Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 167(6): 1481-1494.e18, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27912058

RESUMEN

Autism spectrum disorders (ASD) are a group of genetic disorders often overlapping with other neurological conditions. We previously described abnormalities in the branched-chain amino acid (BCAA) catabolic pathway as a cause of ASD. Here, we show that the solute carrier transporter 7a5 (SLC7A5), a large neutral amino acid transporter localized at the blood brain barrier (BBB), has an essential role in maintaining normal levels of brain BCAAs. In mice, deletion of Slc7a5 from the endothelial cells of the BBB leads to atypical brain amino acid profile, abnormal mRNA translation, and severe neurological abnormalities. Furthermore, we identified several patients with autistic traits and motor delay carrying deleterious homozygous mutations in the SLC7A5 gene. Finally, we demonstrate that BCAA intracerebroventricular administration ameliorates abnormal behaviors in adult mutant mice. Our data elucidate a neurological syndrome defined by SLC7A5 mutations and support an essential role for the BCAA in human brain function.


Asunto(s)
Trastorno del Espectro Autista/genética , Barrera Hematoencefálica/fisiopatología , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Mutación , Aminoácidos/administración & dosificación , Aminoácidos/metabolismo , Animales , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/patología , Trastorno del Espectro Autista/fisiopatología , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/fisiopatología , Femenino , Humanos , Lactante , Recién Nacido , Transportador de Aminoácidos Neutros Grandes 1/genética , Masculino , Ratones , Ratones Noqueados , Linaje , Biosíntesis de Proteínas , Receptor TIE-2/genética
2.
Cell ; 157(3): 651-63, 2014 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-24766810

RESUMEN

Neurodegenerative diseases can occur so early as to affect neurodevelopment. From a cohort of more than 2,000 consanguineous families with childhood neurological disease, we identified a founder mutation in four independent pedigrees in cleavage and polyadenylation factor I subunit 1 (CLP1). CLP1 is a multifunctional kinase implicated in tRNA, mRNA, and siRNA maturation. Kinase activity of the CLP1 mutant protein was defective, and the tRNA endonuclease complex (TSEN) was destabilized, resulting in impaired pre-tRNA cleavage. Germline clp1 null zebrafish showed cerebellar neurodegeneration that was rescued by wild-type, but not mutant, human CLP1 expression. Patient-derived induced neurons displayed both depletion of mature tRNAs and accumulation of unspliced pre-tRNAs. Transfection of partially processed tRNA fragments into patient cells exacerbated an oxidative stress-induced reduction in cell survival. Our data link tRNA maturation to neuronal development and neurodegeneration through defective CLP1 function in humans.


Asunto(s)
Cerebelo/crecimiento & desarrollo , Cerebelo/patología , Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Proteínas Nucleares/genética , Fosfotransferasas/genética , Empalme del ARN , ARN de Transferencia/genética , Factores de Transcripción/genética , Proteínas de Pez Cebra/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Femenino , Humanos , Masculino , Ratones , Modelos Moleculares , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Proteínas Nucleares/metabolismo , Linaje , Fosfotransferasas/metabolismo , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Pez Cebra , Proteínas de Pez Cebra/genética
3.
Neurogenetics ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38850354

RESUMEN

Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are X-linked recessive allelic muscle diseases caused by dystrophin gene mutations. Eight hundred thirty-seven patients admitted between 1997 and 2022 were included in the study. Two hundred twenty patients were analyzed by multiplex PCR (mPCR) alone. Five hundred ninety-five patients were investigated by multiplex ligation-dependent probe amplification (MLPA), and 54 patients were examined by sequencing. Deletion was detected in 60% (132/220) of the cases in the mPCR group only and in 58.3% (347/595) of the cases with MLPA analysis. The rates of deletion and duplication were 87.7% and 12.3%, respectively, in the MLPA analysis. Single exon deletions were the most common mutation type. The introns 43-55 (81.8%) and exons 2-21 (13.1%) regions were detected as hot spots in deletions. It was determined that 89% of the mutations were suitable for exon skipping therapy. The reading frame rule did not hold in 7.6% of D/BMD cases (17/224). We detected twenty-five pathogenic/likely pathogenic variants in sequencing, five of which were novel variants. Nonsense mutation was the most common small mutation (44%). 21% of DMD patients were familial. We detected germline mosaicism in four families (4.3%) in the large rearrangement group and one gonosomal mosaicism in a family with a nonsense mutation. This is the largest study examining genotype and phenotype data in Turkish D/BMD families investigated by MLPA analysis. The reading frame hypothesis is not valid in all cases. Sharing the genotype and phenotype characteristics of these cases in the literature will shed light on the molecular structure of DMD and guide gene therapy research. In genetic counseling, carrier screening in the family and possible gonadal mosaicism should be emphasized.

4.
Am J Med Genet A ; 191(6): 1530-1545, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36919607

RESUMEN

Overgrowth-intellectual disability (OGID) syndromes are clinically and genetically heterogeneous group of disorders. The aim of this study was to examine the molecular etiology and long-term follow-up findings of Turkish OGID cohort. Thirty-five children with OGID were included in the study. Single gene sequencing, clinical exome analysis, chromosomal microarray analysis and whole exome sequencing were performed. Five pathogenic copy number variants were detected in the patients; three of them located on chromosome 5q35.2 (encompassing NSD1), others on 9q22.3 and 22q13.31. In 19 of 35 patients; we identified pathogenic variants in OGID genes associated with epigenetic regulation, NSD1 (n = 15), HIST1H1E (n = 1), SETD1B (n = 1), and SUZ12 (n = 2). The pathogenic variants in PIK3CA (n = 2), ABCC9 (n = 1), GPC4 (n = 2), FIBP (n = 1), and TMEM94 (n = 1) which had a role in other growth pathways were detected in seven patients. The diagnostic yield was 31/35(88%). Twelve pathogenic variants were novel. The common facial feature of the patients was prominent forehead. The patients with Sotos syndrome were observed to have milder intellectual disability than patients with other OGID syndromes. In conclusion, this study showed, for the first time, that biallelic variants of SUZ12 caused Imagawa-Matsumoto syndrome, monoallelic variants in SETDIB resulted in OGID. Besides expanded the phenotypes of very rare OGID syndromes caused by FIBP and TMEM94.


Asunto(s)
Discapacidad Intelectual , Factores de Transcripción , Humanos , Epigénesis Genética , Estudios de Seguimiento , Histonas/genética , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Proteínas de Neoplasias/genética , Fenotipo , Factores de Transcripción/genética , Niño
5.
Clin Exp Rheumatol ; 41(10): 2017-2026, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37140617

RESUMEN

OBJECTIVES: Familial Mediterranean Fever (FMF) is an inflammatory disease characterised by periodic fever and concurrent episodes of serous membrane inflammation. FMF is considered to be inherited in autosomal recessive manner and biallelic mutations in the MEFV gene are associated with the disease. However, approximately 20-25% of patients only have a single mutation in MEFV gene, which creates confusion in differential diagnosis of many patients. This study aimed to reveal rare variants that may act in conjunction with the single pathogenic MEFV variant in the pathogenesis of FMF. METHODS: We performed whole exome sequencing in 17 individuals from 5 different families who were diagnosed according to the clinical criteria, responded positively to colchicine treatment, but had no biallelic MEFV mutation. RESULTS: A disease-causing variant or a common affected cellular pathway that was shared in all index cases was not detected. When cases were examined individually, two de novo variants were identified in the BIRC2 and BCL10 genes, both of which play a role in inflammatory pathways. Functional studies are needed to confirm the physiopathological relationship of these genes with FMF. CONCLUSIONS: This study is one of the most extensive aetiological researches in FMF cases with monoallelic MEFV mutation. We have shown that genotype-phenotype correlation in these cases may not be established by rare genetic variants and discussed underlying causes. Clinical criteria with emphasis on colchicine response and family history should be the main tool and genetic results should only be used for support in FMF diagnosis.


Asunto(s)
Amiloidosis , Fiebre Mediterránea Familiar , Humanos , Fiebre Mediterránea Familiar/diagnóstico , Fiebre Mediterránea Familiar/genética , Fiebre Mediterránea Familiar/complicaciones , Colchicina/uso terapéutico , Amiloidosis/tratamiento farmacológico , Mutación , Inflamación , Genómica , Pirina/genética
6.
J Med Genet ; 59(9): 878-887, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34656997

RESUMEN

BACKGROUND: Human coenzyme Q4 (COQ4) is essential for coenzyme Q10 (CoQ10) biosynthesis. Pathogenic variants in COQ4 cause childhood-onset neurodegeneration. We aimed to delineate the clinical spectrum and the cellular consequences of COQ4 deficiency. METHODS: Clinical course and neuroradiological findings in a large cohort of paediatric patients with COQ4 deficiency were analysed. Functional studies in patient-derived cell lines were performed. RESULTS: We characterised 44 individuals from 36 families with COQ4 deficiency (16 newly described). A total of 23 different variants were identified, including four novel variants in COQ4. Correlation analyses of clinical and neuroimaging findings revealed three disease patterns: type 1: early-onset phenotype with neonatal brain anomalies and epileptic encephalopathy; type 2: intermediate phenotype with distinct stroke-like lesions; and type 3: moderate phenotype with non-specific brain pathology and a stable disease course. The functional relevance of COQ4 variants was supported by in vitro studies using patient-derived fibroblast lines. Experiments revealed significantly decreased COQ4 protein levels, reduced levels of cellular CoQ10 and elevated levels of the metabolic intermediate 6-demethoxyubiquinone. CONCLUSION: Our study describes the heterogeneous clinical presentation of COQ4 deficiency and identifies phenotypic subtypes. Cell-based studies support the pathogenic characteristics of COQ4 variants. Due to the insufficient clinical response to oral CoQ10 supplementation, alternative treatment strategies are warranted.


Asunto(s)
Proteínas Mitocondriales , Ubiquinona , Línea Celular , Niño , Humanos , Recién Nacido , Proteínas Mitocondriales/genética , Neuroimagen , Fenotipo , Ubiquinona/genética , Ubiquinona/metabolismo
7.
Funct Integr Genomics ; 22(3): 291-315, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35098403

RESUMEN

Familial Mediterranean fever (FMF) is a monogenic autoinflammatory disorder with recurrent fever, abdominal pain, serositis, articular manifestations, erysipelas-like erythema, and renal complications as its main features. Caused by the mutations in the MEditerranean FeVer (MEFV) gene, it mainly affects people of Mediterranean descent with a higher incidence in the Turkish, Jewish, Arabic, and Armenian populations. As our understanding of FMF improves, it becomes clearer that we are facing with a more complex picture of FMF with respect to its pathogenesis, penetrance, variant type (gain-of-function vs. loss-of-function), and inheritance. In this study, MEFV gene analysis results and clinical findings of 27,504 patients from 35 universities and institutions in Turkey and Northern Cyprus are combined in an effort to provide a better insight into the genotype-phenotype correlation and how a specific variant contributes to certain clinical findings in FMF patients. Our results may help better understand this complex disease and how the genotype may sometimes contribute to phenotype. Unlike many studies in the literature, our study investigated a broader symptomatic spectrum and the relationship between the genotype and phenotype data. In this sense, we aimed to guide all clinicians and academicians who work in this field to better establish a comprehensive data set for the patients. One of the biggest messages of our study is that lack of uniformity in some clinical and demographic data of participants may become an obstacle in approaching FMF patients and understanding this complex disease.


Asunto(s)
Fiebre Mediterránea Familiar , Pirina , Fiebre Mediterránea Familiar/epidemiología , Fiebre Mediterránea Familiar/genética , Genética de Población , Genotipo , Humanos , Mutación , Fenotipo , Pirina/genética , Turquía/epidemiología
8.
J Hum Genet ; 67(9): 553-556, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35338243

RESUMEN

Heterozygous mutations in Bicaudal D2 Drosophila homolog 2 (BICD2) gene, encodes a vesicle transport protein involved in dynein-mediated movement along microtubules, are responsible for an exceedingly rare autosomal dominant spinal muscular atrophy type 2A which starts in the childhood and predominantly effects lower extremities. Recently, a more severe form, type 2B, has also been described. Here, we present a patient born to a consanguineous union and who suffered from intellectual disability, speech delay, epilepsy, happy facial expression, truncal obesity with tappering fingers, and joint hypermobility. Whole-exome sequencing analysis revealed a rare, homozygous missense mutation (c.731T>C; p.Leu244Pro) in BICD2 gene. This finding presents the first report in the literature for homozygous BICD2 mutations and its association with a Cohen-Like syndrome. Patients presenting with Cohen-Like phenotypes should be further interrogated for mutations in BICD2.


Asunto(s)
Discapacidad Intelectual , Atrofia Muscular Espinal , Genes Dominantes , Humanos , Discapacidad Intelectual/genética , Proteínas Asociadas a Microtúbulos/genética , Atrofia Muscular Espinal/genética , Mutación , Mutación Missense
9.
J Obstet Gynaecol Res ; 48(5): 1202-1211, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35141985

RESUMEN

AIM: To identify pathogenic rare coding Mendelian/high-effect size variant(s) by whole-exome sequencing in familial polycystic ovary syndrome (PCOS) patients to elucidate PCOS-related pathways. METHODS: Twenty women and their affected available relatives diagnosed with PCOS according to Rotterdam criteria were recruited. Whole-exome sequencing on germ-line DNA from 31 PCOS probands and their affected relatives was performed. Whole-exome sequencing data were further evaluated by pathway and chemogenomics analyses. In-slico analysis of candidate variants were done by VarCards for functional predictions and VarSite for impact on three-dimensional (3D) structures in the candidate proteins. RESULTS: Two heterozygous rare FBN3 missense variants in three patients, and one FN1 missense variant in one patient from three different PCOS families were identified. CONCLUSION: We identified three novel FBN3 and FN1 variants for the first time in the literature and linked with PCOS. Further functional studies may identify causality of these newly discovered PCOS-related variants, and their role yet remains to be investigated. Our findings may improve our understanding of the biological pathways affected and identify new drug targets.


Asunto(s)
Fibrilinas , Fibronectinas , Síndrome del Ovario Poliquístico , Femenino , Fibrilinas/genética , Fibronectinas/genética , Humanos , Síndrome del Ovario Poliquístico/genética , Secuenciación del Exoma
10.
J Hum Genet ; 66(2): 215-218, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32764695

RESUMEN

Intellectual disability (ID) is a genetic and clinically heterogeneous common disease and underlying molecular pathogenesis can frequently not be identified by whole-exome/genome testing. Here, we report four siblings born to a consanguineous union who presented with intellectual disability and discuss the METAP1 pathway as a novel etiology of ID. Genomic analyses demonstrated that patients harbor a novel homozygous nonsense mutation in the gene METAP1. METAP1 codes for methionine aminopeptidase 1 (MetAP1) which oversees the co-translational excision of the first methionine remnants in eukaryotes. The loss-of-function mutations to this gene may result in a defect in the translation of many essential proteins within a cell. Improper neuronal function resulting from this loss of essential proteins could lead to neurologic impairment and ID.


Asunto(s)
Aminopeptidasas/genética , Genes Recesivos , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Mutación , Adolescente , Niño , Femenino , Humanos , Masculino , Linaje , Hermanos , Secuenciación del Exoma
11.
J Neurogenet ; 35(1): 23-28, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33216650

RESUMEN

To date, less than 10 pedigrees have been reported with ZNF335 mutations since it was discovered in 2012 and little is known about ZNF335-related clinical spectrum. We describe a 12 years old male patient who is only child of nonconsanguineous Turkish parents. Trio whole genome sequencing identified previously unreported compound heterozygous variants in ZNF335, namely, c.3889T > A p.(Ser1297Thr) and c.758G > A p.(Arg253Gln) where transmitted by his father and mother, respectively. Patient' magnetic resonance imaging findings were overlapping to those observed in the previous cases with ZNF335 mutations. Here we report the oldest patient with biallelic ZNF335 mutations. We recommend screening for ZNF335 defects in patients with basal ganglia anomaly, secondary white matter abnormalities and microcephaly.


Asunto(s)
Ganglios Basales/patología , Cerebelo/patología , Proteínas de Unión al ADN/genética , Mutación , Factores de Transcripción/genética , Atrofia/diagnóstico por imagen , Atrofia/genética , Atrofia/patología , Ganglios Basales/diagnóstico por imagen , Cerebelo/diagnóstico por imagen , Niño , Humanos , Imagen por Resonancia Magnética , Masculino , Linaje
12.
Am Heart J ; 225: 108-119, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32480058

RESUMEN

INTRODUCTION: Biallelic damaging variants in ALPK3, encoding alpha-protein kinase 3, cause pediatric-onset cardiomyopathy with manifestations that are incompletely defined. METHODS AND RESULTS: We analyzed clinical manifestations of damaging biallelic ALPK3 variants in 19 pediatric patients, including nine previously published cases. Among these, 11 loss-of-function (LoF) variants, seven compound LoF and deleterious missense variants, and one homozygous deleterious missense variant were identified. Among 18 live-born patients, 8 exhibited neonatal dilated cardiomyopathy (44.4%; 95% CI: 21.5%-69.2%) that subsequently transitioned into ventricular hypertrophy. The majority of patients had extracardiac phenotypes, including contractures, scoliosis, cleft palate, and facial dysmorphisms. We observed no association between variant type or location, disease severity, and/or extracardiac manifestations. Myocardial histopathology showed focal cardiomyocyte hypertrophy, subendocardial fibroelastosis in patients under 4 years of age, and myofibrillar disarray in adults. Rare heterozygous ALPK3 variants were also assessed in adult-onset cardiomyopathy patients. Among 1548 Dutch patients referred for initial genetic analyses, we identified 39 individuals with rare heterozygous ALPK3 variants (2.5%; 95% CI: 1.8%-3.4%), including 26 missense and 10 LoF variants. Among 149 U.S. patients without pathogenic variants in 83 cardiomyopathy-related genes, we identified six missense and nine LoF ALPK3 variants (10.1%; 95% CI: 5.7%-16.1%). LoF ALPK3 variants were increased in comparison to matched controls (Dutch cohort, P = 1.6×10-5; U.S. cohort, P = 2.2×10-13). CONCLUSION: Biallelic damaging ALPK3 variants cause pediatric cardiomyopathy manifested by DCM transitioning to hypertrophy, often with poor contractile function. Additional extracardiac features occur in most patients, including musculoskeletal abnormalities and cleft palate. Heterozygous LoF ALPK3 variants are enriched in adults with cardiomyopathy and may contribute to their cardiomyopathy. Adults with ALPK3 LoF variants therefore warrant evaluations for cardiomyopathy.


Asunto(s)
Cardiomiopatías/genética , Heterocigoto , Mutación con Pérdida de Función , Proteínas Musculares/genética , Mutación Missense , Proteínas Quinasas/genética , Anomalías Múltiples/genética , Adulto , Edad de Inicio , Cardiomiopatías/diagnóstico por imagen , Cardiomiopatías/fisiopatología , Cardiomiopatía Dilatada/genética , Cardiomiopatía Hipertrófica/genética , Niño , Preescolar , Cromosomas Humanos Par 15/genética , Ecocardiografía , Electrocardiografía , Humanos , Lactante , Fenotipo
13.
J Med Genet ; 56(5): 332-339, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30487245

RESUMEN

BACKGROUND: Putative nucleotidyltransferase MAB21L1 is a member of an evolutionarily well-conserved family of the male abnormal 21 (MAB21)-like proteins. Little is known about the biochemical function of the protein; however, prior studies have shown essential roles for several aspects of embryonic development including the eye, midbrain, neural tube and reproductive organs. OBJECTIVE: A homozygous truncating variant in MAB21L1 has recently been described in a male affected by intellectual disability, scrotal agenesis, ophthalmological anomalies, cerebellar hypoplasia and facial dysmorphism. We employed a combination of exome sequencing and homozygosity mapping to identify the underlying genetic cause in subjects with similar phenotypic features descending from five unrelated consanguineous families. RESULTS: We identified four homozygous MAB21L1 loss of function variants (p.Glu281fs*20, p.Arg287Glufs*14 p.Tyr280* and p.Ser93Serfs*48) and one missense variant (p.Gln233Pro) in 10 affected individuals from 5 consanguineous families with a distinctive autosomal recessive neurodevelopmental syndrome. Cardinal features of this syndrome include a characteristic facial gestalt, corneal dystrophy, hairy nipples, underdeveloped labioscrotal folds and scrotum/scrotal agenesis as well as cerebellar hypoplasia with ataxia and variable microcephaly. CONCLUSION: This report defines an ultrarare but clinically recognisable Cerebello-Oculo-Facio-Genital syndrome associated with recessive MAB21L1 variants. Additionally, our findings further support the critical role of MAB21L1 in cerebellum, lens, genitalia and as craniofacial morphogenesis.


Asunto(s)
Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Proteínas de Homeodominio/genética , Mutación con Pérdida de Función , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética , Fenotipo , Encéfalo/anomalías , Encéfalo/diagnóstico por imagen , Niño , Preescolar , Consanguinidad , Facies , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Proteínas de Homeodominio/química , Homocigoto , Humanos , Lactante , Imagen por Resonancia Magnética , Masculino , Modelos Moleculares , Linaje , Polimorfismo de Nucleótido Simple , Conformación Proteica , Síndrome , Secuenciación del Exoma
14.
Am J Hum Genet ; 99(4): 912-916, 2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27616480

RESUMEN

The risk of epilepsy among individuals with intellectual disability (ID) is approximately ten times that of the general population. From a cohort of >5,000 families affected by neurodevelopmental disorders, we identified six consanguineous families harboring homozygous inactivating variants in MBOAT7, encoding lysophosphatidylinositol acyltransferase (LPIAT1). Subjects presented with ID frequently accompanied by epilepsy and autistic features. LPIAT1 is a membrane-bound phospholipid-remodeling enzyme that transfers arachidonic acid (AA) to lysophosphatidylinositol to produce AA-containing phosphatidylinositol. This study suggests a role for AA-containing phosphatidylinositols in the development of ID accompanied by epilepsy and autistic features.


Asunto(s)
Aciltransferasas/genética , Trastorno Autístico/genética , Epilepsia/genética , Discapacidad Intelectual/genética , Proteínas de la Membrana/genética , Mutación , Aciltransferasas/metabolismo , Ácido Araquidónico/metabolismo , Trastorno Autístico/complicaciones , Trastorno Autístico/enzimología , Trastorno Autístico/metabolismo , Niño , Preescolar , Consanguinidad , Epilepsia/complicaciones , Epilepsia/enzimología , Epilepsia/metabolismo , Femenino , Homocigoto , Humanos , Lactante , Discapacidad Intelectual/complicaciones , Discapacidad Intelectual/enzimología , Discapacidad Intelectual/metabolismo , Lisofosfolípidos/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Linaje , Fosfatidilinositoles/metabolismo
15.
Am J Hum Genet ; 99(2): 501-10, 2016 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-27453578

RESUMEN

Cell division terminates with cytokinesis and cellular separation. Autosomal-recessive primary microcephaly (MCPH) is a neurodevelopmental disorder characterized by a reduction in brain and head size at birth in addition to non-progressive intellectual disability. MCPH is genetically heterogeneous, and 16 loci are known to be associated with loss-of-function mutations predominantly affecting centrosomal-associated proteins, but the multiple roles of centrosomes in cellular function has left questions about etiology. Here, we identified three families affected by homozygous missense mutations in CIT, encoding citron rho-interacting kinase (CIT), which has established roles in cytokinesis. All mutations caused substitution of conserved amino acid residues in the kinase domain and impaired kinase activity. Neural progenitors that were differentiated from induced pluripotent stem cells (iPSCs) derived from individuals with these mutations exhibited abnormal cytokinesis with delayed mitosis, multipolar spindles, and increased apoptosis, rescued by CRISPR/Cas9 genome editing. Our results highlight the importance of cytokinesis in the pathology of primary microcephaly.


Asunto(s)
Alelos , Citocinesis/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Microcefalia/genética , Microcefalia/patología , Mitosis/genética , Mutación Missense/genética , Proteínas Serina-Treonina Quinasas/genética , Apoptosis/genética , Centrosoma/metabolismo , Niño , Preescolar , Femenino , Genes Recesivos , Humanos , Recién Nacido , Masculino , Linaje
16.
Am J Hum Genet ; 99(5): 1181-1189, 2016 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-27773428

RESUMEN

Cobblestone lissencephaly (COB) is a severe brain malformation in which overmigration of neurons and glial cells into the arachnoid space results in the formation of cortical dysplasia. COB occurs in a wide range of genetic disorders known as dystroglycanopathies, which are congenital muscular dystrophies associated with brain and eye anomalies and range from Walker-Warburg syndrome to Fukuyama congenital muscular dystrophy. Each of these conditions has been associated with alpha-dystroglycan defects or with mutations in genes encoding basement membrane components, which are known to interact with alpha-dystroglycan. Our screening of a cohort of 25 families with recessive forms of COB identified six families affected by biallelic mutations in TMTC3 (encoding transmembrane and tetratricopeptide repeat containing 3), a gene without obvious functional connections to alpha-dystroglycan. Most affected individuals showed brainstem and cerebellum hypoplasia, as well as ventriculomegaly. However, the minority of the affected individuals had eye defects or elevated muscle creatine phosphokinase, separating the TMTC3 COB phenotype from typical congenital muscular dystrophies. Our data suggest that loss of TMTC3 causes COB with minimal eye or muscle involvement.


