Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Microbiol Spectr ; 12(5): e0375623, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38534119

ABSTRACT

Zur (zinc uptake regulator) is a significant member of the Fur (ferric uptake regulator) superfamily, which is widely distributed in bacteria. Zur plays crucial roles in zinc homeostasis and influences cell development and environmental adaptation in various species. Yersinia pseudotuberculosis is a Gram-negative enteric that pathogen usually serves as a model organism in pathogenicity studies. The regulatory effects of Zur on the zinc transporter ZnuABC and the protein secretion system T6SS have been documented in Y. pseudotuberculosis. In this study, a comparative transcriptomics analysis between a ∆zur mutant and the wild-type (WT) strain of Y. pseudotuberculosis was conducted using RNA-seq. This analysis revealed global regulation by Zur across multiple functional categories, including membrane transport, cell motility, and molecular and energy metabolism. Additionally, Zur mediates the homeostasis not only of zinc but also ferric and magnesium in vivo. There was a notable decrease in 35 flagellar biosynthesis and assembly-related genes, leading to reduced swimming motility in the ∆zur mutant strain. Furthermore, Zur upregulated multiple simple sugar and oligopeptide transport system genes by directly binding to their promoters. The absence of Zur inhibited biofilm formation as well as reduced resistance to chloramphenicol and acidic stress. This study illustrates the comprehensive regulatory functions of Zur, emphasizing its importance in stress resistance and pathogenicity in Y. pseudotuberculosis. IMPORTANCE: Bacteria encounter diverse stresses in the environment and possess essential regulators to modulate the expression of genes in responding to the stresses for better fitness and survival. Zur (zinc uptake regulator) plays a vital role in zinc homeostasis. Studies of Zur from multiple species reviewed that it influences cell development, stress resistance, and virulence of bacteria. Y. pseudotuberculosis is an enteric pathogen that serves a model organism in the study of pathogenicity, virulence factors, and mechanism of environmental adaptation. In this study, transcriptomics analysis of Zur's regulons was conducted in Y. pseudotuberculosis. The functions of Zur as a global regulator in metal homeostasis, motility, nutrient acquisition, glycan metabolism, and nucleotide metabolism, in turn, increasing the biofilm formation, stress resistance, and virulence were reviewed. The importance of Zur in environmental adaptation and pathogenicity of Y. pseudotuberculosis was emphasized.


Subject(s)
Bacterial Proteins , Biofilms , Gene Expression Regulation, Bacterial , Homeostasis , Yersinia pseudotuberculosis , Zinc , Yersinia pseudotuberculosis/genetics , Yersinia pseudotuberculosis/metabolism , Yersinia pseudotuberculosis/physiology , Biofilms/growth & development , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Zinc/metabolism , Stress, Physiological , Metals/metabolism , Virulence/genetics , Repressor Proteins/genetics , Repressor Proteins/metabolism
2.
Microbiol Spectr ; 12(6): e0427823, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38712967

ABSTRACT

Within the realm of Gram-negative bacteria, bacteriocins are secreted almost everywhere, and the most representative are colicin and pyocin, which are secreted by Escherichia coli and Pseudomonas aeruginosa, respectively. Signal peptides at the amino terminus of bacteriocins or ABC transporters can secrete bacteriocins, which then enter bacteria through cell membrane receptors and exert toxicity. In general, the bactericidal spectrum is usually narrow, killing only the kin or closely related species. Our previous research indicates that YPK_0952 is an effector of the third Type VI secretion system (T6SS-3) in Yersinia pseudotuberculosis. Next, we sought to determine its identity and characterize its toxicity. We found that YPK_0952 (a pyocin-like effector) can achieve intra-species and inter-species competitive advantages through both contact-dependent and contact-independent mechanisms mediated by the T6SS-3 while enhancing the intestinal colonization capacity of Y. pseudotuberculosis. We further identified YPK_0952 as a DNase dependent on Mg2+, Ni2+, Mn2+, and Co2+ bivalent metal ions, and the homologous immune protein YPK_0953 can inhibit its activity. In summary, YPK_0952 exerts toxicity by degrading nucleic acids from competing cells, and YPK_0953 prevents self-attack in Y. pseudotuberculosis.IMPORTANCEBacteriocins secreted by Gram-negative bacteria generally enter cells through specific interactions on the cell surface, resulting in a narrow bactericidal spectrum. First, we identified a new pyocin-like effector protein, YPK_0952, in the third Type VI secretion system (T6SS-3) of Yersinia pseudotuberculosis. YPK_0952 is secreted by T6SS-3 and can exert DNase activity through contact-dependent and contact-independent entry into nearby cells of the same and other species (e.g., Escherichia coli) to help Y. pseudotuberculosis to exert a competitive advantage and promote intestinal colonization. This discovery lays the foundation for an in-depth study of the different effector protein types within the T6SS and their complexity in competing interactions. At the same time, this study provides a new development for the toolbox of toxin/immune pairs for studying Gram-negative bacteriocin translocation.


Subject(s)
Bacterial Proteins , Pyocins , Type VI Secretion Systems , Yersinia pseudotuberculosis Infections , Yersinia pseudotuberculosis , Yersinia pseudotuberculosis/metabolism , Yersinia pseudotuberculosis/genetics , Type VI Secretion Systems/metabolism , Type VI Secretion Systems/genetics , Pyocins/metabolism , Yersinia pseudotuberculosis Infections/microbiology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Animals , Mice , Humans , Bacteriocins/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism
3.
Mem. Inst. Oswaldo Cruz ; 102(5): 587-592, Aug. 2007. tab, ilus
Article in English | LILACS | ID: lil-458626

ABSTRACT

Ribotyping and virulence markers has been used to investigate 68 Yersinia pseudotuberculosis strains of serogroups O:1a and O:3. The strains were isolated from clinical material obtained from healthy and sick animals in the Southern region of Brazil. Ribotypes were identified by double digestion of extracted DNA with the restriction endonucleases SmaI and PstI, separation by electrophoresis and hybridization with a digoxigenin-labeled cDNA probe. The presence of the chromosomal virulence marker genes inv, irp1, irp2, psn, ybtE, ybtP-ybtQ, and ybtX-ybtS, of the IS100 insertion sequence, and of the plasmid gene lcrF was detected by polymerase chain reaction. The strains were grouped into four distinct ribotypes, all of them comprising several strains. Ribotypes 1 and 4 presented distinct profiles, with 57.3 percent genetic similarity, ribotypes 2 and 3 presented 52.5 percent genetic similarity, and genetic similarity was 45 percent between these two groups (1/4 and 2/3). All strains possessed the inv, irp1, and irp2 genes. Additionally, strains of serogroup O:1a carried psn, ybtE, ybtP-ybtQ, ybtX-ybtS, and IS100. As expected lcrF was only detected in strains harboring the virulence plasmid. These data demonstrate the presence of Y. pseudotuberculosis strains harboring genotypic virulence markers in the livestock from Southern Brazil and that the dissemination of these bacteria may occur between herds.


Subject(s)
Animals , Genomic Islands/genetics , Plasmids/genetics , Ribotyping/methods , Virulence Factors/genetics , Yersinia pseudotuberculosis/pathogenicity , Brazil , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Electrophoresis, Gel, Pulsed-Field , Genetic Markers/genetics , Polymerase Chain Reaction , Virulence Factors/chemistry , Virulence/genetics , Yersinia pseudotuberculosis/classification , Yersinia pseudotuberculosis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL