RESUMEN
Multiple myeloma, the disease characterized by the malignant proliferation of plasma cells that invades the bone marrow, produces osteolytic lesions and secretes monoclonal proteins. Several biomarkers have been shown to represent important tools in the pathogenesis of myeloma and offer insights into bone degradation and formation. The objectives of this current study were to assess the associations of modern biomarkers (TNF-α: tumor necrosis factor; IFN: Interferon; FreeRANKL: Free Receptor Activator for Nuclear Factor kappa B Ligand; RANKL: Receptor Activator for Nuclear Factor kappa B Ligand, Beta crosslaps, IL-6: Interleukin 6) with osteolytic lesions status after first-line treatment and to evaluate the correlations between modern and classical biomarkers (LDH: Lactate Dehydrogenase; VSH: Erythrocyte Sedimentation Rate; Hgb: Hemoglobin, Calcium, Albumin, B2microglobulin) stratified by osteolytic lesions status. A total of 35 patients diagnosed with multiple myeloma divided into two groups according to the osteolytic bone lesions, were studied: (1) unchanged status of osteolytic lesions and (2) changed status of osteolytic lesions. After fist-line treatment, we found a significant difference in Albumin (p = 0.0029) and Calcium levels (p = 0.0304), patients with a changed status in osteolytic lesions having higher values of Albumin and Calcium compared to those without changes in status of osteolytic lesions. After first-line treatment, decreased IL-6 values were significantly correlated with elevated values of Albumin (ρ = -0.96, p = 0.0005) in the patients with changed status of osteolytic lesions. Post-treatment values of IFN showed a significant positive correlation with Hemoglobin (ρ = 0.47, p = 0.0124), IL-6 (ρ = 0.55, p = 0.0026) and TNF-alpha values (ρ = 0.54, p = 0.0029). The results obtained from patients with unmodified lytic lesions identified a significant correlation between the biomarkers IL-6, Free RANKL, and IFN-beta with the classical marker LDH. This association highlights the involvement of these markers in promoting bone destruction and the development of osteolytic lesions.
RESUMEN
Nowadays, there is an increasing interest in the study of medicinal and aromatic plants, due to their therapeutic properties that correlate with the presence of different active compounds. Agastache species (sp.) are aromatic plants that belong to the Lamiaceae family, originating from North America and East Asia. The present study aimed to evaluate the composition of essential oils (EOs) obtained from different Romanian cultivated Agastache sp. and to investigate their antibacterial and cytotoxic activities. The gas chromatography-mass spectrometry (GC-MS) screening revealed that menthone was the dominant constituent of A. foeniculum (31.58%), A. rugosa (39.60%) and A. rugosa 'After Eight' (39.76%) EOs, while estragole was the major constituent of A. foeniculum "Aromat de Buzau" (63.27%) and A. mexicana (41.66%) EOs. The investigation of the antiproliferative effect showed that A. rugosa and A. foeniculum "Aromat de Buzau" EOs had significant cytotoxic activity on MDA-MB-231 and HEPG2 tumour cell lines, with the most promising effect on the MDA-MB-231 breast cancer cell line for A. foeniculum "Aromat de Buzau" EO (IC50 = 203.70 ± 0.24 µg/mL). Regarding the antibacterial activity, A. rugosa EO was most active against E. coli (8.91 ± 3.27 µL/mL) and S. aureus (10.80 ± 0.00 µL/mL). To the best of our knowledge, this is the first report on the cytotoxic effect of Agastache sp. EOs on MDA-MB-231, HCT116 and HEPG2 tumour cell lines. The results of our study provide new and promising information for the subsequent in vivo study of the pharmacological properties of Agastache sp. essential oils.
Asunto(s)
Agastache , Antibacterianos , Cromatografía de Gases y Espectrometría de Masas , Aceites Volátiles , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Aceites Volátiles/farmacología , Aceites Volátiles/química , Agastache/química , Línea Celular Tumoral , Células Hep G2 , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Pruebas de Sensibilidad Microbiana , Proliferación Celular/efectos de los fármacos , Compuestos Orgánicos Volátiles/farmacología , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/química , Extractos Vegetales/farmacología , Extractos Vegetales/químicaRESUMEN
DNA methylation is a crucial epigenetic hallmark of cancer development but the experimental methods able to prove nanoscale modifications are very scarce. Over time, Raman and its counterpart, surface-enhanced Raman scattering (SERS), became one of the most promising techniques capable to investigate nanoscale modifications of DNA bases. In our study, we employed Raman/SERS to highlight the differences between normal and leukemia DNA samples and to evaluate the effects of a 5-azacytidine treatment on leukemia cells. To obtain spectral information related to DNA base modifications, a DNA incubation step of 4 min at 94 °C, similar to the one performed in the case of RT-PCR experiments, was conducted prior to any measurements. In this way, reproducible Raman/SERS spectra were collected for all genomic DNA samples. Our Raman results allowed discrimination between normal and cancer DNAs based on their different aggregation behavior induced by the distinct methylation landscape present in the DNA samples. On the other hand, the SERS spectra collected on the same DNA samples show a very intense vibrational band located at 1008 cm-1 assigned to a rocking vibration of 5-methyl-cytosine. The intensity of this band strongly decreases in cancer DNA due to the modification of the methylation landscape occurring in cancers. We believe that under controlled experimental conditions, this vibrational band could be used as a powerful marker for demonstrating epigenetic reprogramming in cancer by means of SERS.
Asunto(s)
Leucemia , Vibración , Humanos , Desmetilación del ADN , Espectrometría Raman/métodos , ADN/química , Leucemia/genéticaRESUMEN
We report a very simple, rapid and reproducible method for the fabrication of anisotropic silver nanostars (AgNS) that can be successfully used as highly efficient SERS substrates for different bioanalytes, even in the case of a near-infra-red (NIR) excitation laser. The nanostars have been synthesized using the chemical reduction of Ag+ ions by trisodium citrate. This is the first research reporting the synthesis of AgNS using only trisodium citrate as a reducing and stabilizing agent. The key elements of this original synthesis procedure are rapid hydrothermal synthesis of silver nanostars followed by a cooling down procedure by immersion in a water bath. The synthesis was performed in a sealed bottom flask homogenously heated and brought to a boil in a microwave oven. After 60 s, the colloidal solution was cooled down to room temperature by immersion in a water bath at 35 °C. The as-synthesized AgNS were washed by centrifugation and used for SERS analysis of test molecules (methylene blue) as well as biological analytes: pharmaceutical compounds with various Raman cross sections (doxorubicin, atenolol & metoprolol), cell lysates and amino acids (methionine & cysteine). UV-Vis absorption spectroscopy, (Scanning) Transmission Electron Microscopy ((S)TEM) and Atomic Force Microscopy (AFM) have been employed for investigating nanostars' physical properties.
Asunto(s)
Plata , Espectrometría Raman , Microscopía de Fuerza Atómica , Microondas , Plata/química , Espectrometría Raman/métodos , AguaRESUMEN
Allium sativum L. (garlic bulbs) and Allium fistulosum L. (Welsh onion leaves) showed quantitative differences of identified compounds: allicin and alliin (380 µg/mL and 1410 µg/mL in garlic; 20 µg/mL and 145 µg/mL in Welsh onion), and the phenolic compounds (chlorogenic acid, p-coumaric acid, ferulic acid, gentisic acid, 4-hydroxybenzoic acid, kaempferol, isoquercitrin, quercitrin, quercetin, and rutin). The chemical composition determined the inhibitory activity of Allium extracts in a dose-dependent manner, on human normal cells (BJ-IC50 0.8841% garlic/0.2433% Welsh onion and HaCaT-IC50 1.086% garlic/0.6197% Welsh onion) and tumor cells (DLD-1-IC50 5.482%/2.124%; MDA-MB-231-IC50 6.375%/2.464%; MCF-7-IC50 6.131%/3.353%; and SK-MES-1-IC50 4.651%/5.819%). At high concentrations, the cytotoxic activity of each extract, on normal cells, was confirmed by: the 50% of the growth inhibition concentration (IC50) value, the cell death induced by necrosis, and biochemical determination of LDH, catalase, and Caspase-3. The four tumor cell lines treated with high concentrations (10%, 5%, 2.5%, and 1.25%) of garlic extract showed different sensibility, appreciated on the base of IC50 value for the most sensitive cell line (SK-MES-1), and the less sensitive (MDA-MB-231) cell line. The high concentrations of Welsh onion extract (5%, 2.5%, and 1.25%) induced pH changes in the culture medium and SK-MES-1 being the less sensitive cell line.
Asunto(s)
Allium/química , Neoplasias/tratamiento farmacológico , Fitoterapia , Caspasa 3/metabolismo , Catalasa/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ajo/química , Humanos , L-Lactato Deshidrogenasa/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Cebollas/química , Fenoles/farmacología , Fenoles/toxicidad , Fitoquímicos/farmacología , Fitoquímicos/toxicidad , Extractos Vegetales/farmacología , Extractos Vegetales/toxicidadRESUMEN
The concern for implementing bioactive nutraceuticals in antioxidant-related therapies is of great importance for skin homeostasis in benign or malignant diseases. In order to elucidate some novel insights of Lycium barbarum (Goji berry) activity on skin cells, the present study focused on its active compound zeaxanthin. By targeting the stemness markers CD44 and CD105, with deep implications in skin oxidative stress mechanisms, we revealed, for the first time, selectivity in zeaxanthin activity. When applied in vitro on BJ human fibroblast cell line versus the A375 malignant melanoma cells, despite the moderate cytotoxicity, the zeaxanthin-rich extracts 1 and 2 were able to downregulate significantly the CD44 and CD105 membrane expression and extracellular secretion in A375, and to upregulate them in BJ cells. At mechanistic level, the present study is the first to demonstrate that the zeaxanthin-rich Goji extracts are able to influence selectively the mitogen-activated protein kinases (MAPK): ERK, JNK and p38 in normal BJ versus tumor-derived A375 skin cells. These results point out towards the applications of zeaxanthin from L. barbarum as a cytoprotective agent in normal skin and raises questions about its use as an antitumor prodrug alone or in combination with standard therapy.
Asunto(s)
Adhesión Celular/efectos de los fármacos , Lycium/química , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Extractos Vegetales/farmacología , Zeaxantinas/farmacología , Línea Celular , Línea Celular Tumoral , Frutas/química , Humanos , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Extractos Vegetales/aislamiento & purificación , Piel/citología , Piel/efectos de los fármacos , Piel/metabolismo , Zeaxantinas/aislamiento & purificaciónRESUMEN
5-fluorouracil (5-FU) is an anticancer drug used to inhibit the proliferation of many different tumor cells. Since severe events are associated with this compound, its combination with different anticancer drugs or adjuvants would allow the use of a significantly lower dose of 5-FU. In this study, we highlighted that the combination of allicin with 5-FU inhibited the cell migration and proliferation of colorectal and lung cancer cells. 5-FU inhibited cell growth with a similar inhibitory concentration for both normal and tumor cells (~200µM), while allicin showed different inhibitory concentrations. With an IC50 of 8.625 µM, lung cancer cells were the most sensitive to allicin. Compared to 5-FU and allicin single-agent treatments, the co-treatment showed a reduced viability rate, with p < 0.05. The morphological changes were visible on all three cell lines, indicating that the treatment inhibited the proliferation of both normal and tumor cells. We highlighted different cell death mechanisms-apoptosis for lung cancer and a non-apoptotic cell death for colorectal cancer. The synergistic antitumor effect of 5-FU combined with allicin was visible against lung and colorectal carcinoma cells. Better results were obtained when a lower concentration of 5-FU was combined with allicin than the single-agent treatment at IC50.
Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Fluorouracilo/farmacología , Ácidos Sulfínicos/farmacología , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Disulfuros , Sinergismo Farmacológico , HumanosRESUMEN
Background: Cholangiocarcinoma (CCA) is a highly aggressive cancer of the bile ducts with a poor prognosis and limited diagnostic markers. This study aims to investigate the potential of miR-18a and miR-532 as biomarkers for CCA by exploring their correlations with clinical parameters and traditional tumor markers such as CA19.9, CEA, and AFP. Methods: This study involved a cohort of patients diagnosed with CCA. Serum levels of miR-18a and miR-532 were measured and analyzed in relation to various clinical parameters, including age, tumor markers, and histological features. Results: Serum levels of miR-18a and miR-532 were upregulated in patients with extrahepatic cholangiocarcinoma (eCCA) compared to healthy controls (p < 0.05). MiR-18a and miR-532 levels were correlated with each other (p = 0.011, Spearman's rho = 0.482) but showed no significant correlation with age or traditional tumor markers (CA19.9, CEA, AFP). No significant differences in miR-18a and miR-532 levels were observed concerning tumor localization or histological grading. For predicting tumor resectability, miR-532 at a cut-off point of 2.12 showed a sensitivity of 72.73%, specificity of 81.25%, and an AUC of 71.3%, while miR-18a, at a cut-off of 1.83, had a sensitivity of 63.64%, specificity of 75%, and an AUC of 59.7%. ROC curve analysis suggested moderate diagnostic potential for miR-18a and miR-532, with AUC values of 0.64 and 0.689, respectively. Conclusions: Although miR-18a and miR-532 showed significant upregulation in eCCA patients compared to healthy controls, they did not demonstrate significant associations with key clinical parameters, limiting their effectiveness as standalone diagnostic biomarkers. Further research involving larger, multi-center cohorts and additional molecular markers is necessary to validate these findings and explore the broader diagnostic potential of miRNAs in CCA.