Asunto(s)
Alelos , Proteínas Portadoras/genética , Lisencefalia de Cobblestone/genética , Proteínas de la Membrana/genética , Secuencia de Aminoácidos , Membrana Basal/metabolismo , Encéfalo/anomalías , Encéfalo/diagnóstico por imagen , Proteínas Portadoras/metabolismo , Cerebelo/anomalías , Cerebelo/diagnóstico por imagen , Lisencefalia de Cobblestone/diagnóstico por imagen , Discapacidades del Desarrollo/diagnóstico por imagen , Discapacidades del Desarrollo/genética , Distroglicanos/metabolismo , Anomalías del Ojo/diagnóstico por imagen , Anomalías del Ojo/genética , Femenino , Humanos , Lactante , Masculino , Proteínas de la Membrana/metabolismo , Mutación , Malformaciones del Sistema Nervioso/diagnóstico por imagen , Malformaciones del Sistema Nervioso/genética , Neuroglía/metabolismo , Neuronas/patología , Linaje , Fenotipo
17.
Ann Neurol ; 84(5): 638-647, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30178464

RESUMEN

OBJECTIVE: To identify causes of the autosomal-recessive malformation, diencephalic-mesencephalic junction dysplasia (DMJD) syndrome. METHODS: Eight families with DMJD were studied by whole-exome or targeted sequencing, with detailed clinical and radiological characterization. Patient-derived induced pluripotent stem cells were derived into neural precursor and endothelial cells to study gene expression. RESULTS: All patients showed biallelic mutations in the nonclustered protocadherin-12 (PCDH12) gene. The characteristic clinical presentation included progressive microcephaly, craniofacial dysmorphism, psychomotor disability, epilepsy, and axial hypotonia with variable appendicular spasticity. Brain imaging showed brainstem malformations and with frequent thinned corpus callosum with punctate brain calcifications, reflecting expression of PCDH12 in neural and endothelial cells. These cells showed lack of PCDH12 expression and impaired neurite outgrowth. INTERPRETATION: DMJD patients have biallelic mutations in PCDH12 and lack of protein expression. These patients present with characteristic microcephaly and abnormalities of white matter tracts. Such pathogenic variants predict a poor outcome as a result of brainstem malformation and evidence of white matter tract defects, and should be added to the phenotypic spectrum associated with PCDH12-related conditions. Ann Neurol 2018;84:646-655.


Asunto(s)
Tronco Encefálico/anomalías , Cadherinas/genética , Malformaciones del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/patología , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Mutación , Protocadherinas
20.
Am J Hum Genet ; 92(3): 468-74, 2013 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-23472759

RESUMEN

Cobblestone brain malformation (COB) is a neuronal migration disorder characterized by protrusions of neurons beyond the first cortical layer at the pial surface of the brain. It is usually seen in association with dystroglycanopathy types of congenital muscular dystrophies (CMDs) and ocular abnormalities termed muscle-eye-brain disease. Here we report homozygous deleterious mutations in LAMB1, encoding laminin subunit beta-1, in two families with autosomal-recessive COB. Affected individuals displayed a constellation of brain malformations including cortical gyral and white-matter signal abnormalities, severe cerebellar dysplasia, brainstem hypoplasia, and occipital encephalocele, but they had less apparent ocular or muscular abnormalities than are typically observed in COB. LAMB1 is localized to the pial basement membrane, suggesting that defective connection between radial glial cells and the pial surface mediated by LAMB1 leads to this malformation.


Asunto(s)
Encéfalo/anomalías , Laminina/genética , Distrofias Musculares/genética , Malformaciones del Sistema Nervioso/genética , Eliminación de Secuencia , Síndrome de Walker-Warburg/genética , Membrana Basal/metabolismo , Membrana Basal/patología , Encéfalo/metabolismo , Encéfalo/patología , Cerebelo/metabolismo , Cerebelo/patología , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Encefalocele/genética , Encefalocele/metabolismo , Encefalocele/patología , Femenino , Predisposición Genética a la Enfermedad , Homocigoto , Humanos , Masculino , Distrofias Musculares/metabolismo , Distrofias Musculares/patología , Malformaciones del Sistema Nervioso/metabolismo , Malformaciones del Sistema Nervioso/patología , Neuroglía/metabolismo , Neuroglía/patología , Neuronas/metabolismo , Neuronas/patología , Síndrome de Walker-Warburg/metabolismo , Síndrome de Walker-Warburg/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA