ABSTRACT
Craniosynostosis results from premature fusion of the cranial suture(s), which contain mesenchymal stem cells (MSCs) that are crucial for calvarial expansion in coordination with brain growth. Infants with craniosynostosis have skull dysmorphology, increased intracranial pressure, and complications such as neurocognitive impairment that compromise quality of life. Animal models recapitulating these phenotypes are lacking, hampering development of urgently needed innovative therapies. Here, we show that Twist1+/- mice with craniosynostosis have increased intracranial pressure and neurocognitive behavioral abnormalities, recapitulating features of human Saethre-Chotzen syndrome. Using a biodegradable material combined with MSCs, we successfully regenerated a functional cranial suture that corrects skull deformity, normalizes intracranial pressure, and rescues neurocognitive behavior deficits. The regenerated suture creates a niche into which endogenous MSCs migrated, sustaining calvarial bone homeostasis and repair. MSC-based cranial suture regeneration offers a paradigm shift in treatment to reverse skull and neurocognitive abnormalities in this devastating disease.
Subject(s)
Cognition/physiology , Cranial Sutures/physiopathology , Craniosynostoses/physiopathology , Regeneration/physiology , Skull/physiopathology , Animals , Behavior, Animal/drug effects , Cognition/drug effects , Craniosynostoses/genetics , Dura Mater/pathology , Dura Mater/physiopathology , Gelatin/pharmacology , Gene Expression Profiling , Hand Strength , Intracranial Pressure/drug effects , Intracranial Pressure/physiology , Locomotion/drug effects , Mesenchymal Stem Cells/drug effects , Methacrylates/pharmacology , Mice, Inbred C57BL , Motor Activity/drug effects , Organ Size/drug effects , Regeneration/drug effects , Skull/pathology , Twist-Related Protein 1/metabolism , Wnt Signaling Pathway/drug effectsABSTRACT
The WNT signal transduction cascade is a main regulator of development throughout the animal kingdom. Wnts are also key drivers of most types of tissue stem cells in adult mammals. Unsurprisingly, mutated Wnt pathway components are causative to multiple growth-related pathologies and to cancer. Here, we describe the core Wnt/ß-catenin signaling pathway, how it controls stem cells, and contributes to disease. Finally, we discuss strategies for Wnt-based therapies.
Subject(s)
Wnt Proteins/metabolism , Wnt Signaling Pathway , Animals , Congenital Abnormalities/metabolism , Humans , Molecular Targeted Therapy , Neoplasms/drug therapy , Neoplasms/metabolism , Organoids/metabolism , Stem Cells/metabolism , Wnt Proteins/chemistry , Wnt Proteins/genetics , Wnt Signaling Pathway/drug effectsABSTRACT
Although KDM5C is one of the most frequently mutated genes in X-linked intellectual disability1, the exact mechanisms that lead to cognitive impairment remain unknown. Here we use human patient-derived induced pluripotent stem cells and Kdm5c knockout mice to conduct cellular, transcriptomic, chromatin and behavioural studies. KDM5C is identified as a safeguard to ensure that neurodevelopment occurs at an appropriate timescale, the disruption of which leads to intellectual disability. Specifically, there is a developmental window during which KDM5C directly controls WNT output to regulate the timely transition of primary to intermediate progenitor cells and consequently neurogenesis. Treatment with WNT signalling modulators at specific times reveal that only a transient alteration of the canonical WNT signalling pathway is sufficient to rescue the transcriptomic and chromatin landscapes in patient-derived cells and to induce these changes in wild-type cells. Notably, WNT inhibition during this developmental period also rescues behavioural changes of Kdm5c knockout mice. Conversely, a single injection of WNT3A into the brains of wild-type embryonic mice cause anxiety and memory alterations. Our work identifies KDM5C as a crucial sentinel for neurodevelopment and sheds new light on KDM5C mutation-associated intellectual disability. The results also increase our general understanding of memory and anxiety formation, with the identification of WNT functioning in a transient nature to affect long-lasting cognitive function.
Subject(s)
Cognition , Embryo, Mammalian , Embryonic Development , Histone Demethylases , Wnt Signaling Pathway , Animals , Humans , Mice , Anxiety , Chromatin/drug effects , Chromatin/genetics , Chromatin/metabolism , Embryo, Mammalian/metabolism , Gene Expression Profiling , Histone Demethylases/genetics , Histone Demethylases/metabolism , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Intellectual Disability/genetics , Memory , Mice, Knockout , Mutation , Neurogenesis/genetics , Wnt Signaling Pathway/drug effectsABSTRACT
The segmented body plan of vertebrates is established during somitogenesis, a well-studied process in model organisms; however, the details of this process in humans remain largely unknown owing to ethical and technical limitations. Despite recent advances with pluripotent stem cell-based approaches1-5, models that robustly recapitulate human somitogenesis in both space and time remain scarce. Here we introduce a pluripotent stem cell-derived mesoderm-based 3D model of human segmentation and somitogenesis-which we termed 'axioloid'-that captures accurately the oscillatory dynamics of the segmentation clock and the morphological and molecular characteristics of sequential somite formation in vitro. Axioloids show proper rostrocaudal patterning of forming segments and robust anterior-posterior FGF-WNT signalling gradients and retinoic acid signalling components. We identify an unexpected critical role of retinoic acid signalling in the stabilization of forming segments, indicating distinct, but also synergistic effects of retinoic acid and extracellular matrix on the formation and epithelialization of somites. Comparative analysis demonstrates marked similarities of axioloids to the human embryo, further validated by the presence of a Hox code in axioloids. Finally, we demonstrate the utility of axioloids for studying the pathogenesis of human congenital spine diseases using induced pluripotent stem cells with mutations in HES7 and MESP2. Our results indicate that axioloids represent a promising platform for the study of axial development and disease in humans.
Subject(s)
Body Patterning , Cell Culture Techniques, Three Dimensional , Somites , Humans , Body Patterning/drug effects , Extracellular Matrix/metabolism , Fibroblast Growth Factors/metabolism , In Vitro Techniques , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Models, Biological , Mutation , Somites/cytology , Somites/drug effects , Somites/embryology , Somites/metabolism , Spinal Diseases/pathology , Tretinoin/metabolism , Tretinoin/pharmacology , Wnt Signaling Pathway/drug effectsABSTRACT
Wnt signalling is essential for regulation of embryonic development and adult tissue homeostasis1-3, and aberrant Wnt signalling is frequently associated with cancers4. Wnt signalling requires palmitoleoylation on a hairpin 2 motif by the endoplasmic reticulum-resident membrane-bound O-acyltransferase Porcupine5-7 (PORCN). This modification is indispensable for Wnt binding to its receptor Frizzled, which triggers signalling8,9. Here we report four cryo-electron microscopy structures of human PORCN: the complex with the palmitoleoyl-coenzyme A (palmitoleoyl-CoA) substrate; the complex with the PORCN inhibitor LGK974, an anti-cancer drug currently in clinical trials10; the complex with LGK974 and WNT3A hairpin 2 (WNT3Ap); and the complex with a synthetic palmitoleoylated WNT3Ap analogue. The structures reveal that hairpin 2 of WNT3A, which is well conserved in all Wnt ligands, inserts into PORCN from the lumenal side, and the palmitoleoyl-CoA accesses the enzyme from the cytosolic side. The catalytic histidine triggers the transfer of the unsaturated palmitoleoyl group to the target serine on the Wnt hairpin 2, facilitated by the proximity of the two substrates. The inhibitor-bound structure shows that LGK974 occupies the palmitoleoyl-CoA binding site to prevent the reaction. Thus, this work provides a mechanism for Wnt acylation and advances the development of PORCN inhibitors for cancer treatment.
Subject(s)
Acyltransferases , Membrane Proteins , Wnt Signaling Pathway , Acylation/drug effects , Acyltransferases/antagonists & inhibitors , Acyltransferases/metabolism , Antineoplastic Agents , Binding Sites , Coenzyme A/metabolism , Cryoelectron Microscopy , Histidine , Humans , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Palmitoyl Coenzyme A , Pyrazines/pharmacology , Pyridines/pharmacology , Serine , Substrate Specificity , Wnt Signaling Pathway/drug effects , Wnt3A ProteinABSTRACT
Somatic mutations in p53, which inactivate the tumour-suppressor function of p53 and often confer oncogenic gain-of-function properties, are very common in cancer1,2. Here we studied the effects of hotspot gain-of-function mutations in Trp53 (the gene that encodes p53 in mice) in mouse models of WNT-driven intestinal cancer caused by Csnk1a1 deletion3,4 or ApcMin mutation5. Cancer in these models is known to be facilitated by loss of p533,6. We found that mutant versions of p53 had contrasting effects in different segments of the gut: in the distal gut, mutant p53 had the expected oncogenic effect; however, in the proximal gut and in tumour organoids it had a pronounced tumour-suppressive effect. In the tumour-suppressive mode, mutant p53 eliminated dysplasia and tumorigenesis in Csnk1a1-deficient and ApcMin/+ mice, and promoted normal growth and differentiation of tumour organoids derived from these mice. In these settings, mutant p53 was more effective than wild-type p53 at inhibiting tumour formation. Mechanistically, the tumour-suppressive effects of mutant p53 were driven by disruption of the WNT pathway, through preventing the binding of TCF4 to chromatin. Notably, this tumour-suppressive effect was completely abolished by the gut microbiome. Moreover, a single metabolite derived from the gut microbiota-gallic acid-could reproduce the entire effect of the microbiome. Supplementing gut-sterilized p53-mutant mice and p53-mutant organoids with gallic acid reinstated the TCF4-chromatin interaction and the hyperactivation of WNT, thus conferring a malignant phenotype to the organoids and throughout the gut. Our study demonstrates the substantial plasticity of a cancer mutation and highlights the role of the microenvironment in determining its functional outcome.
Subject(s)
Carcinogenesis/genetics , Carcinogenesis/pathology , Gastrointestinal Microbiome/genetics , Genes, Tumor Suppressor , Mutation , Oncogenes/genetics , Tumor Suppressor Protein p53/genetics , Animals , Anti-Bacterial Agents/pharmacology , Carcinogenesis/drug effects , Female , Gallic Acid/pharmacology , Gastrointestinal Microbiome/drug effects , Humans , Male , Mice , Organoids/metabolism , Transcription, Genetic , Tumor Suppressor Protein p53/metabolism , Wnt Signaling Pathway/drug effectsABSTRACT
Islets derived from stem cells hold promise as a therapy for insulin-dependent diabetes, but there remain challenges towards achieving this goal1-6. Here we generate human islet-like organoids (HILOs) from induced pluripotent stem cells and show that non-canonical WNT4 signalling drives the metabolic maturation necessary for robust ex vivo glucose-stimulated insulin secretion. These functionally mature HILOs contain endocrine-like cell types that, upon transplantation, rapidly re-establish glucose homeostasis in diabetic NOD/SCID mice. Overexpression of the immune checkpoint protein programmed death-ligand 1 (PD-L1) protected HILO xenografts such that they were able to restore glucose homeostasis in immune-competent diabetic mice for 50 days. Furthermore, ex vivo stimulation with interferon-γ induced endogenous PD-L1 expression and restricted T cell activation and graft rejection. The generation of glucose-responsive islet-like organoids that are able to avoid immune detection provides a promising alternative to cadaveric and device-dependent therapies in the treatment of diabetes.
Subject(s)
Diabetes Mellitus, Experimental/immunology , Diabetes Mellitus, Experimental/pathology , Immune Evasion , Islets of Langerhans/cytology , Islets of Langerhans/immunology , Organoids/cytology , Organoids/immunology , Animals , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Cell Line , Epigenesis, Genetic , Female , Glucose/metabolism , Graft Rejection , Heterografts , Homeostasis , Humans , Immune Tolerance , Insulin Secretion , Islets of Langerhans Transplantation , Lymphocyte Activation , Male , Mice , Mice, Inbred NOD , Mice, SCID , Organoids/transplantation , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Wnt Signaling Pathway/drug effects , Wnt4 Protein/metabolism , Wnt4 Protein/pharmacologyABSTRACT
The use of androgen receptor (AR) inhibitors in prostate cancer gives rise to increased cellular lineage plasticity resulting in resistance to AR-targeted therapies. In this study, we examined the chromatin landscape of AR-positive prostate cancer cells post-exposure to the AR inhibitor enzalutamide. We identified a novel regulator of cell plasticity, the homeobox transcription factor SIX2, whose motif is enriched in accessible chromatin regions after treatment. Depletion of SIX2 in androgen-independent PC-3 prostate cancer cells induced a switch from a stem-like to an epithelial state, resulting in reduced cancer-related properties such as proliferation, colony formation, and metastasis both in vitro and in vivo. These effects were mediated through the downregulation of the Wnt/ß-catenin signalling pathway and subsequent reduction of nuclear ß-catenin. Collectively, our findings provide compelling evidence that the depletion of SIX2 may represent a promising strategy for overcoming the cell plasticity mechanisms driving antiandrogen resistance in prostate cancer.
Subject(s)
Benzamides , Cell Plasticity , Homeodomain Proteins , Nitriles , Phenylthiohydantoin , Prostatic Neoplasms , Receptors, Androgen , Wnt Signaling Pathway , beta Catenin , Animals , Humans , Male , Mice , Benzamides/pharmacology , beta Catenin/metabolism , beta Catenin/genetics , Cell Line, Tumor , Cell Plasticity/genetics , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Nitriles/pharmacology , PC-3 Cells , Phenylthiohydantoin/pharmacology , Phenylthiohydantoin/analogs & derivatives , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Prostatic Neoplasms/drug therapy , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Wnt Signaling Pathway/drug effectsABSTRACT
Oligodendrocyte precursor cells are present in the adult central nervous system, and their impaired ability to differentiate into myelinating oligodendrocytes can lead to demyelination in patients with multiple sclerosis, accompanied by neurological deficits and cognitive impairment. Exosomes, small vesicles released by cells, are known to facilitate intercellular communication by carrying bioactive molecules. In this study, we utilized exosomes derived from human umbilical cord mesenchymal stem cells (HUMSCs-Exos). We performed sequencing and bioinformatics analysis of exosome-treated cells to demonstrate that HUMSCs-Exos can stimulate myelin gene expression in oigodendrocyte precursor cells. Functional investigations revealed that HUMSCs-Exos activate the Pi3k/Akt pathway and regulate the Tbr1/Wnt signaling molecules through the transfer of miR-23a-3p, promoting oligodendrocytes differentiation and enhancing the expression of myelin-related proteins. In an experimental autoimmune encephalomyelitis model, treatment with HUMSCs-Exos significantly improved neurological function and facilitated remyelination. This study provides cellular and molecular insights into the use of cell-free exosome therapy for central nervous system demyelination associated with multiple sclerosis, demonstrating its great potential for treating demyelinating and neurodegenerative diseases.
Subject(s)
Exosomes , Mesenchymal Stem Cells , MicroRNAs , Multiple Sclerosis , Remyelination , Adult , Humans , Cell Differentiation/genetics , Exosomes/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , MicroRNAs/metabolism , MicroRNAs/pharmacology , MicroRNAs/therapeutic use , Multiple Sclerosis/genetics , Multiple Sclerosis/therapy , Multiple Sclerosis/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Remyelination/drug effects , Remyelination/genetics , Umbilical Cord/cytology , Umbilical Cord/metabolism , Wnt Signaling Pathway/drug effects , Signal Transduction/drug effects , Signal Transduction/genetics , T-Box Domain Proteins/metabolism , Disease Models, Animal , Cells, CulturedABSTRACT
Conjunctival fibrosis is a common postoperative complication of glaucoma filtration surgery, resulting in uncontrolled intraocular pressure and surgery failure. Therefore, there is an urgent need to understand the molecular mechanisms underlying conjunctival fibrosis and to explore novel pharmacologic anti-fibrosis therapies for glaucoma filtration surgery. Herein, the 4-dimensional data-independent acquisition (4D-DIA) quantitative proteomic results, coupled with experimental data, revealed the activation of the Wnt/ß-catenin pathway in transforming growth factor (TGF)-ß1-induced human conjunctival fibroblasts (HConFs). Treatment with ICG-001, a Wnt/ß-catenin inhibitor, effectively inhibited cell proliferation and migration in TGFß1-treated HConFs. ICG-001 treatment alleviated the increased generation of extracellular matrix proteins induced by TGFß1. In addition, ICG-001 reduced the expression level of α smooth muscle actin (α-SMA) and inhibited cell contractility in TGFß1-treated HConFs. Proteomics data further suggested that αB-crystallin (CRYAB) was a downstream target of Wnt/ß-catenin, which was up-regulated by TGFß1 and down-regulated by ICG-001. Immunoblotting assay also indicated that ICG-001 reduced the expressions of ubiquitin and ß-catenin in TGFß1-treated HConFs, implying that CRYAB stabilized ß-catenin by inhibiting its ubiquitination degradation. Exogenous CRYAB promoted cell viability, increased extracellular matrix protein levels, and up-regulated α-SMA expression of HConFs under TGFß1 stimulation. CRYAB rescued TGFß1-induced fibrotic responses that were suppressed by ICG-001. In conclusion, this study elucidates the regulatory mechanism of the Wnt/ß-catenin/CRYAB pathway in conjunctival fibrosis, offering promising therapeutic targets for mitigating bleb scarring after glaucoma filtration surgery.
Subject(s)
Conjunctiva , Fibroblasts , Fibrosis , Transforming Growth Factor beta1 , Wnt Signaling Pathway , Humans , beta Catenin/metabolism , Bridged Bicyclo Compounds, Heterocyclic , Cell Proliferation/drug effects , Conjunctiva/pathology , Conjunctiva/metabolism , Conjunctiva/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Fibroblasts/drug effects , Proteomics/methods , Pyrimidinones/pharmacology , Transforming Growth Factor beta1/metabolism , Wnt Signaling Pathway/drug effectsABSTRACT
Wnt/ß-catenin signaling plays a crucial role in the migration of mesenchymal stem cells (MSCs). However, our study has revealed an intriguing phenomenon where Dickkopf-1 (DKK1), an inhibitor of Wnt/ß-catenin signaling, promotes MSC migration at certain concentrations ranging from 25 to 100 ng/mL while inhibiting Wnt3a-induced MSC migration at a higher concentration (400 ng/mL). Interestingly, DKK1 consistently inhibited Wnt3a-induced phosphorylation of LRP6 at all concentrations. We further identified cytoskeleton-associated protein 4 (CKAP4), another DKK1 receptor, to be localized on the cell membrane of MSCs. Overexpressing the CRD2 deletion mutant of DKK1 (ΔCRD2), which selectively binds to CKAP4, promoted the accumulation of active ß-catenin (ABC), the phosphorylation of AKT (Ser473) and the migration of MSCs, suggesting that DKK1 may activate Wnt/ß-catenin signaling via the CKAP4/PI3K/AKT cascade. We also investigated the effect of the CKAP4 intracellular domain mutant (CKAP4-P/A) that failed to activate the PI3K/AKT pathway and found that CKAP4-P/A suppressed DKK1 (100 ng/mL)-induced AKT activation, ABC accumulation, and MSC migration. Moreover, CKAP4-P/A significantly weakened the inhibitory effects of DKK1 (400 ng/mL) on Wnt3a-induced MSC migration and Wnt/ß-catenin signaling. Based on these findings, we propose that DKK1 may activate the PI3K/AKT pathway via CKAP4 to balance the inhibitory effect on Wnt/ß-catenin signaling and thus regulate Wnt3a-induced migration of MSCs. Our study reveals a previously unrecognized role of DKK1 in regulating MSC migration, highlighting the importance of CKAP4 and PI3K/AKT pathways in this process.
Subject(s)
Cell Movement , Intercellular Signaling Peptides and Proteins , Mesenchymal Stem Cells , Wnt Signaling Pathway , Animals , Humans , beta Catenin/metabolism , Cell Movement/drug effects , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/pharmacology , Low Density Lipoprotein Receptor-Related Protein-6/metabolism , Low Density Lipoprotein Receptor-Related Protein-6/genetics , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Wnt Signaling Pathway/drug effects , Wnt3A Protein/metabolism , RatsABSTRACT
Breast cancer is one of the threatening malignant tumors with the highest mortality and incidence rate over the world. There are a lot of breast cancer patients dying every year due to the lack of effective and safe therapeutic drugs. Therefore, it is highly necessary to develop more effective drugs to overcome breast cancer. As a glycoside derivative of apigenin, cosmosiin is characterized by low toxicity, high water solubility, and wide distribution in nature. Additionally, cosmosiin has been shown to perform anti-tumor effects in cervical cancer, hepatocellular carcinoma and melanoma. However, its pharmacological effects on breast cancer and its mechanisms are still unknown. In our study, the anti-breast cancer effect and mechanism of cosmosiin were investigated by using breast cancer models in vivo and in vitro. The results showed that cosmosiin inhibited the proliferation, migration, and adhesion of breast cancer cells in vitro and suppressed the growth of tumor in vivo through binding with AhR and inhibiting it, thus regulating the downstream CYP1A1/AMPK/mTOR and PPARγ/Wnt/ß-catenin signaling pathways. Collectively, our findings have made contribution to the development of novel drugs against breast cancer by targeting AhR and provided a new direction for the research in the field of anti-breast cancer therapy.
Subject(s)
Breast Neoplasms , Cell Proliferation , Cytochrome P-450 CYP1A1 , PPAR gamma , Receptors, Aryl Hydrocarbon , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , PPAR gamma/metabolism , Animals , Receptors, Aryl Hydrocarbon/metabolism , Mice , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1A1/genetics , Cell Proliferation/drug effects , Mice, Nude , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Mice, Inbred BALB C , Cell Movement/drug effects , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Xenograft Model Antitumor Assays , Wnt Signaling Pathway/drug effectsABSTRACT
Gliomas, the most common CNS (central nerve system) tumors, face poor survival due to severe chemoresistance exacerbated by hypoxia. However, studies on whether altered hypoxic conditions benefit for chemo-sensitivity and how gliomas react to increased oxygen stimulation are limited. In this study, we demonstrated that increased oxygen stimulation promotes glioma growth and chemoresistance. Mechanically, increased oxygen stimulation upregulates miR-1290 levels. miR-1290, in turn, downregulates PLCB1, while PLCB1 facilitates the proteasomal degradation of ß-catenin and active-ß-catenin by increasing the proportion of ubiquitinated ß-catenin in a destruction complex-independent mechanism. This process inhibits PLCB1 expression, leads to the accumulation of active-ß-catenin, boosting Wnt signaling through an independent mechanism and ultimately promoting chemoresistance in glioma cells. Pharmacological inhibition of Wnt by WNT974 could partially inhibit glioma volume growth and prolong the shortened survival caused by increased oxygen stimulation in a glioma-bearing mouse model. Moreover, PLCB1, a key molecule regulated by increased oxygen stimulation, shows promising predictive power in survival analysis and has great potential to be a biomarker for grading and prognosis in glioma patients. These results provide preliminary insights into clinical scenarios associated with altered hypoxic conditions in gliomas, and introduce a novel perspective on the role of the hypoxic microenvironment in glioma progression. Furthermore, the outcomes reveal the potential risks of utilizing hyperbaric oxygen treatment (HBOT) in glioma patients, particularly when considering HBOT as a standalone option to ameliorate neuro-dysfunctions or when combining HBOT with a single chemotherapy agent without radiotherapy.
Subject(s)
Brain Neoplasms , Drug Resistance, Neoplasm , Glioma , MicroRNAs , Oxygen , Phospholipase C beta , Wnt Signaling Pathway , beta Catenin , Glioma/drug therapy , Glioma/pathology , Glioma/genetics , Glioma/therapy , Glioma/metabolism , Animals , Humans , Drug Resistance, Neoplasm/drug effects , Mice , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/therapy , Wnt Signaling Pathway/drug effects , Oxygen/metabolism , Phospholipase C beta/metabolism , Phospholipase C beta/genetics , beta Catenin/metabolism , beta Catenin/genetics , Cell Line, Tumor , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Phenotype , Mice, NudeABSTRACT
Hypertension-induced brain renin-angiotensin system (RAS) activation and neuroinflammation are hallmark neuropathological features of neurodegenerative diseases. Previous studies from our lab have shown that inhibition of ACE/Ang II/AT1R axis (by AT1R blockers or ACE inhibitors) reduced neuroinflammation and accompanied neurodegeneration via up-regulating adult hippocampal neurogenesis. Apart from this conventional axis, another axis of RAS also exists i.e., ACE2/Ang (1-7)/MasR axis, reported as an anti-hypertensive and anti-inflammatory. However, the role of this axis has not been explored in hypertension-induced glial activation and hippocampal neurogenesis in rat models of hypertension. Hence, in the present study, we examined the effect of ACE2 activator, Diminazene aceturate (DIZE) at 2 different doses of 10 mg/kg (non-antihypertensive) and 15 mg/kg (antihypertensive dose) in renovascular hypertensive rats to explore whether their effect on glial activation, neuroinflammation, and neurogenesis is either influenced by blood-pressure. The results of our study revealed that hypertension induced significant glial activation (astrocyte and microglial), neuroinflammation, and impaired hippocampal neurogenesis. However, ACE2 activation by DIZE, even at the low dose prevented these hypertension-induced changes in the brain. Mechanistically, ACE2 activation inhibited Ang II levels, TRAF6-NFκB mediated inflammatory signaling, NOX4-mediated ROS generation, and mitochondrial dysfunction by upregulating ACE2/Ang (1-7)/MasR signaling. Moreover, DIZE-induced activation of the ACE2/Ang (1-7)/MasR axis upregulated Wnt/ß-catenin signaling, promoting hippocampal neurogenesis during the hypertensive state. Therefore, our study demonstrates that ACE2 activation can effectively prevent glial activation and enhance hippocampal neurogenesis in hypertensive conditions, regardless of its blood pressure-lowering effects.
Subject(s)
Angiotensin-Converting Enzyme 2 , Hippocampus , Hypertension , Neurogenesis , Wnt Signaling Pathway , Animals , Angiotensin-Converting Enzyme 2/metabolism , Neurogenesis/drug effects , Hippocampus/metabolism , Hypertension/metabolism , Rats , Male , Wnt Signaling Pathway/drug effects , Wnt Signaling Pathway/physiology , Diminazene/analogs & derivatives , Diminazene/pharmacology , Peptidyl-Dipeptidase A/metabolism , Rats, Sprague-DawleyABSTRACT
In myocardial infarction, ischemia-reperfusion injury (IRI) poses a significant challenge due to a lack of effective treatments. Bilirubin, a natural compound known for its anti-inflammatory and antioxidant properties, has been identified as a potential therapeutic agent for IRI. Currently, there are no reports about proteomic studies related to IRI and bilirubin treatment. In this study, we explored the effects of bilirubin nanoparticles in a rat model of myocardial IRI. A total of 3616 protein groups comprising 76,681 distinct peptides were identified using LC-MS/MS, where we distinguished two kinds of protein groups: those showing increased expression in IRI and decreased expression in IRI with bilirubin treatment, and vice versa, accounting for 202 and 35 proteins, respectively. Our proteomic analysis identified significant upregulation in the Wnt and insulin signaling pathways and increased Golgi markers, indicating their role in mediating bilirubin nanoparticle's protective effects. This research contributes to the proteomic understanding of myocardial IRI and suggests bilirubin nanoparticles as a promising strategy for cardiac protection, warranting further investigation in human models.
Subject(s)
Bilirubin , Myocardial Reperfusion Injury , Nanoparticles , Proteomics , Tandem Mass Spectrometry , Animals , Bilirubin/pharmacology , Nanoparticles/chemistry , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/metabolism , Proteomics/methods , Rats , Male , Rats, Sprague-Dawley , Chromatography, Liquid , Disease Models, Animal , Wnt Signaling Pathway/drug effectsABSTRACT
TNKS is a new target for the treatment of lung adenocarcinoma, the synergistic effects of the TCM compound Xiaoyan decoction and the TNKS inhibitor E7449 in the intervention on TNKS were investigated, and the possible underlying mechanisms involved were clarified. Immunohistochemistry was used to analyse TNKS expression in tumour tissues. The impact of targeting TNKS on cell growth, invasion, apoptosis, key genes and signalling pathways was investigated in tumour cells by Western blotting, rescue experiments, colony formation assays, flow cytometry and label-free experiments. Tumour xenografts with A549 cells were then transplanted for in vivo study. We found that TNKS high expression was closely related to the advanced tumour stage and tumour size in lung adenocarcinom. After TNKS was knocked down in vitro, the growth, proliferation, migration and invasion were markedly reduced in A549 and H1975 cells. We subsequently applied the Xiaoyan decoction and TNKS inhibitors to intervene in lung adenocarcinoma. Xiaoyan decoction and E7449 suppressed TNKS expression and inhibited adenocarcinoma cell proliferation, migration, invasion and apoptosis in vitro. Proteomic analysis revealed that E7449 treatment may be most closely associated with the classic Wnt/ß-catenin pathway, whereas Xiaoyan decoction treatment may be related to the WNT/PLAN pathway. Xenograft studies confirmed that E7449 or Xiaoyan decoction inhibited lung tumour growth in vivo and attenuated the Wnt signalling pathway in adenocarcinoma. These findings suggest that TNKS is a novel therapeutic target. TCM preparations and small molecule inhibitors are expected to constitute an effective combination strategy.
Subject(s)
Adenocarcinoma of Lung , Apoptosis , Cell Movement , Cell Proliferation , Drugs, Chinese Herbal , Lung Neoplasms , Xenograft Model Antitumor Assays , Humans , Animals , Drugs, Chinese Herbal/pharmacology , Cell Proliferation/drug effects , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/drug therapy , Apoptosis/drug effects , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/drug therapy , Cell Movement/drug effects , Wnt Signaling Pathway/drug effects , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Mice , Carcinogenesis/drug effects , Carcinogenesis/genetics , Carcinogenesis/pathology , A549 Cells , Mice, Nude , Male , Female , Proteomics/methods , Mice, Inbred BALB CABSTRACT
L-type amino acid transporter 1 (LAT1) is specifically expressed in many malignancies, contributes to the transport of essential amino acids, such as leucine, and regulates the mammalian target of rapamycin (mTOR) signaling pathway. We investigated the expression profile and functional role of LAT1 in prostate cancer using JPH203, a specific inhibitor of LAT1. LAT1 was highly expressed in castration-resistant prostate cancer (CRPC) cells, including C4-2 and PC-3 cells, but its expression level was low in castration-sensitive LNCaP cells. JPH203 significantly inhibited [14C] leucine uptake in CRPC cells but had no effect in LNCaP cells. JPH203 inhibited the proliferation, migration, and invasion of CRPC cells but not of LNCaP cells. In C4-2 cells, Cluster of differentiation (CD) 24 was identified by RNA sequencing as a novel downstream target of JPH203. CD24 was downregulated in a JPH203 concentration-dependent manner and suppressed activation of the Wnt/ß-catenin signaling pathway. Furthermore, an in vivo study showed that JPH203 inhibited the proliferation of C4-2 cells in a castration environment. The results of this study indicate that JPH203 may exert its antitumor effect in CRPC cells via mTOR and CD24.
Subject(s)
CD24 Antigen , Cell Movement , Cell Proliferation , Large Neutral Amino Acid-Transporter 1 , Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Large Neutral Amino Acid-Transporter 1/metabolism , Cell Line, Tumor , Animals , Cell Proliferation/drug effects , CD24 Antigen/metabolism , Mice , Cell Movement/drug effects , Wnt Signaling Pathway/drug effects , Xenograft Model Antitumor Assays , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/antagonists & inhibitors , Benzoxazoles/pharmacology , Leucine/pharmacology , Leucine/analogs & derivatives , Mice, Nude , Gene Expression Regulation, Neoplastic/drug effects , Tyrosine/analogs & derivativesABSTRACT
Alzheimer's disease (AD), the most prevalent form of dementia, is characterized by progressive cognitive impairment accompanied by aberrant neuronal apoptosis. Reports suggest that the pro-apoptotic mammalian set20-like kinase 1/2 (MST1/2) instigates neuronal apoptosis via activating the Hippo signaling pathway under various stress conditions, including AD. However, whether inhibiting MST1/2 has any therapeutic benefits in AD remains unknown. Thus, we tested the therapeutic effects of intervening MST1/2 activation via the pharmacological inhibitor Xmu-mp-1 in a sporadic AD rat model. Sporadic AD was established in adult rats by intracerebroventricular streptozotocin (ICV-STZ) injection (3 mg/kg body weight). Xmu-mp-1 (0.5 mg/kg/body weight) was administered once every 48 h for two weeks, and Donepezil (5 mg/kg body weight) was used as a reference standard drug. The therapeutic effects of Xmu-mp-1 on ICV-STZ rats were determined through various behavioral, biochemical, histopathological, and molecular tests. At the behavioral level, Xmu-mp-1 improved cognitive deficits in sporadic AD rats. Further, Xmu-mp-1 treatment reduced STZ-associated tau phosphorylation, amyloid-beta deposition, oxidative stress, neurotoxicity, neuroinflammation, synaptic dysfunction, neuronal apoptosis, and neurodegeneration. Mechanistically, Xmu-mp-1 exerted these neuroprotective actions by inactivating the Hippo signaling while potentiating the Wnt/ß-Catenin signaling in the AD rats. Together, the results of the present study provide compelling support that Xmu-mp-1 negated the neuronal dysregulation in the rat model of sporadic AD. Therefore, inhibiting MST/Hippo signaling and modulating its crosstalk with the Wnt/ß-Catenin pathway can be a promising alternative treatment strategy against AD pathology. This is the first study providing novel mechanistic insights into the therapeutic use of Xmu-mp-1 in sporadic AD.
Subject(s)
Alzheimer Disease , Apoptosis , Disease Models, Animal , Wnt Signaling Pathway , Animals , Male , Rats , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Apoptosis/drug effects , Hepatocyte Growth Factor/metabolism , Hepatocyte Growth Factor/genetics , Hippo Signaling Pathway , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins , Rats, Sprague-Dawley , Streptozocin , Wnt Signaling Pathway/drug effectsABSTRACT
Adaptive resistance to conventional and targeted therapies remains one of the major obstacles in the effective management of cancer. Aberrant activation of key signaling mechanisms plays a pivotal role in modulating resistance to drugs. An evolutionarily conserved Wnt/ß-catenin pathway is one of the signaling cascades which regulate resistance to drugs. Elevated Wnt signaling confers resistance to anticancer therapies, either through direct activation of its target genes or via indirect mechanisms and crosstalk over other signaling pathways. Involvement of the Wnt/ß-catenin pathway in cancer hallmarks like inhibition of apoptosis, promotion of invasion and metastasis and cancer stem cell maintenance makes this pathway a potential target to exploit for addressing drug resistance. Accumulating evidences suggest a critical role of Wnt/ß-catenin pathway in imparting resistance across multiple cancers including PDAC, NSCLC, TNBC, etc. Here we present a comprehensive assessment of how Wnt/ß-catenin pathway mediates cancer drug resistance in majority of the solid tumors. We take a deep dive into the Wnt/ß-catenin signaling-mediated modulation of cellular and downstream molecular mechanisms and their impact on cancer resistance.
Subject(s)
Drug Resistance, Neoplasm , Neoplasms , Wnt Signaling Pathway , Humans , Drug Resistance, Neoplasm/genetics , Wnt Signaling Pathway/drug effects , Neoplasms/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , beta Catenin/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , AnimalsABSTRACT
Dihydroquercetin (DHQ), also known as Taxifolin (TA), is a flavanonol with various biological activities, such as anticancer, anti-inflammatory, and antioxidative properties. It has been found to effectively increase the viability of porcine intestinal epithelial cells (IPEC-J2). However, the precise mechanism by which DHQ increases the proliferation of IPEC-J2 cells is not entirely understood. This study aimed to explore the potential pathways through which DHQ encourages the proliferation of IPEC-J2 cells. The findings indicated that DHQ significantly improved the protein expression of tight junction proteins (ZO-1, Occludin, and Claudin1) and a molecular biomarker of proliferation (PCNA) in IPEC-J2 cells. Furthermore, DHQ was found to increase the Wnt/ß-catenin pathway-associated ß-catenin, c-Myc, and cyclin D1 mRNA expression, and promote the protein expression of ß-catenin and TCF4. To confirm the involvement of the Wnt/ß-catenin signaling pathway in the DHQ-promoted proliferation of IPEC-J2 cells, the inhibitor LF3, which targets ß-catenin/TCF4 interaction, was used. It was found that LF3 inhibited the protein expressions upregulated by DHQ and blocked the promotion of cell proliferation. These results indicate that DHQ positively regulates IPEC-J2 cell proliferation through the Wnt/ß-catenin pathway, providing constructive insights into the role of DHQ in regulating intestine development.