RESUMEN
Small numbers of fetal cells cross the placenta during pregnancy turning mothers into microchimeras. Fetal cells from all previous pregnancies accumulate forming the mother's fetal microchiome. What is significant about microchimeric cells is that they have been linked to health problems including reproductive and autoimmune diseases. Three decades after the discovery of fetal microchimerism, the function of these cells remains a mystery. Here, we contend that the role of microchimeric cells is to inform the fetus about the likelihood that its genes are present in future pregnancies. We argue that, when genes are more likely than average to be in future maternal siblings, fetuses will send a fixed number of cells that will not elicit a maternal immune response against them. However, when genes are less likely to be in future maternal siblings, fetuses will send an ever-increasing number of cells that will elicit an ever-stronger maternal immune response. Our work can explain the observed clinical association between microchimeric cells and pre-eclampsia. However, our work predicts that this association should be stronger in women with a genetically diverse microchiome. If supported by medical tests, our work would allow establishing the likelihood of pregnancy or autoimmune problems advising medical interventions.
Asunto(s)
Quimerismo , Fuentes de Información , Embarazo , Humanos , Femenino , Madres , Pelvis , PlacentaRESUMEN
Recombination often concentrates in small regions called recombination hotspots where recombination is much higher than the genome's average. In many vertebrates, including humans, gene PRDM9 specifies which DNA motifs will be the target for breaks that initiate recombination, ultimately determining the location of recombination hotspots. Because the sequence that breaks (allowing recombination) is converted into the sequence that does not break (preventing recombination), the latter sequence is over-transmitted to future generations and recombination hotspots are self-destructive. Given their self-destructive nature, recombination hotspots should eventually become extinct in genomes where they are found. While empirical evidence shows that individual hotspots do become inactive over time (die), hotspots are abundant in many vertebrates: a contradiction called the Recombination Hotspot Paradox. What saves recombination hotspots from their foretold extinction? Here we formulate a co-evolutionary model of the interaction among sequence-specific gene conversion, fertility selection, and recurrent mutation. We find that allelic frequencies oscillate leading to stable limit cycles. From a biological perspective this means that when fertility selection is weaker than gene conversion, it cannot stop individual hotspots from dying but can save them from extinction by driving their re-activation (resuscitation). In our model, mutation balances death and resuscitation of hotspots, thus maintaining their number over evolutionary time. Interestingly, we find that multiple alleles result in oscillations that are chaotic and multiple targets in oscillations that are asynchronous between targets thus helping to maintain the average genomic recombination probability constant. Furthermore, we find that the level of expression of PRDM9 should control for the fraction of targets that are hotspots and the overall temperature of the genome. Therefore, our co-evolutionary model improves our understanding of how hotspots may be replaced, thus contributing to solve the Recombination Hotspot Paradox. From a more applied perspective our work provides testable predictions regarding the relation between mutation probability and fertility selection with life expectancy of hotspots.
Asunto(s)
Conversión Génica , Recombinación Genética , Humanos , Animales , Mutación , Frecuencia de los Genes , Modelos Genéticos , N-Metiltransferasa de Histona-Lisina/genéticaRESUMEN
Recombination in mammals is not uniformly distributed along the chromosome but concentrated in small regions known as recombination hotspots. Recombination starts with the double-strand break of a chromosomal sequence and results in the transmission of the sequence that does not break (preventing recombination) more often than the sequence that breaks (allowing recombination). Thus recombination itself renders individual recombination hotspots inactive and over time should drive them to extinction in the genome. Empirical evidence shows that individual recombination hotspots die but, far from being driven to extinction, they are abundant in the genome: a contradiction referred to as the Recombination Hotspot Paradox. What saves recombination hotspots from extinction? The current answer relies in the formation of new recombination hotspots in new genomic sites driven by viability selection in favor of recombination. Here we formulate a population genetics model that incorporates the molecular mechanism initiating recombination in mammals (PRDM9-like genes), to provide an alternative solution to the paradox. We find that weak selection allows individual recombination hotspots to become inactive (die) while saving them from extinction in the genome by driving their re-activation (resurrection). Our model shows that when selection for recombination is weak, the introduction of rare variants causes recombination sites to oscillate between hot and cold phenotypes with a recombination hotspot dying only to come back. Counter-intuitively, we find that low viability selection leaves a hard selective sweep signature in the genome, with the selective sweep at the recombination hotspot being the hardest when viability selection is the lowest. Our model can help to understand the rapid evolution of PRDM9, the co-existence of two types of hotspots, the life expectancy of hotspots, and the volatility of the recombinational landscape (with hotspots rarely being shared between closely related species).
Asunto(s)
Evolución Molecular , Mamíferos/genética , Modelos Genéticos , Recombinación Genética , Animales , Cromosomas , Genética de Población , N-Metiltransferasa de Histona-Lisina , Humanos , Fenotipo , Selección GenéticaRESUMEN
Genetic systems with multiple loci can have complex dynamics. For example, mean fitness need not always increase and stable cycling is possible. Here, we study the dynamics of a genetic system inspired by the molecular biology of recognition-dependent double strand breaks and repair as it happens in recombination hotspots. The model shows slow-fast dynamics in which the system converges to the quasi-linkage equilibrium (QLE) manifold. On this manifold, sustained cycling is possible as the dynamics approach a heteroclinic cycle, in which allele frequencies alternate between near extinction and near fixation. We find a closed-form approximation for the QLE manifold and use it to simplify the model. For the simplified model, we can analytically calculate the stability of the heteroclinic cycle. In the discrete-time model the cycle is always stable; in a continuous-time approximation, the cycle is always unstable. This demonstrates that complex dynamics are possible under quasi-linkage equilibrium.
Asunto(s)
Epistasis Genética , Conversión Génica , Desequilibrio de Ligamiento , Modelos Genéticos , Selección GenéticaRESUMEN
A gene mediating interactions between mouse mothers and their pups has recently been claimed to support coadaptation rather than the kinship theory of genomic imprinting. This Formal Comment argues that this claim is unfounded.
Asunto(s)
Tamaño Corporal/genética , Proteína Adaptadora GRB10/genética , Animales , FemeninoRESUMEN
Three recent genome-wide studies in mice and humans have produced the most definitive map to date of genomic imprinting (gene expression that depends on parental origin) by incorporating multiple tissue types and developmental stages. Here, we explore the results of these studies in light of the kinship theory of genomic imprinting, which predicts that imprinting evolves due to differential genetic relatedness between maternal and paternal relatives. The studies produce a list of imprinted genes with around 120-180 in mice and ~100 in humans. The studies agree on broad patterns across mice and humans including the complex patterns of imprinted expression at loci like Igf2 and Grb10. We discuss how the kinship theory provides a powerful framework for hypotheses that can explain these patterns. Finally, since imprinting is rare in the genome despite predictions from the kinship theory that it might be common, we discuss evolutionary factors that could favor biallelic expression.
Asunto(s)
Alelos , Proteína Adaptadora GRB10/genética , Genoma , Impresión Genómica , Factor II del Crecimiento Similar a la Insulina/genética , Modelos Genéticos , Animales , Evolución Biológica , Femenino , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Ratones , Especificidad de Órganos , Especificidad de la EspecieRESUMEN
Intragenomic conflict may arise when social partners are more related through one parent than the other-for example, owing to individuals or gametes of one sex dispersing further prior to fertilization. In particular, genes originating from the former parent are favored to promote selflessness, and those originating from the latter parent are favored to promote selfishness. While the impact of patterns of dispersal on the evolution of intragenomic conflict has received recent attention, the consequences of intragenomic conflict for the evolution of dispersal remain to be explored. We suggest that if the evolution of dispersal is driven at least in part by kin selection, differential relatedness of social partners via their mothers versus their fathers may lead to an intragenomic conflict, with maternal-origin genes and paternal-origin genes favoring different rates of dispersal. As an illustration, we extend a classic model of the evolution of dispersal to explore how intragenomic conflict may arise between an individual's maternal-origin and paternal-origin genes over whether that individual should disperse in order to ease kin competition. Our analysis reveals extensive potential for intragenomic conflict over dispersal and predicts that genes underpinning dispersal phenotypes may exhibit parent-of-origin-specific expression, which may facilitate their discovery.
Asunto(s)
Distribución Animal , Evolución Biológica , Animales , Femenino , Impresión Genómica , Masculino , Modelos Genéticos , Reproducción/genética , Conducta Sexual AnimalRESUMEN
Most animals and many plants make use of specialized chromosomes (sex chromosomes) to determine an individual's sex. Best known are the XY and ZW sex-determination systems. Despite having evolved numerous times, sex chromosomes present something of an evolutionary puzzle. At their origin, alleles that dictate development as one sex or the other (primitive sex chromosomes) face a selective penalty, as they will be found more often in the more abundant sex. How is it possible that primitive sex chromosomes overcome this disadvantage? Any theory for the origin of sex chromosomes must identify the benefit that outweighs this cost and enables a sex-determining mutation to establish in the population. Here we show that a new sex-determining allele succeeds when linked to a sex-specific meiotic driver. The new sex-determining allele benefits from confining the driving allele to the sex in which it gains the benefit of drive. Our model requires few special assumptions and is sufficiently general to apply to the evolution of sex chromosomes in outbreeding cosexual or dioecious species. We highlight predictions of the model that can discriminate between this and previous theories of sex-chromosome origins.
Asunto(s)
Evolución Molecular , Meiosis , Plantas/genética , Cromosomas Sexuales/genética , Animales , Femenino , Masculino , Modelos GenéticosRESUMEN
Menopause is the transition from reproductive to non-reproductive life well before natural death. Rather than involving a smooth, rapid change, it is normally preceded by a long period of erratic hormonal fluctuation that is accompanied by a plethora of unpleasant symptoms. Here, we (1) suggest that this turbulent period owes to conflict, between a woman's maternally inherited (MI) and paternally inherited (PI) genes, over the trade-off between reproduction and communal care; (2) perform a theoretical analysis to show that this conflict is resolved either through silencing or fluctuating expression of one of the genes; (3) highlight which of the symptoms preceding menopause may result from antagonistic co-evolution of MI and PI genes; (4) argue that ecological differences between ancestral human populations may explain the variability in menopause among different ethnic groups; (5) discuss how these insights may be used to inform family planning and cancer risk assessment based on a woman's ancestral background.
Asunto(s)
Genoma Humano , Menopausia/genética , Modelos Genéticos , Anciano , Envejecimiento/genética , Animales , Cultura , Femenino , Fertilidad/genética , Fertilidad/fisiología , Regulación de la Expresión Génica , Humanos , Masculino , Edad Materna , Menopausia/fisiología , Persona de Mediana EdadRESUMEN
Genomic imprinting is the differential expression of an allele based on the parent of origin. Recent transcriptome-wide evaluations of the number of imprinted genes reveal complex patterns of imprinted expression among developmental stages and cell types. Such data demand a comprehensive evolutionary framework in which to understand the effect of natural selection on imprinted gene expression. We present such a framework for how asymmetries in demographic parameters and fitness effects can lead to the evolution of genomic imprinting and place recent theoretical advances in this framework. This represents a modern interpretation of the kinship theory, is well suited to studying populations with complex social interactions, and provides predictions which can be tested with forthcoming transcriptomic data. To understand the intricate phenotypic patterns that are emerging from the recent deluge of data, future investigations of genomic imprinting will require integrating evolutionary theory, transcriptomic data, developmental and functional genetics, and natural history.
Asunto(s)
Evolución Molecular , Aptitud Genética , Impresión Genómica , Animales , Modelos Genéticos , Fenotipo , Selección GenéticaRESUMEN
Populations with two sexes are vulnerable to a pair of genetic conflicts: sexual antagonism that can arise when alleles have opposing fitness effects on females and males; and parental antagonism that arises when alleles have opposing fitness effects when maternally and paternally inherited. This paper extends previous theoretical work that found stable linkage disequilibrium (LD) between sexually antagonistic loci. We find that LD is also generated between parentally antagonistic loci, and between sexually and parentally antagonistic loci, without any requirement of epistasis. We contend that the LD in these models arises from the admixture of gene pools subject to different selective histories. We also find that polymorphism maintained by parental antagonism at one locus expands the opportunity for polymorphism at a linked locus experiencing parental or sexual antagonism. Taken together, our results predict the chromosomal clustering of loci that segregate for sexually and parentally antagonistic alleles. Thus, genetic conflict may play a role in the evolution of genomic architecture.
Asunto(s)
Aptitud Genética , Desequilibrio de Ligamiento , Selección Genética , Alelos , Animales , Evolución Biológica , Femenino , Masculino , Preferencia en el Apareamiento Animal , Modelos Genéticos , Polimorfismo GenéticoRESUMEN
BACKGROUND: The successful implementation of cardiovascular disease (CVD) prevention guidelines relies heavily on primary care physicians (PCPs) providing risk factor evaluation, intervention and patient education. The aim of this study was to ascertain the degree of awareness and implementation of the Spanish adaptation of the European guidelines on CVD prevention in clinical practice (CEIPC guidelines) among PCPs. METHODS: A cross-sectional survey of PCPs was conducted in Spain between January and June 2011. A random sample of 1,390 PCPs was obtained and stratified by region. Data were collected by means of a self-administered questionnaire. RESULTS: More than half (58%) the physicians were aware of and knew the recommendations, and 62% of those claimed to use them in clinical practice, with general physicians (without any specialist accreditation) being less likely to so than family doctors. Most PCPs (60%) did not assess cardiovascular risk, with the limited time available in the surgery being cited as the greatest barrier by 81%. The main reason to be sceptical about recommendations, reported by 71% of physicians, was that there are too many guidelines. Almost half the doctors cited the lack of training and skills as the greatest barrier to the implementation of lifestyle and behavioural change recommendations. CONCLUSIONS: Most PCPs were aware of the Spanish adaptation of the European guidelines on CVD prevention (CEIPC guidelines) and knew their content. However, only one third of PCPs used the guidelines in clinical practice and less than half CVD risk assessment tools.
Asunto(s)
Enfermedades Cardiovasculares/prevención & control , Medicina Familiar y Comunitaria/estadística & datos numéricos , Adhesión a Directriz/estadística & datos numéricos , Guías de Práctica Clínica como Asunto , Pautas de la Práctica en Medicina/estadística & datos numéricos , Atención Primaria de Salud/normas , Adulto , Actitud del Personal de Salud , Competencia Clínica , Estudios Transversales , Medicina Familiar y Comunitaria/educación , Femenino , Conocimientos, Actitudes y Práctica en Salud , Humanos , Estilo de Vida , Masculino , Persona de Mediana Edad , Medición de Riesgo , España , Encuestas y Cuestionarios , Factores de TiempoRESUMEN
Understanding the capacity of pathogens to cause severe disease is of fundamental importance to human health and the preservation of biodiversity. Many of those pathogens are not only transmitted horizontally between unrelated hosts but also vertically between parents and their progeny. It is widely accepted that vertical transmission leads to the evolution of less virulent pathogens, but this idea stems from research that neglects the evolutionary response of hosts. Here, we use a game-theory model of coevolution between pathogen and host to show that vertical transmission does not always lead to more benign pathogens. We highlight scenarios in which vertical transmission results in pathogens exhibiting more virulence. However, we also predict that more benign outcomes are still possible (a) when generating new horizontal infections inflicts too much damage on hosts, (b) when clearing an infection is too costly for the host, and (c) when vertical transmission is promoted by a greater growth rate of the host population. Though our work offers a new perspective on the role of vertical transmission in pathogen-host systems, it does agree with previous experimental work.
RESUMEN
Asexual reproduction is ancestral in prokaryotes; the switch to sexuality in eukaryotes is one of the major transitions in the history of life. The study of the maintenance of sex in eukaryotes has raised considerable interest for decades and is still one of evolutionary biology's most prominent question. The observation that many asexual species are of hybrid origin has led some to propose that asexuality in hybrids results from sexual processes being disturbed because of incompatibilities between the two parental species' genomes. However, in some cases, failure to produce asexual F1s in the lab may indicate that this mechanism is not the only road to asexuality in hybrid species. Here, we present a mathematical model and propose an alternative, adaptive route for the evolution of asexuality from previously sexual hybrids. Under some reproductive alterations, we show that asexuality can evolve to rescue hybrids' reproduction. Importantly, we highlight that when incompatibilities only affect the fusion of sperm and egg's genomes, the two traits that characterize asexuality, namely unreduced meiosis and the initiation of embryogenesis without the incorporation of the sperm's pronucleus, can evolve separately, greatly facilitating the overall evolutionary route. Taken together, our results provide an alternative, potentially complementary explanation for the link between asexuality and hybridization.
Asunto(s)
Reproducción Asexuada , Semen , Masculino , Humanos , Reproducción , Hibridación Genética , FenotipoRESUMEN
Medical research reports that women often exhibit stronger immune responses than men, while pathogens tend to be more virulent in men. Current explanations cannot account for this pattern, creating an obstacle for our understanding of infectious-disease outcomes and the incidence of autoimmune diseases. We offer an alternative explanation that relies on a fundamental difference between the sexes: maternity and the opportunities it creates for transmission of pathogens from mother to child (vertical transmission). Our explanation relies on a mathematical model of the co-evolution of host immunocompetence and pathogen virulence. Here, we show that when there is sufficient vertical transmission co-evolution leads women to defend strongly against temperate pathogens and men to defend weakly against aggressive pathogens, in keeping with medical observations. From a more applied perspective, we argue that limiting vertical transmission of infections would alleviate the disproportionate incidence of autoimmune diseases in women over evolutionary time.
Asunto(s)
Enfermedades Autoinmunes , Enfermedades Transmisibles , Enfermedades Autoinmunes/epidemiología , Evolución Biológica , Niño , Femenino , Humanos , Inmunidad , Transmisión Vertical de Enfermedad Infecciosa , Masculino , Embarazo , VirulenciaRESUMEN
One of the main problems impeding the evolution of cooperation is partner choice. When information is asymmetric (the quality of a potential partner is known only to himself), it may seem that partner choice is not possible without signaling. Many mutualisms, however, exist without signaling, and the mechanisms by which hosts might select the right partners are unclear. Here we propose a general mechanism of partner choice, "screening," that is similar to the economic theory of mechanism design. Imposing the appropriate costs and rewards may induce the informed individuals to screen themselves according to their types and therefore allow a noninformed individual to establish associations with the correct partners in the absence of signaling. Several types of biological symbioses are good candidates for screening, including bobtail squid, ant-plants, gut microbiomes, and many animal and plant species that produce reactive oxygen species. We describe a series of diagnostic tests for screening. Screening games can apply to the cases where by-products, partner fidelity feedback, or host sanctions do not apply, therefore explaining the evolution of mutualism in systems where it is impossible for potential symbionts to signal their cooperativeness beforehand and where the host does not punish symbiont misbehavior.
Asunto(s)
Evolución Biológica , Modelos Biológicos , Simbiosis , Aliivibrio fischeri/fisiología , Animales , Hormigas/fisiología , Decapodiformes/microbiología , Decapodiformes/fisiología , Economía , Fenómenos Fisiológicos de las PlantasRESUMEN
Linkage disequilibrium (LD) is an association between genetic loci that is typically transient. Here, we identify a previously overlooked cause of stable LD that may be pervasive: sexual antagonism. This form of selection produces unequal allele frequencies in males and females each generation, which upon admixture at fertilization give rise to an excess of haplotypes that couple male-beneficial with male-beneficial and female-beneficial with female-beneficial alleles. Under sexual antagonism, LD is obtained for all recombination frequencies in the absence of epistasis. The extent of LD is highest at low recombination and for stronger selection. We provide a partition of the total LD into distinct components and compare our result for sexual antagonism with Li and Nei's model of LD owing to population subdivision. Given the frequent observation of sexually antagonistic selection in natural populations and the number of traits that are often involved, these results suggest a major contribution of sexual antagonism to genomic structure.
Asunto(s)
Desequilibrio de Ligamiento , Modelos Genéticos , Selección Genética , Animales , Femenino , Frecuencia de los Genes , Genotipo , Masculino , Factores SexualesRESUMEN
The term "imprinted gene" refers to genes whose expression is conditioned by their parental origin. Among theories to unravel the evolution of genomic imprinting, the kinship theory prevails as the most widely accepted, because it sheds light on many aspects of the biology of imprinted genes. While most assumptions underlying this theory have not escaped scrutiny, one remains overlooked: mothers are the only source of parental investment in mammals. But, is it reasonable to assume that fathers' contribution of resources is negligible? It is not in some key mammalian orders including humans. In this research, I generalize the kinship theory of genomic imprinting beyond maternal contribution only. In addition to deriving new conditions for the evolution of imprinting, I have found that the same gene may show the opposite pattern of expression when the investment of one parent relative to the investment of the other changes; the reversion, interestingly, does not require that fathers contribute more resources than mothers. This exciting outcome underscores the intimate connection between the kinship theory and the social structure of the organism considered. Finally, the insight gained from my model enabled me to explain the clinical phenotype of Prader-Willi syndrome. This syndrome is caused by the paternal inheritance of a deletion of the PWS/AS cluster of imprinted genes in human Chromosome 15. As such, children suffering from this syndrome exhibit a striking biphasic phenotype characterized by poor sucking and reduced weight before weaning but by voracious appetite and obesity after weaning. Interest in providing an evolutionary explanation to such phenotype is 2-fold. On the one hand, the kinship theory has been doubted as being able to explain the symptoms of patients with Prader-Willi. On the other hand, the post-weaning symptoms remain as one of the primary concern of pediatricians treating children with Prader-Willi. In this research, I reconcile the clinical phenotype of Prader-Willi syndrome with the kinship theory, contending that paternal investment relative to maternal investment increases after weaning. I also propose a genetic composition of the PWS/AS cluster, discuss the effects of new types of mutations, and contemplate the potential side effects of reactivating silent genes for medical purposes.
Asunto(s)
Síndrome de Angelman/genética , Impresión Genómica , Modelos Genéticos , Síndrome de Prader-Willi/genética , Evolución Biológica , Niño , Cromosomas Humanos Par 15/genética , Humanos , Obesidad/genética , DesteteRESUMEN
Genes with identical DNA sequence may show differential expression because of epigenetic marks. Where epigenetic marks respond to past conditions, they represent a form of "memory". Despite their medical relevance, the impact of memories on the evolution of infectious diseases has rarely been considered. Here we explore the evolution of virulence in pathogens that carry memories of the sex of their previous host. We show that this form of memory provides information about the sex of present and future hosts when the sexes differ in their pathogen's transmission pattern. Memories of past hosts enable the evolution of greater virulence in infections originating from one sex and infections transmitted across sexes. Thus, our results account for patterns of virulence that have, to date, defied medical explanation. In particular, it has been observed that girls infected by boys (or boys infected by girls) are more likely to die from measles, chickenpox and polio than girls infected by girls (or boys infected by boys). We also evaluate epigenetic therapies that tamper with the memories of infecting pathogens. More broadly, our findings imply that pathogens can be selected to carry memories of past environments other than sex. This identifies new directions in personalised medicine.
Asunto(s)
Enfermedades Transmisibles/genética , Epigénesis Genética/genética , Animales , Humanos , Memoria/fisiología , Virulencia/genética , Virulencia/fisiologíaRESUMEN
Imprinted genes have been associated with a wide range of diseases. Many of these diseases have symptoms that can be understood in the context of the evolutionary forces that favored imprinted expression at these loci. Modulation of perinatal growth and resource acquisition has played a central role in the evolution of imprinting and many of the diseases associated with imprinted genes involve some sort of growth or feeding disorder. In the first part of this chapter, we discuss the relationship between the evolution of imprinting and the clinical manifestations of imprinting-associated diseases. In the second half, we consider the variety of processes that can disrupt imprinted gene expression and function. We ask specifically if there is reason to believe that imprinted genes are particularly susceptible to deregulation-and whether a disruption of an imprinted gene is more likely to have deleterious consequences than a disruption of an unimprinted gene. There is more to a gene than its DNA sequence. C. H. Waddington used the term "epigenetic" to describe biological differences between tissues that result from the process of development. Waddington needed a new term to describe this variation which was neither the result of genotypic differences between the cells nor well described as phenotypic variation. We now understand that heritable modifications of the DNA--such as cytosine methylation--and aspects of chromatin structure--including histone modifications--are the mechanisms underlying what Waddington called the "epigenotype." Epigenetic modifications are established in particular cell lines during development and are responsible for the patterns of gene expression seen in different tissue types. In contemporary usage, the term epigenetic refers to heritable changes in gene expression that are not coded in the DNA sequence itself. In recent years, much attention has been paid to a particular type of epigenetic variation: genomic imprinting. In the case of imprinting, the maternally and paternally inherited genes within a single cell have epigenetic differences that result in divergent patterns of gene expression. In the simplest scenario, only one of the two alleles at an imprinted locus is expressed. In other cases, an imprinted locus can include a variety of maternally expressed, paternally expressed and biallelically expressed transcripts. Some of these transcripts produce different proteins through alternate splicing, while others produce noncoding RNA transcripts. Genomic imprinting can also interact with the "epigenotype" in Waddington's sense: many genes are imprinted in a tissue-specific manner, with monoallelic expression in some cell types and biallelic expression in others. Other chapters in this volume cover our current understanding of the mechanisms of imprinting, the phenotypic effects of imprinted genes in mammals and what we know about imprinting in plants. In this chapter we discuss the link between imprinted genes and human disease. First, we consider the phenotypes associated with imprinted genes and ask whether the disorders associated with these genes share a common motif. Second, we consider the nature and frequency of mutations of imprinted genes. We ask whether we should expect that imprinted genes are particularly fragile. That is, are they more likely to undergo mutation and/or are mutations of imprinted genes particularly likely to result in human disease? In general we consider how the field of evolutionary medicine--the use of evolution to understand why our body's design allows for the existence of disease at all--might contribute to our comprehension of disorders linked to genomic imprinting.