RESUMEN
Breast cancer (BC) remains one of the leading causes of mortality among women, with triple-negative breast cancer (TNBC) standing out for its aggressive nature and limited treatment options. Metabolic reprogramming, one of cancer's hallmarks, underscores the importance of targeting metabolic vulnerabilities for therapeutic intervention. This study aimed to investigate the impact of de novo serine biosynthetic pathway (SSP) inhibition, specifically targeting phosphoglycerate dehydrogenase (PHGDH) with NCT-503, on three TNBC cell lines: MDA-MB-231, MDA-MB-468 and Hs 578T. First, MS-based proteomics was used to confirm the distinct expression of PHGDH and other SSP enzymes using the intracellular proteome profiles of untreated cells. Furthermore, to characterize the response of the TNBC cell lines to the inhibitor, both in vitro assays and label-free, bottom-up proteomics were employed. NCT-503 exhibited significant cytotoxic effects on all three cell lines, with MDA-MB-468 being the most susceptible (IC50 20.2 ± 2.8 µM), while MDA-MB-231 and Hs 578T showed higher, comparable IC50s. Notably, differentially expressed proteins (DEPs) induced by NCT-503 treatment were mostly cell line-specific, both in terms of the intracellular and secreted proteins. Through overrepresentation and Reactome GSEA analysis, modifications of the intracellular proteins associated with cell cycle pathways were observed in the MDA-MBs following treatment. Distinctive dysregulation of signaling pathways were seen in all TNBC cell lines, while modifications of proteins associated with the extracellular matrix organization characterizing both MDA-MB-231 and Hs 578T cell lines were highlighted through the treatment-induced modifications of the secreted proteins. Lastly, an analysis was conducted on the DEPs that exhibited greater abundance in the NCT-503 treatment groups to evaluate the potential chemo-sensitizing properties of NCT-503 and the druggability of these promising targets.
RESUMEN
(1) Background: This cross-sectional investigation appreciated the role of serum C-reactive protein (CRP), several hematologic-cell markers, and salivary inflammation-related molecules [calprotectin (S100A8/A9), interleukin-1ß (IL-1ß), kallikrein] to predict periodontitis in patients with atherosclerotic cardiovascular disease (ACVD), arrhythmia, or both. Also, we appreciated the relationship between the inflammatory burden and periodontal destruction with the type of cardiac pathology. (2) Methods: Demographic, behavioral characteristics, periodontal indicators, blood parameters, and saliva samples were collected. (3) Results: All 148 patients exhibited stage II or III/IV periodontitis. Stage III/IV cases exhibited significantly increased S100A8/A9 levels (p = 0.004). A positive correlation between S100A8/A9 and IL-1ß [0.35 (<0.001)], kallikrein [0.55 (<0.001)], and CRP [0.28 (<0.001)] was observed. Patients with complex cardiac involvement had a significantly higher number of sites with attachment loss ≥ 5 mm [19 (3-30)] compared to individuals with only arrhythmia [9 (3.25-18)] or ACVD [5 (1-12)] [0.048⦠{0.162/0.496/0.14}]. (4) Conclusions: Severe, extensive attachment loss may be indicative of patients with complex cardiac conditions, which underscores the essential role of periodontal status in relation to systemic diseases. The correlations between the rising trends of the inflammatory parameters suggest a potential interconnection between oral and systemic inflammation.
RESUMEN
This study delves into the intricate interaction between DNA and nanosystems, exploring its potential implications for biomedical applications. The focus lies in understanding the adsorption geometry of DNA when in proximity to plasmonic nanoparticles, utilizing ultrasensitive vibrational spectroscopy techniques. Employing a combined Raman-SERS analysis, we conducted an in-depth examination to clarify the molecular geometry of interactions between DNA and silver nanoparticles. Our findings also reveal distinctive spectral features regarding DNA samples due to their distinctive genome stability. To understand the subtle differences occurring between normal and cancerous DNA, their thermal stability was investigated by means of SERS measurement performed before and after a thermal treatment at 94 °C. It was proved that thermal treatment did not affect DNA integrity in the case of normal cells. On the other hand, due to epimutation pattern that characterizes cancerous DNA, variations between spectra recorded before and after heat treatment were observed, suggesting genome instability. These findings highlight the potential of DNA analysis using SERS for cancer detection. They demonstrate the applicability of this approach to overcoming challenges associated with low DNA concentrations (e.g., circulating tumor DNA) that occur in biofluids. In conclusion, this research contributes significant insights into the nanoscale behavior of DNA in the presence of nanosystems.
Asunto(s)
Nanopartículas del Metal , Neoplasias , Plata , ADN , Adsorción , Epigénesis Genética , Neoplasias/diagnósticoRESUMEN
(1) Background: This study aimed to assess the periodontitis burden in systemic sclerosis patients and the possible association between them, and the degree to which some potential risk factors and two potential diagnostic biomarkers may account for this association. (2) Methods: This cross-sectional study included a test group (systemic sclerosis patients) and a control group (non-systemic sclerosis patients). Both groups benefited from medical, periodontal examination and saliva sampling to determine the salivary flow rate and two inflammatory biomarkers (calprotectin, psoriasin). A systemic sclerosis severity scale was established. (3) Results: In the studied groups, comparable periodontitis rates of 88.68% and 85.85%, respectively, were identified. There were no significant differences in the severity of periodontitis among different systemic sclerosis severity, or in the positivity for anti-centromere and anti-SCL70 antibodies. Musculoskeletal lesions were significantly more common in stage III/IV periodontitis (n = 33, 86.84%) than in those in stage I/II (n = 1, 100%, and n = 3, 37.5%, respectively) (p = 0.007). Comparable levels of the inflammatory mediators were displayed by the two groups. There were no significant differences in calprotectin and psoriasin levels between diffuse and limited forms of systemic sclerosis. (4) Conclusions: Within the limitations of the current study, no associations between systemic sclerosis and periodontitis, or between their risk factors, could be proven.
RESUMEN
Leontopodium alpinum Cass. (edelweiss) is recognized as a frequent constituent of anti-aging skin care products, providing increased antioxidant and anti-inflammatory defense. Considering the growing demand and the protected status of edelweiss in many countries, alternative methods of production have been developed, one of them being callus culturing. This study reports the phytochemical composition of a methanolic extract of L. alpinum callus cultures, characterized by liquid chromatography coupled to ion-mobility high resolution mass spectrometry (UPLC/IM-HRMS). The methanolic extract exhibited strong free radical scavenging activity (122.19 ± 7.28 mg AAE/g dw), while the quantitative evaluation revealed that four major constituents (phenylpropanoid derivatives) represent 57.13% (m/m) of the extract. Consequently, a screening of antiproliferative effects was performed on ten cancer cell lines, representative of prostate, colon, lung and breast cancer, showing inhibition of colony formation in all cases. These results provide a comprehensive phytochemical characterization of L. alpinum callus cultures using advanced IM-HRMS, while the in vitro explorations confirmed the potent antioxidant properties of edelweiss which are worth exploring further in cancer prevention.
RESUMEN
Triple-negative breast cancer (TNBC) represents an unmet medical need due to a high rate of metastatic occurrence and poor overall survival, pathology aggressiveness, heterogeneous clinical behavior and limited cytotoxic chemotherapy options available because of the absence of targetable receptors. The current standard of care in TNBC is represented by chemotherapy and surgery associated with low overall survival and high relapse rates. Hopes of overcoming current limited and unspecific approaches of TNBC therapy lie in studying the metabolic rewiring of these types of breast cancer, thus understanding the mechanisms involved in the occurrence and progression of the disease. Due to its heterogeneity, a clinically relevant sub-classification of this type of breast cancer based on biomarker panels is greatly needed in order to guide treatment decisions. Mass spectrometry-based omics may provide very useful tools to address the current needs of targetable biomarker discovery and validation. The present review aims to provide a comprehensive view of the current clinical diagnosis and therapy of TNBC highlighting the need for a new approach. Therefore, this paper offers a detailed mass spectrometry-based snapshot of TNBC metabolic adjustment, emphasizing a complex network of variables governing the diverse and aggressive clinical behavior of TNBC.