Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Orv Hetil ; 157(18): 724, 2016 May 01.
Artículo en Húngaro | MEDLINE | ID: mdl-27106729

RESUMEN

Erratum to the article published on December 27th 2015 in Issue 52 of Orvosi Hetilap [Orv. Hetil., 2015, 156(52), 2120-2126, DOI: 10.1556/650.2015.30329]. The name of Dávid Mezey was not correctly typed. The corresponding author asked for the following correction to be published.

2.
Orv Hetil ; 156(52): 2120-6, 2015 Dec 27.
Artículo en Húngaro | MEDLINE | ID: mdl-26686749

RESUMEN

INTRODUCTION: Two-photon microscopy is the ideal tool to study how signals are processed in the functional brain tissue. However, early raster scanning strategies were inadequate to record fast 3D events like action potentials. AIM: The aim of the authors was to record various neuronal activity patterns with high signal-to-noise ratio in an optical manner. METHOD: Authors developed new data acquisition methods and microscope hardware. RESULTS: Multiple Line Scanning enables the experimenter to select multiple regions of interests, doing this not just increases repetition speed, but also the signal-to-noise ratio of the fluorescence transients. On the same principle, an acousto-optical deflector based 3D scanning microscope has been developed with a sub-millisecond temporal resolution and a millimeter z-scanning range. Its usability is demonstrated by obtaining 3D optical recordings of action potential backpropagation in several hundred micrometers long neuronal processes of single neurons and by 3D random-access scanning of Ca(2+) transients in hundreds of neurons in the mouse visual cortex. CONCLUSIONS: Region of interest scanning enables high signal-to-noise ratio and repetition speed, while keeping good depth penetration of the two-photon microscopes.


Asunto(s)
Imagenología Tridimensional , Microscopía Confocal , Red Nerviosa/fisiología , Neuronas/fisiología , Fotones , Potenciales de Acción , Animales , Humanos , Ratones , Tomografía Computarizada de Emisión de Fotón Único
3.
Elife ; 112022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36416886

RESUMEN

Neocortex is classically divided into distinct areas, each specializing in different function, but all could benefit from reinforcement feedback to inform and update local processing. Yet it remains elusive how global signals like reward and punishment are represented in local cortical computations. Previously, we identified a cortical neuron type, vasoactive intestinal polypeptide (VIP)-expressing interneurons, in auditory cortex that is recruited by behavioral reinforcers and mediates disinhibitory control by inhibiting other inhibitory neurons. As the same disinhibitory cortical circuit is present virtually throughout cortex, we wondered whether VIP neurons are likewise recruited by reinforcers throughout cortex. We monitored VIP neural activity in dozens of cortical regions using three-dimensional random access two-photon microscopy and fiber photometry while mice learned an auditory discrimination task. We found that reward and punishment during initial learning produce rapid, cortex-wide activation of most VIP interneurons. This global recruitment mode showed variations in temporal dynamics in individual neurons and across areas. Neither the weak sensory tuning of VIP interneurons in visual cortex nor their arousal state modulation was fully predictive of reinforcer responses. We suggest that the global response mode of cortical VIP interneurons supports a cell-type-specific circuit mechanism by which organism-level information about reinforcers regulates local circuit processing and plasticity.


Asunto(s)
Castigo , Péptido Intestinal Vasoactivo , Ratones , Animales , Recompensa , Neuronas , Interneuronas
4.
Nat Commun ; 13(1): 6715, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36344570

RESUMEN

Neuronal plasticity has been shown to be causally linked to coincidence detection through dendritic spikes (dSpikes). We demonstrate the existence of SPW-R-associated, branch-specific, local dSpikes and their computational role in basal dendrites of hippocampal PV+ interneurons in awake animals. To measure the entire dendritic arbor of long thin dendrites during SPW-Rs, we used fast 3D acousto-optical imaging through an eccentric deep-brain adapter and ipsilateral local field potential recording. The regenerative calcium spike started at variable, NMDA-AMPA-dependent, hot spots and propagated in both direction with a high amplitude beyond a critical distance threshold (~150 µm) involving voltage-gated calcium channels. A supralinear dendritic summation emerged during SPW-R doublets when two successive SPW-R events coincide within a short temporal window (~150 ms), e.g., during more complex association tasks, and generated large dSpikes with an about 2.5-3-fold amplitude increase which propagated down to the soma. Our results suggest that these doublet-associated dSpikes can work as a dendritic-level temporal and spatial coincidence detector during SPW-R-related network computation in awake mice.


Asunto(s)
Interneuronas , Parvalbúminas , Ratones , Animales , Potenciales de Acción/fisiología , Interneuronas/fisiología , Dendritas/fisiología , Neuronas/fisiología , Hipocampo/fisiología , Células Piramidales/fisiología
5.
Neuron ; 108(5): 968-983.e9, 2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33022227

RESUMEN

Cortical computations are critically reliant on their local circuit, GABAergic cells. In the hippocampus, a large body of work has identified an unprecedented diversity of GABAergic interneurons with pronounced anatomical, molecular, and physiological differences. Yet little is known about the functional properties and activity dynamics of the major hippocampal interneuron classes in behaving animals. Here we use fast, targeted, three-dimensional (3D) two-photon calcium imaging coupled with immunohistochemistry-based molecular identification to retrospectively map in vivo activity onto multiple classes of interneurons in the mouse hippocampal area CA1 during head-fixed exploration and goal-directed learning. We find examples of preferential subtype recruitment with quantitative differences in response properties and feature selectivity during key behavioral tasks and states. These results provide new insights into the collective organization of local inhibitory circuits supporting navigational and mnemonic functions of the hippocampus.


Asunto(s)
Región CA1 Hipocampal/citología , Región CA1 Hipocampal/diagnóstico por imagen , Imagenología Tridimensional/métodos , Interneuronas/ultraestructura , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Animales , Región CA1 Hipocampal/química , Calcio/análisis , Calcio/metabolismo , Femenino , Interneuronas/química , Masculino , Ratones , Ratones Transgénicos , Microscopía Confocal/métodos
6.
Neuron ; 92(4): 723-738, 2016 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-27773582

RESUMEN

Understanding neural computation requires methods such as 3D acousto-optical (AO) scanning that can simultaneously read out neural activity on both the somatic and dendritic scales. AO point scanning can increase measurement speed and signal-to-noise ratio (SNR) by several orders of magnitude, but high optical resolution requires long point-to-point switching time, which limits imaging capability. Here we present a novel technology, 3D DRIFT AO scanning, which can extend each scanning point to small 3D lines, surfaces, or volume elements for flexible and fast imaging of complex structures simultaneously in multiple locations. Our method was demonstrated by fast 3D recording of over 150 dendritic spines with 3D lines, over 100 somata with squares and cubes, or multiple spiny dendritic segments with surface and volume elements, including in behaving animals. Finally, a 4-fold improvement in total excitation efficiency resulted in about 500 × 500 × 650 µm scanning volume with genetically encoded calcium indicators (GECIs).


Asunto(s)
Conducta Animal , Cuerpo Celular/ultraestructura , Dendritas/ultraestructura , Espinas Dendríticas/ultraestructura , Imagen Óptica/métodos , Animales , Imagenología Tridimensional , Ratones , Microscopía , Neuronas/ultraestructura , Relación Señal-Ruido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA