Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Rev Neurosci ; 33(3): 257-268, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-34388333

RESUMEN

The COVID-19 pandemic has affected millions of people worldwide. While coronaviruses typically have low rates of neurotropic effects, the massive transmission of SARS-CoV-2 suggests that a substantial population will suffer from potential SARS-CoV-2-related neurological disorders. The rapid and recent emergence of SARS-CoV-2 means little research exists on its potential neurological effects. Here we analyze the effects of similar viruses to provide insight into the potential effects of SARS-CoV-2 on the nervous system and beyond. Seven coronavirus strains (HCoV-OC43, HCoV-HKU1, HCoV-229E, HCoV-NL63, SARS-CoV, MERS-CoV, SARS-CoV-2) can infect humans. Many of these strains cause neurological effects, such as headaches, dizziness, strokes, seizures, and critical illness polyneuropathy/myopathy. Certain studies have also linked coronaviruses with multiple sclerosis and extensive central nervous system injuries. Reviewing these studies provides insight into the anticipated effects for patients with SARS-CoV-2. This review will first describe the effects of other coronaviruses that have caused severe disease (SARS-CoV, MERS-CoV) on the nervous system, as well as their proposed origins, non-neurological effects, and neurological infection mechanisms. It will then discuss what is known about SARS-CoV-2 in these areas with reference to the aforementioned viruses, with the goal of providing a holistic picture of SARS-CoV-2.


Asunto(s)
COVID-19 , Coronavirus Humano OC43 , Humanos , Sistema Nervioso , Pandemias , SARS-CoV-2
2.
ACS Biomater Sci Eng ; 5(1): 234-243, 2019 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33405866

RESUMEN

3D bioprinting offers the opportunity to automate the process of tissue engineering, which combines biomaterial scaffolds and cells to generate substitutes for diseased or damaged tissues. These bioprinting methods construct tissue replacements by positioning cells encapsulated in bioinks into specific locations in the resulting constructs. Human induced pluripotent stem cells (hiPSCs) serve as an important tool when engineering neural tissues. These cells can be expanded indefinitely and differentiated into the cell types found in the central nervous systems, including neurons. One common method for differentiating hiPSCs into neural tissue requires the formation of aggregates inside of defined diameter microwells cultured in chemically defined media. However, 3D bioprinting of such hiPSC-derived aggregates has not been previously reported in the literature, as it requires the development of specialized bioinks for supporting cell survival and differentiation into mature neural phenotypes. Here we detail methods including preparing base material components of the bioink, producing the bioink, and the steps involved in printing 3D neural tissues derived from hiPSC-derived neural aggregates using Aspect Biosystems' novel RX1 printer and their lab-on-a-printer (LOP) technology.

3.
ACS Biomater Sci Eng ; 5(9): 4551-4563, 2019 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32258387

RESUMEN

In this study, fibrin was added to a photo-polymerizable gelatin-based bioink mixture to fabricate cardiac cell-laden constructs seeded with human induced pluripotent stem cell-derived cardiomyocytes (iPS-CM) or CM cell lines with cardiac fibroblasts (CF). The extensive use of platelet-rich fibrin, its capacity to offer patient specificity, and the similarity in composition to surgical glue prompted us to include fibrin in the existing bioink composition. The cell-laden bioprinted constructs were cross-linked to retain a herringbone pattern via a two-step procedure including the visible light cross-linking of furfuryl-gelatin followed by the chemical cross-linking of fibrinogen via thrombin and calcium chloride. The printed constructs revealed an extremely porous, networked structure that afforded long-term in vitro stability. Cardiomyocytes printed within the sheet structure showed excellent viability, proliferation, and expression of the troponin I cardiac marker. We extended the utility of this fibrin-gelatin bioink toward coculturing and coupling of CM and cardiac fibroblasts (CF), the interaction of which is extremely important for maintenance of normal physiology of the cardiac wall in vivo. This enhanced "cardiac construct" can be used for drug cytotoxicity screening or unraveling triggers for heart diseases in vitro.

4.
Cell Mol Bioeng ; 11(4): 219-240, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31719887

RESUMEN

Stem cells offer tremendous promise for regenerative medicine as they can become a variety of cell types. They also continuously proliferate, providing a renewable source of cells. Recently, it has been found that 3D printing constructs using stem cells, can generate models representing healthy or diseased tissues, as well as substitutes for diseased and damaged tissues. Here, we review the current state of the field of 3D printing stem cell derived tissues. First, we cover 3D printing technologies and discuss the different types of stem cells used for tissue engineering applications. We then detail the properties required for the bioinks used when printing viable tissues from stem cells. We give relevant examples of such bioprinted tissues, including adipose tissue, blood vessels, bone, cardiac tissue, cartilage, heart valves, liver, muscle, neural tissue, and pancreas. Finally, we provide future directions for improving the current technologies, along with areas of focus for future work to translate these exciting technologies into clinical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA