 2020, by combining national and subnational records of drainage and conversion with land-use maps and simulated wetland extents. We estimate that 3.4 million km2 (confidence interval 2.9-3.8) of inland wetlands have been lost since 1700, primarily for conversion to croplands. This net loss of 21% (confidence interval 16-23%) of global wetland area is lower than that suggested previously by extrapolations of data disproportionately from high-loss regions. Wetland loss has been concentrated in Europe, the United States and China, and rapidly expanded during the mid-twentieth century. Our reconstruction elucidates the timing and land-use drivers of global wetland losses, providing an improved historical baseline to guide assessment of wetland loss impact on Earth system processes, conservation planning to protect remaining wetlands and prioritization of sites for wetland restoration4.
Subject(s)
Natural Resources , Spatio-Temporal Analysis , Wetlands , Humans , Biodiversity , China , Europe , Natural Resources/supply & distribution , United States , History, 18th Century , History, 19th Century , History, 20th Century , History, 21st CenturyABSTRACT
Several coastal ecosystems-most notably mangroves and tidal marshes-exhibit biogenic feedbacks that are facilitating adjustment to relative sea-level rise (RSLR), including the sequestration of carbon and the trapping of mineral sediment1. The stability of reef-top habitats under RSLR is similarly linked to reef-derived sediment accumulation and the vertical accretion of protective coral reefs2. The persistence of these ecosystems under high rates of RSLR is contested3. Here we show that the probability of vertical adjustment to RSLR inferred from palaeo-stratigraphic observations aligns with contemporary in situ survey measurements. A deficit between tidal marsh and mangrove adjustment and RSLR is likely at 4 mm yr-1 and highly likely at 7 mm yr-1 of RSLR. As rates of RSLR exceed 7 mm yr-1, the probability that reef islands destabilize through increased shoreline erosion and wave over-topping increases. Increased global warming from 1.5 °C to 2.0 °C would double the area of mapped tidal marsh exposed to 4 mm yr-1 of RSLR by between 2080 and 2100. With 3 °C of warming, nearly all the world's mangrove forests and coral reef islands and almost 40% of mapped tidal marshes are estimated to be exposed to RSLR of at least 7 mm yr-1. Meeting the Paris agreement targets would minimize disruption to coastal ecosystems.
Subject(s)
Global Warming , Temperature , Wetlands , Avicennia/physiology , Carbon Sequestration , Coral Reefs , Global Warming/prevention & control , Global Warming/statistics & numerical data , AnimalsABSTRACT
Methane (CH4) is a potent greenhouse gas and its concentrations have tripled in the atmosphere since the industrial revolution. There is evidence that global warming has increased CH4 emissions from freshwater ecosystems1,2, providing positive feedback to the global climate. Yet for rivers and streams, the controls and the magnitude of CH4 emissions remain highly uncertain3,4. Here we report a spatially explicit global estimate of CH4 emissions from running waters, accounting for 27.9 (16.7-39.7) Tg CH4 per year and roughly equal in magnitude to those of other freshwater systems5,6. Riverine CH4 emissions are not strongly temperature dependent, with low average activation energy (EM = 0.14 eV) compared with that of lakes and wetlands (EM = 0.96 eV)1. By contrast, global patterns of emissions are characterized by large fluxes in high- and low-latitude settings as well as in human-dominated environments. These patterns are explained by edaphic and climate features that are linked to anoxia in and near fluvial habitats, including a high supply of organic matter and water saturation in hydrologically connected soils. Our results highlight the importance of land-water connections in regulating CH4 supply to running waters, which is vulnerable not only to direct human modifications but also to several climate change responses on land.
Subject(s)
Ecosystem , Methane , Rivers , Lakes/chemistry , Methane/analysis , Methane/metabolism , Rivers/chemistry , Wetlands , Global Warming/statistics & numerical data , Human ActivitiesABSTRACT
Salt marshes provide ecosystem services such as carbon sequestration1, coastal protection2, sea-level-rise (SLR) adaptation3 and recreation4. SLR5, storm events6, drainage7 and mangrove encroachment8 are known drivers of salt marsh loss. However, the global magnitude and location of changes in salt marsh extent remains uncertain. Here we conduct a global and systematic change analysis of Landsat satellite imagery from the years 2000-2019 to quantify the loss, gain and recovery of salt marsh ecosystems and then estimate the impact of these changes on blue carbon stocks. We show a net salt marsh loss globally, equivalent to an area double the size of Singapore (719 km2), with a loss rate of 0.28% year-1 from 2000 to 2019. Net global losses resulted in 16.3 (0.4-33.2, 90% confidence interval) Tg CO2e year-1 emissions from 2000 to 2019 and a 0.045 (-0.14-0.115) Tg CO2e year-1 reduction of carbon burial. Russia and the USA accounted for 64% of salt marsh losses, driven by hurricanes and coastal erosion. Our findings highlight the vulnerability of salt marsh systems to climatic changes such as SLR and intensification of storms and cyclones.
Subject(s)
Carbon Sequestration , Carbon , Geographic Mapping , Internationality , Wetlands , Carbon/analysis , Sea Level Rise , Satellite Imagery , United States , Russia , Cyclonic Storms , Soil ErosionABSTRACT
Atmospheric methane growth reached an exceptionally high rate of 15.1 ± 0.4 parts per billion per year in 2020 despite a probable decrease in anthropogenic methane emissions during COVID-19 lockdowns1. Here we quantify changes in methane sources and in its atmospheric sink in 2020 compared with 2019. We find that, globally, total anthropogenic emissions decreased by 1.2 ± 0.1 teragrams of methane per year (Tg CH4 yr-1), fire emissions decreased by 6.5 ± 0.1 Tg CH4 yr-1 and wetland emissions increased by 6.0 ± 2.3 Tg CH4 yr-1. Tropospheric OH concentration decreased by 1.6 ± 0.2 per cent relative to 2019, mainly as a result of lower anthropogenic nitrogen oxide (NOx) emissions and associated lower free tropospheric ozone during pandemic lockdowns2. From atmospheric inversions, we also infer that global net emissions increased by 6.9 ± 2.1 Tg CH4 yr-1 in 2020 relative to 2019, and global methane removal from reaction with OH decreased by 7.5 ± 0.8 Tg CH4 yr-1. Therefore, we attribute the methane growth rate anomaly in 2020 relative to 2019 to lower OH sink (53 ± 10 per cent) and higher natural emissions (47 ± 16 per cent), mostly from wetlands. In line with previous findings3,4, our results imply that wetland methane emissions are sensitive to a warmer and wetter climate and could act as a positive feedback mechanism in the future. Our study also suggests that nitrogen oxide emission trends need to be taken into account when implementing the global anthropogenic methane emissions reduction pledge5.
Subject(s)
Atmosphere , Methane , Wetlands , Humans , Communicable Disease Control/statistics & numerical data , COVID-19/epidemiology , Methane/analysis , Ozone/analysis , Atmosphere/chemistry , Human Activities/statistics & numerical data , Time Factors , History, 21st Century , Temperature , Humidity , Nitrogen Oxides/analysisABSTRACT
During the last glacial-interglacial cycle, Arctic biotas experienced substantial climatic changes, yet the nature, extent and rate of their responses are not fully understood1-8. Here we report a large-scale environmental DNA metagenomic study of ancient plant and mammal communities, analysing 535 permafrost and lake sediment samples from across the Arctic spanning the past 50,000 years. Furthermore, we present 1,541 contemporary plant genome assemblies that were generated as reference sequences. Our study provides several insights into the long-term dynamics of the Arctic biota at the circumpolar and regional scales. Our key findings include: (1) a relatively homogeneous steppe-tundra flora dominated the Arctic during the Last Glacial Maximum, followed by regional divergence of vegetation during the Holocene epoch; (2) certain grazing animals consistently co-occurred in space and time; (3) humans appear to have been a minor factor in driving animal distributions; (4) higher effective precipitation, as well as an increase in the proportion of wetland plants, show negative effects on animal diversity; (5) the persistence of the steppe-tundra vegetation in northern Siberia enabled the late survival of several now-extinct megafauna species, including the woolly mammoth until 3.9 ± 0.2 thousand years ago (ka) and the woolly rhinoceros until 9.8 ± 0.2 ka; and (6) phylogenetic analysis of mammoth environmental DNA reveals a previously unsampled mitochondrial lineage. Our findings highlight the power of ancient environmental metagenomics analyses to advance understanding of population histories and long-term ecological dynamics.
Subject(s)
Biota , DNA, Ancient/analysis , DNA, Environmental/analysis , Metagenomics , Animals , Arctic Regions , Climate Change/history , Databases, Genetic , Datasets as Topic , Extinction, Biological , Geologic Sediments , Grassland , Greenland , Haplotypes/genetics , Herbivory/genetics , History, Ancient , Humans , Lakes , Mammoths , Mitochondria/genetics , Perissodactyla , Permafrost , Phylogeny , Plants/genetics , Population Dynamics , Rain , Siberia , Spatio-Temporal Analysis , WetlandsABSTRACT
As human-caused climate changes accelerate, California will experience hydrologic and temperature conditions different than any encountered in recorded history. How will these changes affect the state's freshwater ecosystems? Rivers, lakes, and wetlands are managed as a water resource, but they also support a complex web of life, ranging from bacteria, fungi, and algae to macrophytes, woody plants, invertebrates, fish, amphibians, reptiles, birds, and mammals. In much of the state, native freshwater organisms already struggle to survive massive water diversions and dams, deteriorating water quality, extensive land cover modification for agriculture and urban development, and invasions of exotic species. In the face of climate change, we need to expand efforts to recover degraded ecosystems and to protect the resilience, health, and viability of existing ecosystems. For this, more process-based understanding of river, lake, and wetlands ecosystems is needed to forecast how systems will respond to future climate change and to our interventions. This will require 1) expanding our ability to model mechanistically how freshwater biota and ecosystems respond to environmental change; 2) hypothesis-driven monitoring and field studies; 3) education and training to build research, practitioner, stewardship, and policy capabilities; and 4) developing tools and policies for building resilient ecosystems. A goals-driven, hypothesis-informed collaboration among tribes, state (and federal) agencies, nongovernmental organizations, academicians, and consultants is needed to accomplish these goals and to advance the skills and knowledge of the future workforce of practitioners, regulators, and researchers who must live with the climate changes that are already upon us and will intensify.
Subject(s)
Climate Change , Ecosystem , Fresh Water , California , Animals , Wetlands , Conservation of Natural Resources/methods , Humans , LakesABSTRACT
Permafrost regions contain approximately half of the carbon stored in land ecosystems and have warmed at least twice as much as any other biome. This warming has influenced vegetation activity, leading to changes in plant composition, physiology, and biomass storage in aboveground and belowground components, ultimately impacting ecosystem carbon balance. Yet, little is known about the causes and magnitude of long-term changes in the above- to belowground biomass ratio of plants (η). Here, we analyzed η values using 3,013 plots and 26,337 species-specific measurements across eight sites on the Tibetan Plateau from 1995 to 2021. Our analysis revealed distinct temporal trends in η for three vegetation types: a 17% increase in alpine wetlands, and a decrease of 26% and 48% in alpine meadows and alpine steppes, respectively. These trends were primarily driven by temperature-induced growth preferences rather than shifts in plant species composition. Our findings indicate that in wetter ecosystems, climate warming promotes aboveground plant growth, while in drier ecosystems, such as alpine meadows and alpine steppes, plants allocate more biomass belowground. Furthermore, we observed a threefold strengthening of the warming effect on η over the past 27 y. Soil moisture was found to modulate the sensitivity of η to soil temperature in alpine meadows and alpine steppes, but not in alpine wetlands. Our results contribute to a better understanding of the processes driving the response of biomass distribution to climate warming, which is crucial for predicting the future carbon trajectory of permafrost ecosystems and climate feedback.
Subject(s)
Biomass , Ecosystem , Permafrost , Tibet , Wetlands , Plants/metabolism , Climate Change , Temperature , Carbon Cycle , Plant Development/physiology , Soil/chemistry , GrasslandABSTRACT
Growing populations and agricultural intensification have led to raised riverine nitrogen (N) loads, widespread oxygen depletion in coastal zones (coastal hypoxia)1 and increases in the incidence of algal blooms.Although recent work has suggested that individual wetlands have the potential to improve water quality2-9, little is known about the current magnitude of wetland N removal at the landscape scale. Here we use National Wetland Inventory data and 5-kilometre grid-scale estimates of N inputs and outputs to demonstrate that current N removal by US wetlands (about 860 ± 160 kilotonnes of nitrogen per year) is limited by a spatial disconnect between high-density wetland areas and N hotspots. Our model simulations suggest that a spatially targeted increase in US wetland area by 10 per cent (5.1 million hectares) would double wetland N removal. This increase would provide an estimated 54 per cent decrease in N loading in nitrate-affected watersheds such as the Mississippi River Basin. The costs of this increase in area would be approximately 3.3 billion US dollars annually across the USA-nearly twice the cost of wetland restoration on non-agricultural, undeveloped land-but would provide approximately 40 times more N removal. These results suggest that water quality improvements, as well as other types of ecosystem services such as flood control and fish and wildlife habitat, should be considered when creating policy regarding wetland restoration and protection.
Subject(s)
Conservation of Natural Resources/methods , Nitrates/isolation & purification , Nitrates/metabolism , Wetlands , Agriculture , Animals , Conservation of Natural Resources/economics , Environmental Policy/economics , Environmental Policy/trends , Environmental Restoration and Remediation/economics , Environmental Restoration and Remediation/methods , Eutrophication , Floods/prevention & control , Geographic Mapping , Rivers , United States , Water QualityABSTRACT
The Classic Maya (c. 250 to 900 CE) in the tropical southern lowlands of Central America dealt with water scarcity during annual dry seasons and periods of climate instability via sophisticated urban reservoir systems they relied on for over a thousand years. Surface water is limited because typically rain percolates through the karstic terrain. I posit that Maya reservoirs functioned as do constructed wetlands (CWs) at present. Still-water systems like CWs and Maya reservoirs can become stagnant and nonpotable due to the build-up of nutrients that promote algal growth. Stagnant waters also serve as breeding grounds for mosquitoes that spread endemic diseases. CWs keep water clean via certain aquatic plants since all plants uptake nutrients (e.g., nitrogen, phosphorus) and decomposing plant matter supports microbial biofilms that break down nutrients. CWs also support diverse zooplankton that prey on pathogens and bacteria that assist to denitrify water. CWs do not require the use of chemicals or fossil fuels and after the initial labor-intensive output become self-cleaning and self-sufficient with some maintenance. I posit that the Maya used a diverse array of aquatic plants and other biota to keep water clean in the same manner as do CWs, which I demonstrate using evidence from excavations and settlement maps, sediment cores and current wetlands, and the iconographic and hieroglyphic records. The next step is to combine what we know about ancient Maya reservoirs in conjunction with what is currently known about CWs to better address future water needs.
Subject(s)
Water , Wetlands , Plant Breeding , Climate , Rain , NitrogenABSTRACT
Seagrasses provide multiple ecosystem services and act as intense carbon sinks in coastal regions around the globe but are threatened by multiple anthropogenic pressures, leading to enhanced seagrass mortality that reflects in the spatial self-organization of the meadows. Spontaneous spatial vegetation patterns appear in such different ecosystems as drylands, peatlands, salt marshes, or seagrass meadows, and the mechanisms behind this phenomenon are still an open question in many cases. Here, we report on the formation of vegetation traveling pulses creating complex spatiotemporal patterns and rings in Mediterranean seagrass meadows. We show that these structures emerge due to an excitable behavior resulting from the coupled dynamics of vegetation and porewater hydrogen sulfide, toxic to seagrass, in the sediment. The resulting spatiotemporal patterns resemble those formed in other physical, chemical, and biological excitable media, but on a much larger scale. Based on theory, we derive a model that reproduces the observed seascapes and predicts the annihilation of these circular structures as they collide, a distinctive feature of excitable pulses. We show also that the patterns in field images and the empirically resolved radial profiles of vegetation density and sediment sulfide concentration across the structures are consistent with predictions from the theoretical model, which shows these structures to have diagnostic value, acting as a harbinger of the terminal state of the seagrass meadows prior to their collapse.
Subject(s)
Ecosystem , Models, Theoretical , Wetlands , Carbon Sequestration , SulfidesABSTRACT
The distribution of mangrove intra-specific biodiversity can be structured by historical demographic processes that enhance or limit effective population sizes. Oceanographic connectivity (OC) may further structure intra-specific biodiversity by preserving or diluting the genetic signatures of historical changes. Despite its relevance for biogeography and evolution, the role of oceanographic connectivity in structuring the distribution of mangrove's genetic diversity has not been addressed at global scale. Here we ask whether connectivity mediated by ocean currents explains the intra-specific diversity of mangroves. A comprehensive dataset of population genetic differentiation was compiled from the literature. Multigenerational connectivity and population centrality indices were estimated with biophysical modeling coupled with network analyses. The variability explained in genetic differentiation was tested with competitive regression models built upon classical isolation-by-distance (IBD) models considering geographic distance. We show that oceanographic connectivity can explain the genetic differentiation of mangrove populations regardless of the species, region, and genetic marker (significant regression models in 95% of cases, with an average R-square of 0.44 ± 0.23 and Person's correlation of 0.65 ± 0.17), systematically improving IBD models. Centrality indices, providing information on important stepping-stone sites between biogeographic regions, were also important in explaining differentiation (R-square improvement of 0.06 ± 0.07, up to 0.42). We further show that ocean currents produce skewed dispersal kernels for mangroves, highlighting the role of rare long-distance dispersal events responsible for historical settlements. Overall, we demonstrate the role of oceanographic connectivity in structuring mangrove intra-specific diversity. Our findings are critical for mangroves' biogeography and evolution, but also for management strategies considering climate change and genetic biodiversity conservation.
Subject(s)
Forests , Wetlands , Humans , Biodiversity , Population Density , Genetic Drift , Genetic VariationABSTRACT
Diversification and demographic responses are key processes shaping species evolutionary history. Yet we still lack a full understanding of ecological mechanisms that shape genetic diversity at different spatial scales upon rapid environmental changes. In this study, we examined genetic differentiation in an extremophilic grass Puccinellia pamirica and factors affecting its population dynamics among the occupied hypersaline alpine wetlands on the arid Pamir Plateau in Central Asia. Using genomic data, we found evidence of fine-scale population structure and gene flow among the localities established across the high-elevation plateau as well as fingerprints of historical demographic expansion. We showed that an increase in the effective population size could coincide with the Last Glacial Period, which was followed by the species demographic decline during the Holocene. Geographic distance plays a vital role in shaping the spatial genetic structure of P. pamirica alongside with isolation-by-environment and habitat fragmentation. Our results highlight a complex history of divergence and gene flow in this species-poor alpine region during the Late Quaternary. We demonstrate that regional climate specificity and a shortage of nonclimate data largely impede predictions of future range changes of the alpine extremophile using ecological niche modeling. This study emphasizes the importance of fine-scale environmental heterogeneity for population dynamics and species distribution shifts.
Subject(s)
Biodiversity , Poaceae , Poaceae/genetics , Poaceae/classification , Gene Flow , Biological Evolution , Genetic Variation , WetlandsABSTRACT
Mangroves have been converted and degraded for decades. Rates of loss have declined over the past decades, but achieving resilient coastlines requires both conservation and restoration. Here, we outline the challenges for the global restoration of mangroves and what actions could enhance restoration. Ambitious global targets for mangrove restoration, if successful, could deliver global benefits of carbon sequestration, fisheries production, biodiversity, and coastal protection. However, large-scale mangrove planting efforts have often failed, and smaller projects may not deliver landscape-scale benefits, even though they are more suited to community management. Solutions to achieving global targets include reducing risks of large projects and increasing the uptake and effectiveness of smaller projects. Sustainable mangrove restoration requires investment in capacity building in communities and institutions, and mechanisms to match restoration opportunities with prospective supporters and investors. Global reporting standards will support adaptive management and help fully understand and monitor the benefits of mangrove restoration.