Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(36): e2202857119, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36037345

RESUMEN

The sulfate anion radical (SO4•-) is known to be formed in the autoxidation chain of sulfur dioxide and from minor reactions when sulfate or bisulfate ions are activated by OH radicals, NO3 radicals, or iron. Here, we report a source of SO4•-, from the irradiation of the liquid water of sulfate-containing organic aerosol particles under natural sunlight and laboratory UV radiation. Irradiation of aqueous sulfate mixed with a variety of atmospherically relevant organic compounds degrades the organics well within the typical lifetime of aerosols in the atmosphere. Products of the SO4•- + organic reaction include surface-active organosulfates and small organic acids, alongside other products. Scavenging and deoxygenated experiments indicate that SO4•- radicals, instead of OH, drive the reaction. Ion substitution experiments confirm that sulfate ions are necessary for organic reactivity, while the cation identity is of low importance. The reaction proceeds at pH 1-6, implicating both bisulfate and sulfate in the formation of photoinduced SO4•-. Certain aromatic species may further accelerate the reaction through synergy. This reaction may impact our understanding of atmospheric sulfur reactions, aerosol properties, and organic aerosol lifetimes when inserted into aqueous chemistry model mechanisms.


Asunto(s)
Atmósfera , Sulfatos , Aerosoles/química , Atmósfera/química , Sulfatos/química , Azufre/química , Agua/química
2.
J Phys Chem A ; 126(37): 6517-6525, 2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36069746

RESUMEN

The sulfate anion radical (SO4•-) is a reactive oxidant formed in the autoxidation chain of sulfur dioxide, among other sources. Recently, new formation pathways toward SO4•- and other reactive sulfur species have been reported. This work investigated the second-order rate coefficients for the aqueous SO4•- oxidation of the following important organic aerosol compounds (kSO4): 2-methyltetrol, 2-methyl-1,2,3-trihydroxy-4-sulfate, 2-methyl-1,2-dihydroxy-3-sulfate, 1,2-dihydroxyisoprene, 2-methyl-2,3-dihydroxy-1,4-dinitrate, 2-methyl-1,2,4-trihydroxy-3-nitrate, 2-methylglyceric acid, 2-methylglycerate, lactic acid, lactate, pyruvic acid, pyruvate. The rate coefficients of the unknowns were determined against that of a reference in pure water in a temperature range of 298-322 K. The decays of each reagent were measured with nuclear magnetic resonance (NMR) and high-performance liquid chromatography-high-resolution mass spectrometry (HPLC-HRMS). Incorporating additional SO4•- reactions into models may aid in the understanding of organosulfate formation, radical propagation, and aerosol mass sinks.


Asunto(s)
Nitratos , Dióxido de Azufre , Aerosoles/química , Ácido Láctico , Compuestos Orgánicos/química , Oxidantes , Oxidación-Reducción , Ácido Pirúvico , Sulfatos/química , Azufre , Dióxido de Azufre/química , Agua
3.
Chem Res Toxicol ; 34(6): 1640-1654, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-33949191

RESUMEN

E-cigarette aerosol is a complex mixture of gases and particles with a composition that is dependent on the e-liquid formulation, puffing regimen, and device operational parameters. This work investigated mainstream aerosols from a third generation device, as a function of coil temperature (315-510 °F, or 157-266 °C), puff duration (2-4 s), and the ratio of propylene glycol (PG) to vegetable glycerin (VG) in e-liquid (100:0-0:100). Targeted and untargeted analyses using liquid chromatography high-resolution mass spectrometry, gas chromatography, in situ chemical ionization mass spectrometry, and gravimetry were used for chemical characterizations. PG and VG were found to be the major constituents (>99%) in both phases of the aerosol. Most e-cigarette components were observed to be volatile or semivolatile under the conditions tested. PG was found almost entirely in the gas phase, while VG had a sizable particle component. Nicotine was only observed in the particle phase. The production of aerosol mass and carbonyl degradation products dramatically increased with higher coil temperature and puff duration, but decreased with increasing VG fraction in the e-liquid. An exception is acrolein, which increased with increasing VG. The formation of carbonyls was dominated by the heat-induced dehydration mechanism in the temperature range studied, yet radical reactions also played an important role. The findings from this study identified open questions regarding both pathways. The vaping process consumed PG significantly faster than VG under all tested conditions, suggesting that e-liquids become more enriched in VG and the exposure to acrolein significantly increases as vaping continues. It can be estimated that a 30:70 initial ratio of PG:VG in the e-liquid becomes almost entirely VG when 60-70% of e-liquid remains during the vaping process at 375 °F (191 °C). This work underscores the need for further research on the puffing lifecycle of e-cigarettes.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Temperatura , Aerosoles/química , Cromatografía de Gases y Espectrometría de Masas , Glicerol/química , Humanos , Estructura Molecular , Propilenglicol/química
4.
Environ Sci Technol ; 55(20): 13728-13736, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34587441

RESUMEN

The hydroxyl radical (OH) oxidation of the most abundant nonmethane volatile organic compound emitted to the atmosphere, isoprene (C5H8), produces a number of chemical species that partition to the condensed phase via gas-particle partitioning or form condensed-phase compounds via multiphase/heterogeneous chemistry to generate secondary organic aerosols (SOA). The SOA species in aerosol water or cloud/fog droplets may oxidize further via aqueous reaction with OH radicals, among other fates. Rate coefficients for compounds in isoprene's photochemical cascade are well constrained in the gas phase; however, a gap of information exists for the aqueous OH rate coefficients of the condensed-phased products, precluding the atmospheric modeling of the oxidative fate of isoprene-derived SOA. This work investigated the OH-initiated oxidation kinetic rate coefficients (kOH) for six major SOA compounds formed from the high-NO and low-NO channels of isoprene's atmospheric oxidation and one analog, most of which were synthesized and purified for study: (k1) 2-methyltetrol [MT: 1.14 (±0.17) × 109 M-1 s-1], (k2) 2-methyl-1,2,3-trihydroxy-4-sulfate [MT-4-S: 1.52 (±0.25) × 109 M-1 s-1], (k3) 2-methyl-1,2-dihydroxy-3-sulfate [MD-3-S: 0.56 (±0.15) × 109 M-1 s-1], (k4) 2-methyl-1,2-dihydroxy-but-3-ene [MDE: 4.35 (±1.16) × 109 M-1 s-1], (k5) 2-methyl-2,3-dihydroxy-1,4-dinitrate [MD-1,4-DN: 0.24 (±0.04) × 109 M-1 s-1], (k6) 2-methyl-1,2,4-trihydroxy-3-nitrate [MT-3-N: 1.12 (±0.15) × 109 M-1 s-1], and (k7) 2-methylglyceric acid [MGA: pH 2:1.41 (±0.49) × 109 M-1 s-1; pH 5:0.97 (±0.42) × 109 M-1 s-1]. The second-order rate coefficients are determined against the known kOH of erythritol in pure water. The decays of each reagent were measured with nuclear magnetic resonance (NMR) and high-performance liquid chromatography-high resolution mass spectrometry (HPLC-HRMS). The aqueous photooxidation fates of isoprene-derived SOA compounds are substantial and may impact the SOA budget when implemented into global models.


Asunto(s)
Radical Hidroxilo , Compuestos Orgánicos Volátiles , Aerosoles , Butadienos , Hemiterpenos , Oxidación-Reducción , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA