Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nature ; 621(7977): 66-70, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37558882

RESUMEN

The characteristic excitation of a metal is its plasmon, which is a quantized collective oscillation of its electron density. In 1956, David Pines predicted that a distinct type of plasmon, dubbed a 'demon', could exist in three-dimensional (3D) metals containing more than one species of charge carrier1. Consisting of out-of-phase movement of electrons in different bands, demons are acoustic, electrically neutral and do not couple to light, so have never been detected in an equilibrium, 3D metal. Nevertheless, demons are believed to be critical for diverse phenomena including phase transitions in mixed-valence semimetals2, optical properties of metal nanoparticles3, soundarons in Weyl semimetals4 and high-temperature superconductivity in, for example, metal hydrides3,5-7. Here, we present evidence for a demon in Sr2RuO4 from momentum-resolved electron energy-loss spectroscopy. Formed of electrons in the ß and γ bands, the demon is gapless with critical momentum qc = 0.08 reciprocal lattice units and room-temperature velocity v = (1.065 ± 0.12) × 105 m s-1 that undergoes a 31% renormalization upon cooling to 30 K because of coupling to the particle-hole continuum. The momentum dependence of the intensity of the demon confirms its neutral character. Our study confirms a 67-year old prediction and indicates that demons may be a pervasive feature of multiband metals.

2.
Proc Natl Acad Sci U S A ; 119(15): e2119429119, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35377791

RESUMEN

Charge density waves (CDWs) have been observed in nearly all families of copper-oxide superconductors. But the behavior of these phases across different families has been perplexing. In La-based cuprates, the CDW wavevector is an increasing function of doping, exhibiting the so-called Yamada behavior, while in Y- and Bi-based materials the behavior is the opposite. Here, we report a combined resonant soft X-ray scattering (RSXS) and neutron scattering study of charge and spin density waves in isotopically enriched La1.8−xEu0.2SrxCuO4 over a range of doping 0.07≤x≤0.20. We find that the CDW amplitude is temperature independent and develops well above experimentally accessible temperatures. Further, the CDW wavevector shows a nonmonotonic temperature dependence, exhibiting Yamada behavior at low temperature with a sudden change occurring near the spin ordering temperature. We describe these observations using a Landau­Ginzburg theory for an incommensurate CDW in a metallic system with a finite charge compressibility and spin-CDW coupling. Extrapolating to high temperature, where the CDW amplitude is small and spin order is absent, our analysis predicts a decreasing wavevector with doping, similar to Y and Bi cuprates. Our study suggests that CDW order in all families of cuprates forms by a common mechanism.

3.
Phys Rev Lett ; 131(7): 076901, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37656841

RESUMEN

We report ultrafast x-ray scattering experiments of the quasi-1D charge density wave (CDW) material (TaSe_{4})_{2}I following ultrafast infrared photoexcitation. From the time-dependent diffraction signal at the CDW sidebands we identify a 0.11 THz amplitude mode derived primarily from a transverse acoustic mode of the high-symmetry structure. From our measurements we determine that this mode interacts with the valence charge indirectly through another collective mode, and that the CDW system in (TaSe_{4})_{2}I has a composite nature supporting multiple dynamically active structural degrees of freedom.

4.
Inorg Chem ; 62(7): 3067-3074, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36758187

RESUMEN

The discovery of new low-dimensional transition-metal chalcogenides is contributing to the already prosperous family of these materials. In this study, needle-shaped single crystals of a quasi-one-dimensional (1D) material, (Nb4Se15I2)I2, were grown by chemical vapor transport, and the structure was solved by single-crystal X-ray diffraction (XRD). The structure has 1D (Nb4Se15I2)n chains along the [101] direction, with two I- ions per formula unit directly bonded to Nb5+. The other two I- ions are loosely coordinated and intercalated between the chains. Individual chains are chiral and stack along the b axis in opposing directions, giving space group P21/c. The phase purity and crystal structure were verified by powder XRD. Density functional theory calculations show (Nb4Se15I2)I2 to be a semiconductor with a direct band gap of around 0.6 eV. Resistivity measurements of bulk crystals and micropatterned devices demonstrate that (Nb4Se15I2)I2 has an activation energy of around 0.1 eV, and no anomaly or transition was seen upon cooling. Low-temperature XRD shows that (Nb4Se15I2)I2 does not undergo a structural phase transformation from room temperature to 8.2 K, unlike related compounds (NbSe4)nI (n = 2, 3, or 3.33), which all exhibit charge-density waves. This compound represents a well-characterized and valence-precise member of a diverse family of anisotropic transition-metal chalcogenides.

5.
Phys Rev Lett ; 127(2): 027602, 2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34296905

RESUMEN

How superconductivity interacts with charge or nematic order is one of the great unresolved issues at the center of research in quantum materials. Ba_{1-x}Sr_{x}Ni_{2}As_{2} (BSNA) is a charge ordered pnictide superconductor recently shown to exhibit a sixfold enhancement of superconductivity due to nematic fluctuations near a quantum phase transition (at x_{c}=0.7) [1]. The superconductivity is, however, anomalous, with the resistive transition for 0.4

6.
Phys Rev Lett ; 122(14): 147601, 2019 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-31050473

RESUMEN

Ba(Ni_{1-x}Co_{x})_{2}As_{2} is a structural homologue of the pnictide high temperature superconductor, Ba(Fe_{1-x}Co_{x})_{2}As_{2}, in which the Fe atoms are replaced by Ni. Superconductivity is highly suppressed in this system, reaching a maximum T_{c}=2.3 K, compared to 24 K in its iron-based cousin, and the origin of this T_{c} suppression is not known. Using x-ray scattering, we show that Ba(Ni_{1-x}Co_{x})_{2}As_{2} exhibits a unidirectional charge density wave (CDW) at its triclinic phase transition. The CDW is incommensurate, exhibits a sizable lattice distortion, and is accompanied by the appearance of α Fermi surface pockets in photoemission [B. Zhou et al., Phys. Rev. B 83, 035110 (2011)PRBMDO1098-012110.1103/PhysRevB.83.035110], suggesting it forms by an unconventional mechanism. Co doping suppresses the CDW, paralleling the behavior of antiferromagnetism in iron-based superconductors. Our study demonstrates that pnictide superconductors can exhibit competing CDW order, which may be the origin of T_{c} suppression in this system.

7.
Phys Rev Lett ; 119(16): 166402, 2017 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-29099202

RESUMEN

Electron correlation in graphene is unique because of the interplay between the Dirac cone dispersion of π electrons and long-range Coulomb interaction. Because of the zero density of states at Fermi level, the random phase approximation predicts no metallic screening at long distance and low energy, so one might expect that graphene should be a poorly screened system. However, empirically graphene is a weakly interacting semimetal, which leads to the question of how electron correlations take place in graphene at different length scales. We address this question by computing the equal time and dynamic structure factor S(q) and S(q,ω) of freestanding graphene using ab initio fixed-node diffusion Monte Carlo simulations and the random phase approximation. We find that the σ electrons contribute strongly to S(q,ω) for relevant experimental values of ω even at distances up to around 80 Å. These findings illustrate how the emergent physics from underlying Coulomb interactions results in the observed weakly correlated semimetal.

8.
Phys Rev Lett ; 118(10): 106405, 2017 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-28339234

RESUMEN

We report a low-temperature scanning tunneling microscopy study of the charge density wave (CDW) order in 1T-TiSe_{2} and Cu_{0.08}TiSe_{2}. In pristine 1T-TiSe_{2} we observe a long-range coherent commensurate CDW (CCDW) order. In contrast, Cu_{0.08}TiSe_{2} displays an incommensurate CDW (ICDW) phase with localized CCDW domains separated by domain walls. Density of states measurements indicate that the domain walls host an extra population of fermions near the Fermi level which may play a role in the emergence of superconductivity in this system. Fourier transform scanning tunneling spectroscopy studies suggest that the dominant mechanism for CDW formation in the ICDW phase may be electron-phonon coupling.

9.
Phys Rev Lett ; 110(13): 137002, 2013 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-23581360

RESUMEN

We present a microscopic theory of resonant soft-x-ray scattering that accounts for the delocalized character of valence electrons. Unlike past approaches based on local form factors, our functional determinant method treats realistic band structures. This method builds upon earlier theoretical work in mesoscopic physics and accounts for excitonic effects as well as the orthogonality catastrophe arising from interaction between the core hole and the valence band electrons. We show that the two-peak structure observed near the O K edge of stripe-ordered La1.875Ba0.125CuO4 is due to dynamical nesting within the canonical cuprate band structure. Our results provide evidence for reasonably well-defined, high-energy quasiparticles in cuprates and establish resonant soft-x-ray scattering as a bulk-sensitive probe of the electron quasiparticles.

10.
Phys Rev Lett ; 111(15): 157401, 2013 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-24160627

RESUMEN

We propose a simple first-principles method to describe the propagation of tightly bound excitons. By viewing the exciton as a composite object (an effective Frenkel exciton in Wannier orbitals), we define an exciton kinetic kernel to encapsulate the exciton propagation and decay for all binding energies. Applied to prototypical LiF, our approach produces three exciton bands, which we verified quantitatively via inelastic x-ray scattering. The proposed real-space picture is computationally inexpensive and thus enables study of the full exciton dynamics, even in the presence of surfaces and impurity scattering. It also provides an intuitive understanding to facilitate practical exciton engineering in semiconductors, strongly correlated oxides, and their nanostructures.

11.
Nat Commun ; 14(1): 3919, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37400449

RESUMEN

The strange metallic regime across a number of high-temperature superconducting materials presents numerous challenges to the classic theory of Fermi liquid metals. Recent measurements of the dynamical charge response of strange metals, including optimally doped cuprates, have revealed a broad, featureless continuum of excitations, extending over much of the Brillouin zone. The collective density oscillations of this strange metal decay into the continuum in a manner that is at odds with the expectations of Fermi liquid theory. Inspired by these observations, we investigate the phenomenology of bosonic collective modes and the particle-hole excitations in a class of strange metals by making an analogy to the phonons of classical lattices falling apart across an unconventional jamming-like transition associated with the onset of rigidity. By making comparisons to the experimentally measured dynamical response functions, we reproduce many of the qualitative features using the above framework. We conjecture that the dynamics of electronic charge density over an intermediate range of energy scales in a class of strongly correlated metals can be at the brink of a jamming-like transition.

12.
Science ; 377(6602): eabh4273, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35857547

RESUMEN

In traditional metals, the temperature (T) dependence of electrical resistivity vanishes at low or high T, albeit for different reasons. Here, we review a class of materials, known as "strange" metals, that can violate both of these principles. In strange metals, the change in slope of the resistivity as the mean free path drops below the lattice constant, or as T → 0, can be imperceptible, suggesting continuity between the charge carriers at low and high T. We focus on transport and spectroscopic data on candidate strange metals in an effort to isolate and identify a unifying physical principle. Special attention is paid to quantum criticality, Planckian dissipation, Mottness, and whether a new gauge principle is needed to account for the nonlocal transport seen in these materials.

13.
Proc Natl Acad Sci U S A ; 105(34): 12159-63, 2008 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-18711146

RESUMEN

The absorption of light by materials proceeds through the formation of excitons, which are states in which an excited electron is bound to the valence hole it vacated. Understanding the structure and dynamics of excitons is important, for example, for developing technologies for light-emitting diodes or solar energy conversion. However, there has never been an experimental means to study the time-dependent structure of excitons directly. Here, we use causality-inverted inelastic x-ray scattering (IXS) to image the charge-transfer exciton in the prototype insulator LiF, with resolutions Delta t = 20.67 as (2.067 x 10(-17) s) in time and Delta x = 0.533 A (5.33 x 10(-11) m) in space. Our results show that the exciton has a modulated internal structure and is coherently delocalized over two unit cells of the LiF crystal (approximately 8 A). This structure changes only modestly during the course of its life, which establishes it unambiguously as a Frenkel exciton and thus amenable to a simplified theoretical description. Our results resolve an old controversy about excitons in the alkali halides and demonstrate the utility of IXS for imaging attosecond electron dynamics in condensed matter.

14.
Nat Phys ; 16(3): 346-350, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33505513

RESUMEN

The electronic nematic phase-in which electronic degrees of freedom lower the crystal rotational symmetry-is commonly observed in high-temperature superconductors. However, understanding the role of nematicity and nematic fluctuations in Cooper pairing is often made more complicated by the coexistence of other orders, particularly long-range magnetic order. Here we report the enhancement of superconductivity in a model electronic nematic system that is not magnetic, and show that the enhancement is directly born out of strong nematic fluctuations associated with a quantum phase transition. We present measurements of the resistance as a function of strain in Ba1-x Sr x Ni2As2 to show that strontium substitution promotes an electronically driven nematic order in this system. In addition, the complete suppression of that order to absolute zero temperature leads to an enhancement of the pairing strength, as evidenced by a sixfold increase in the superconducting transition temperature. The direct relation between enhanced pairing and nematic fluctuations in this model system, as well as the interplay with a unidirectional charge-density-wave order comparable to that found in the cuprates, offers a means to investigate the role of nematicity in strengthening superconductivity.

15.
Phys Rev Lett ; 103(23): 237402, 2009 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-20366171

RESUMEN

We use high resolution dynamical structure factor S(q,omega) data measured with inelastic x-ray scattering to reconstruct the Green's function of water, which describes its density response to a point charge, and provides a fundamental comparative model for solvation behavior at molecular time scales and length scales. Good agreement is found with simulations, scattering and spectroscopic experiments. These results suggest that a moving point charge will modify its hydration structure, evolving from a spherical closed shell to a steady-state cylindrical hydration "sleeve".

16.
Sci Adv ; 5(8): eaax3346, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31453340

RESUMEN

Charge order is universal among high-T c cuprates, but its relation to superconductivity is unclear. While static order competes with superconductivity, dynamic order may be favorable and even contribute to Cooper pairing. Using time-resolved resonant soft x-ray scattering at a free-electron laser, we show that the charge order in prototypical La2-x Ba x CuO4 exhibits transverse fluctuations at picosecond time scales. These sub-millielectron volt excitations propagate by Brownian-like diffusion and have an energy scale remarkably close to the superconducting T c. At sub-millielectron volt energy scales, the dynamics are governed by universal scaling laws defined by the propagation of topological defects. Our results show that charge order in La2-x Ba x CuO4 exhibits dynamics favorable to the in-plane superconducting tunneling and establish time-resolved x-rays as a means to study excitations at energy scales inaccessible to conventional scattering techniques.

17.
Science ; 358(6368): 1314-1317, 2017 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-29217574

RESUMEN

Bose condensation has shaped our understanding of macroscopic quantum phenomena, having been realized in superconductors, atomic gases, and liquid helium. Excitons are bosons that have been predicted to condense into either a superfluid or an insulating electronic crystal. Using the recently developed technique of momentum-resolved electron energy-loss spectroscopy (M-EELS), we studied electronic collective modes in the transition metal dichalcogenide semimetal 1T-TiSe2 Near the phase-transition temperature (190 kelvin), the energy of the electronic mode fell to zero at nonzero momentum, indicating dynamical slowing of plasma fluctuations and crystallization of the valence electrons into an exciton condensate. Our study provides compelling evidence for exciton condensation in a three-dimensional solid and establishes M-EELS as a versatile technique sensitive to valence band excitations in quantum materials.

18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(3 Pt 1): 031501, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22587097

RESUMEN

Nanoconfined water and surface-structured water impacts a broad range of fields. For water confined between hydrophilic surfaces, measurements and simulations have shown conflicting results ranging from "liquidlike" to "solidlike" behavior, from bulklike water viscosity to viscosity orders of magnitude higher. Here, we investigate how a homogeneous fluid behaves under nanoconfinement using its bulk response function: The Green's function of water extracted from a library of S(q,ω) inelastic x-ray scattering data is used to make femtosecond movies of nanoconfined water. Between two confining surfaces, the structure undergoes drastic changes as a function of surface separation. For surface separations of ≈9 Å, although the surface-associated hydration layers are highly deformed, they are separated by a layer of bulklike water. For separations of ≈6 Å, the two surface-associated hydration layers are forced to reconstruct into a single layer that modulates between localized "frozen' and delocalized "melted" structures due to interference of density fields. These results potentially reconcile recent conflicting experiments. Importantly, we find a different delocalized wetting regime for nanoconfined water between surfaces with high spatial frequency charge densities, where water is organized into delocalized hydration layers instead of localized hydration shells, and are strongly resistant to `freezing' down to molecular distances (<6 Å).


Asunto(s)
Coloides/química , Modelos Químicos , Modelos Moleculares , Nanoestructuras/química , Nanoestructuras/ultraestructura , Difracción de Rayos X/métodos , Simulación por Computador , Módulo de Elasticidad
19.
Nat Nanotechnol ; 11(2): 115-6, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26839256
20.
Adv Mater ; 22(10): 1148-55, 2010 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-20401939

RESUMEN

This Progress Report presents temperature-, magnetic-field-, and pressure-dependent Raman measurements of strongly correlated materials such as the charge-ordering manganese perovskites, the multiferroic material TbMnO(3), and the charge-density wave (CDW) materials 1T-TiSe(2) and Cu(x)TiSe(2). These studies illustrate the rich array of phases and properties that can be accessed with field and pressure tuning in these materials, and demonstrate the efficacy of using magnetic-field- and pressure-dependent scattering methods to elucidate the microscopic changes associated with highly tunable behavior in complex materials.


Asunto(s)
Magnetismo , Compuestos de Calcio/química , Manganeso/química , Óxidos/química , Fenómenos Físicos , Presión , Teoría Cuántica , Titanio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA