Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Neuroendocrinology ; 111(6): 505-520, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32447337

RESUMEN

Aversion to environmental cues of predators is an integral part of defensive behaviors in many prey animals. It enhances their survival and probability of future reproduction. At the same time, animals cannot be maximally defended because imperatives of defense usually trade-off with behaviors required for sexual reproduction like display of dominance and production of sexual pheromones. Here, we approach this trade-off through the lens of arginine vasopressin (AVP) neurons within the posterodorsal medial amygdala (MePD) of mice. This neuronal population is known to be involved in sexual behaviors like approach to sexually salient cues. We show that chemogenetic partial ablation of this neuronal population increases aversion to predator odors. Moreover, overexpression of AVP within this population is sufficient to reduce aversion to predator odors. The loss of fear of the predator odor occurs in parallel with increased recruitment of AVP neurons within the MePD. These observations suggest that AVP neurons in the medial aspect of the extended amygdala are a proximate locus for the reduction in innate fear during life stages dominated by reproductive efforts.


Asunto(s)
Arginina Vasopresina/metabolismo , Complejo Nuclear Corticomedial/metabolismo , Miedo/fisiología , Neuronas/metabolismo , Percepción Olfatoria/fisiología , Conducta Sexual Animal/fisiología , Animales , Dependovirus , Cadena Alimentaria , Vectores Genéticos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
2.
Brain Behav Immun ; 65: 95-98, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28400143

RESUMEN

Toxoplasma gondii infection reduces aversion to cat odors in male rats. Relevant proximate mechanisms include interaction of gonadal testosterone and brain nonapeptide arginine-vasopressin. Both of these substrates are sexually dimorphic with preferential expression in males; suggesting either absence of behavioral change in females or mediation by analogous neuroendocrine substrates. Here we demonstrate that Toxoplasma gondii infection reduces aversion to cat odor in female rats. This change is not accompanied by altered steroid hormones; cannot be rescued by gonadal removal; and, does not depend on arginine-vasopressin. Thus behavioral change in males and female occur through non-analogous mechanisms that remain hitherto unknown.


Asunto(s)
Miedo/efectos de los fármacos , Miedo/fisiología , Toxoplasmosis/psicología , Animales , Arginina Vasopresina/metabolismo , Conducta Animal/fisiología , Estrógenos/metabolismo , Estrógenos/farmacología , Femenino , Masculino , Odorantes , Progesterona/metabolismo , Progesterona/farmacología , Ratas , Ratas Wistar , Esteroides , Testosterona/metabolismo , Testosterona/farmacología , Toxoplasma , Toxoplasmosis Animal
3.
J Infect ; 86(1): 60-65, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36347427

RESUMEN

OBJECTIVES: Toxoplasma gondii is a widely prevalent protozoan parasite in human populations. This parasite is thought to be primarily transmitted through undercooked meat and contamination by cat feces. Here, we seek to determine if Toxoplasma gondii cysts can be found within human semen. METHODS: We used a mixture of histological and immunofluorescence stains to visualize Toxoplasma gondii cysts in thin smears of human semen. Further, we probed for presence of bradyzoite-specific mRNA transcription using in-situ hybridization. RESULTS: We visualized Toxoplasma gondii cysts in ejaculates of immune-competent and latently infected human volunteers. We confirmed the encystment by probing transcription of a bradyzoite-specific gene in these structures. These observations extend previous observations of the parasite in semen of several non-human host species, including rats, dogs, and sheep. CONCLUSIONS: Toxoplasma gondii infection is a clinically significant infection, in view of its high prevalence, its purported role in neuropsychiatric disorders such as schizophrenia, as well as in the more serious form of congenital toxoplasmosis. Our demonstration of intact Toxoplasma gondii cysts in the ejaculate supports the possibility of sexual transmission of the parasite and provides an impetus for further investigations.


Asunto(s)
Toxoplasma , Toxoplasmosis , Humanos , Animales , Ovinos , Ratas , Perros , Toxoplasma/genética , Semen/parasitología , Toxoplasmosis/parasitología , Conducta Sexual , Heces
4.
J Gerontol A Biol Sci Med Sci ; 78(6): 938-943, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36617879

RESUMEN

Males exhibit shorter life span and more cognitive deficits, in the absence of dementia, in aging human populations. In mammals, the X chromosome is enriched for neural genes and is a major source of biologic sex difference, in part, because males show decreased expression of select X factors (XY). While each sex (XX and XY) harbors one active X due to X chromosome inactivation in females, some genes, such as Kdm6a, transcriptionally escape silencing in females-resulting in lower transcript levels in males. Kdm6a is a known histone demethylase (H3K27me2/3) with multiple functional domains that is linked with synaptic plasticity and cognition. Whether elevating Kdm6a could benefit the aged male brain and whether this requires its demethylase function remains unknown. We used lentiviral-mediated overexpression of the X factor in the hippocampus of aging male mice and tested their cognition and behavior in the Morris water-maze. We found that acutely increasing Kdm6a-in a form without demethylase function-selectively improved learning and memory, in the aging XY brain, without altering total activity or anxiety-like measures. Further understanding the demethylase-independent downstream mechanisms of Kdm6a may lead to novel therapies for treating age-induced cognitive deficits in both sexes.


Asunto(s)
Histona Demetilasas , Cromosoma X , Masculino , Humanos , Femenino , Animales , Ratones , Anciano , Cromosoma X/metabolismo , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Encéfalo/metabolismo , Cognición , Envejecimiento/genética , Mamíferos
5.
Pathogens ; 10(11)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34832650

RESUMEN

Infection with the protozoan Toxoplasma gondii causes loss of innate fear of cat odors in both male and female rats. This behavioral change is presumed to reflect a parasitic manipulation that increases transmission of the parasite from its intermediate to definitive host. The host behavioral change in male rats is dependent on gonadal steroids. In contrast, the loss of fear in female rats is not accompanied by greater gonadal steroids and cannot be rescued by gonadectomy. This disparity suggests that proximate mechanisms of the post infection host behavioral change in rats are sexually dimorphic. Here, we report that female rats infected with Toxoplasma gondii exhibit greater abundance of messenger RNA for oxytocin and oxytocin receptors in the paraventricular nucleus of the hypothalamus and posterodorsal medial amygdala, respectively. Brain oxytocin is critical for sex-typical social and sexual behaviors in female rodents. The change in oxytocin and its receptor could potentially alter activity in the social salience circuits, leading to a reduction in defensive behaviors and an increase in approach to ambivalent environmental cues. Our results argue that sexually dimorphic neural substrates underpin sexually monomorphic host behavioral change in this host-parasite association.

6.
Mol Brain ; 14(1): 141, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34526037

RESUMEN

Arginine vasopressin (AVP) is expressed in both hypothalamic and extra-hypothalamic neurons. The expression and role of AVP exhibit remarkable divergence between these two neuronal populations. Polysynaptic pathways enable these neuronal groups to regulate each other. AVP neurons in the paraventricular nucleus of the hypothalamus increase the production of adrenal stress hormones by stimulating the hypothalamic-pituitary-adrenal axis. Outside the hypothalamus, the medial amygdala also contains robust amounts of AVP. Contrary to the hypothalamic counterpart, the expression of extra-hypothalamic medial amygdala AVP is sexually dimorphic, in that it is preferentially transcribed in males in response to the continual presence of testosterone. Male gonadal hormones typically generate a negative feedback on the neuroendocrine stress axis. Here, we investigated whether testosterone-responsive medial amygdala AVP neurons provide negative feedback to hypothalamic AVP, thereby providing a feedback loop to suppress stress endocrine response during periods of high testosterone secretion. Contrary to our expectation, we found that AVP overexpression within the posterodorsal medial amygdala increased the recruitment of hypothalamic AVP neurons during stress, without affecting the total number of AVP neurons or the number of recently activated neurons following stress. These observations suggest that the effects of testosterone on extra-hypothalamic AVP facilitate stress responsiveness through permissive influence on the recruitment of hypothalamic AVP neurons.


Asunto(s)
Arginina Vasopresina/fisiología , Complejo Nuclear Corticomedial/fisiología , Neuronas/fisiología , Estrés Psicológico/fisiopatología , Animales , Retroalimentación Fisiológica/fisiología , Genes fos , Vectores Genéticos/administración & dosificación , Vectores Genéticos/farmacología , Sistema Hipotálamo-Hipofisario/fisiología , Ratones , Odorantes , Núcleo Hipotalámico Paraventricular/citología , Sistema Hipófiso-Suprarrenal/fisiología , Proteínas Proto-Oncogénicas c-fos/biosíntesis , Proteínas Recombinantes/metabolismo , Testosterona/fisiología
7.
Trends Parasitol ; 37(5): 381-390, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33461902

RESUMEN

The protozoan parasite Toxoplasma gondii infects a wide range of intermediate hosts. The parasite produces brain cysts during the latent phase of its infection, in parallel to causing a loss of innate aversion in the rat host towards cat odors. Host behavioral change presumably reflects a parasitic manipulation to increase predation by definitive felid hosts, although evidence for increased predation is not yet available. In this opinion piece, we propose a neuroendocrine loop to explain the role of gonadal steroids in the parasitized hosts in mediating the behavioral manipulation. We argue that the presence of tissue cysts within the host brain is merely incidental to the behavioral change, without a necessary or sufficient role.


Asunto(s)
Conducta Animal , Encéfalo , Interacciones Huésped-Parásitos , Toxoplasmosis Animal , Animales , Control de la Conducta , Conducta Animal/fisiología , Encéfalo/parasitología , Interacciones Huésped-Parásitos/fisiología , Sistemas Neurosecretores/parasitología , Toxoplasmosis Animal/fisiopatología
9.
Front Psychiatry ; 11: 630, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32714222

RESUMEN

Rats infected with the protozoan Toxoplasma gondii exhibit a reduced aversion to cat odor. This behavioral change is thought to increase trophic transmission of the parasite. Infected male rats also show a greater testicular synthesis of testosterone and epigenetic change in arginine vasopressin within the medial amygdala. Here, we show that exogenous supply of testosterone within MeA of uninfected castrates recapitulates reduction in innate fear akin to behavioral change attributed to the parasite. We also show that castration post establishment of chronic infection precludes changes in fear and medial amygdala arginine vasopressin in the infected male rats. These observations support the role of gonadal hormones and pursuant neuroendocrine changes in mediating the loss of fear in the infected rats. This work also demonstrates that testosterone acting specifically within the medial amygdala sufficiently explains reduced defensive behaviors often observed during the appetitive component of reproductive behaviors.

10.
Sci Transl Med ; 12(558)2020 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-32848093

RESUMEN

A major sex difference in Alzheimer's disease (AD) is that men with the disease die earlier than do women. In aging and preclinical AD, men also show more cognitive deficits. Here, we show that the X chromosome affects AD-related vulnerability in mice expressing the human amyloid precursor protein (hAPP), a model of AD. XY-hAPP mice genetically modified to develop testicles or ovaries showed worse mortality and deficits than did XX-hAPP mice with either gonad, indicating a sex chromosome effect. To dissect whether the absence of a second X chromosome or the presence of a Y chromosome conferred a disadvantage on male mice, we varied sex chromosome dosage. With or without a Y chromosome, hAPP mice with one X chromosome showed worse mortality and deficits than did those with two X chromosomes. Thus, adding a second X chromosome conferred resilience to XY males and XO females. In addition, the Y chromosome, its sex-determining region Y gene (Sry), or testicular development modified mortality in hAPP mice with one X chromosome such that XY males with testicles survived longer than did XY or XO females with ovaries. Furthermore, a second X chromosome conferred resilience potentially through the candidate gene Kdm6a, which does not undergo X-linked inactivation. In humans, genetic variation in KDM6A was linked to higher brain expression and associated with less cognitive decline in aging and preclinical AD, suggesting its relevance to human brain health. Our study suggests a potential role for sex chromosomes in modulating disease vulnerability related to AD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/genética , Animales , Femenino , Masculino , Ratones , Caracteres Sexuales , Testículo , Cromosoma X/genética , Cromosoma Y
11.
Front Behav Neurosci ; 13: 33, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30863290

RESUMEN

Testosterone reduces anxiety-like behaviors in rodents and increases exploration of anxiogenic parts of the environment. Effects of testosterone on innate defensive behaviors remain understudied. Here, we demonstrate that exogenous testosterone reduces aversion to cat odor in male mice. This is reflected as increased exploration of area containing cat urine when castrated male mice are supplied with exogenous testosterone. We also report that exogenous testosterone leads to DNA hypomethylation of arginine vasopressin (AVP) promoter in posterodorsal medial amygdala (MePD) and medial bed nucleus of stria terminalis (BNST). Our observations suggest that testosterone acting on AVP system within extended medial amygdala might regulate defensive behaviors in mice.

12.
F1000Res ; 6: 2097, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29416851

RESUMEN

Background: The behavior of animals is intricately linked to the environment; a relationship that is often studied in laboratory conditions by using environmental perturbations to study biological mechanisms underlying the behavioral change.  Methods: This study pertains to two such well-studied and well-replicated perturbations, i.e., stress-induced anxiogenesis and Toxoplasmagondii -induced loss of innate fear. Here, we demonstrate that behavioral outcomes of these experimental manipulations are contingent upon the ambient quality of the wider environment where animal facilities are situated. Results: During late 2014 and early 2015, a building construction project started adjacent to our animal facility. During this phase, we observed that maternal separation stress caused anxiolysis, rather than historically observed anxiogenesis, in laboratory rats. We also found that Toxoplasma gondii infection caused an increase, rather than historically observed decrease, in innate aversion to predator odors in rats. Conclusion: These observations suggest that effects of stress and Toxoplasma gondii are dependent on variables in the environment that often go unreported in the published literature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA