Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Environ Res ; 216(Pt 1): 114413, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36206925

RESUMEN

Land degradation across the world has resulted in an unprecedented decline of ecosystem services, affecting the livelihood of 3.2 billion people globally. Sustainable land management is essential to protect our finite land resources from over-exploitation and degradation. Therefore, the present article was aimed to analyze the impacts of various national and international policies on current and future land restoration scenarios in India. A spatially explicit model (CLUMondo) was employed to predict scenarios, i.e., the 'business as usual' (BU) and 'sustainable restoration' (SR) by 2030. Though the results showed an increasing trend in land degradation , i.e., from 44.28 to 49.74 Mha during the period of 2005-15, a slight decrease was observed in 2019 (49.24 Mha), suggesting a net increase of 11.21% during the 2005-19 period. However, an increase in forest cover by 5.08% under existing policy targets overtook the degradation rate by restoration initiatives. The net decline in degraded land area by 1% with an increased forest cover by 1.83% observed during the 2015-19 periods reflected the positive impact of various national and global policies on existing restoration ventures in India. Our modeled results (weighted AUC = 0.87) also suggested an increase in forest cover by 6.9% and 9.9% under BU and SR scenarios, respectively. Under the BU scenario, degraded land will be restored up to 12.1 Mha; however, 6.27 Mha of these lands will be converted to cropland for food production. Importantly, a decrease in grasslands by 35.1% under the BU scenario warrants the urgency to maintain the integrity of such ecological systems. However, the SR scenario showed an increase in grasslands by 8.9%, with an overall restoration of degraded land up to 18.31 Mha. Moreover, a reduced cropland expansion rate of 1% suggested an effective land management response. While our results may have some uncertainties due to the model limitations, they can still be used for framing suitable land management policies to facilitate sustainable land restoration programs in India.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Humanos , Conservación de los Recursos Naturales/métodos , Bosques , Predicción , Política Pública
2.
J Environ Manage ; 329: 117082, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36577302

RESUMEN

-Enhancing the productivity of rainfed crops, especially rice, while coping with climate adversities and saving critical natural resources is essential for ensuring the food and nutrition security of a growing population. With this context, the present study was undertaken to validate promising farm innovation and adaptation practices used by small-medium landholding farmers for rice cultivation in eastern Uttar Pradesh (UP), north India, as well as to examine the sustainability of innovative practices for large-scale adoption. For this, a 3-year study comprising extensive field surveys and experiments was undertaken to compare single transplantation (ST) and double transplantation (DT) in rice along with organic addition (farm-yard manure, FYM) on crop growth, yield, climate resilience, soil quality, and overall sustainability i.e., social (women involvements and labour productivity), environmental (water productivity and nutrient use efficiency), and economic (benefit:cost ratio) dimensions of sustainability. Field experiments were conducted in triplicate using two local rice varieties (MotiNP-360 and Sampurna Kaveri) in two agroclimatic zones, namely the middle Gangetic plains and the Vindhyan zone, in the Mirzapur district of eastern Uttar Pradesh. The DT practices of rice with and without farm yard manure (FYM) (replacing at a dose of 25% NPK) were evaluated over conventional methods of rice cultivation (i.e., ST, as control) and analysis was done periodically. The DT practice improved growth (p < 0.05), percent fertile tiller and grain (p < 0.05), and rice yield (15-20% higher than ST), while also improving soil quality, yield indices, water and labour productivity, and the benefit-cost ratio. The DT practice also resulted in early maturity (10-15 days earlier than ST), created more labour days for women, decreased lodging and pest/disease incidence, as well as a subsequent reduction in the use of synthetic chemical pesticides and associated environmental costs. Importantly, the residual effects of FYM application significantly improved (p < 0.05) the grain yield in subsequent years of cropping. Optimizing DT cultivation practices, preferably with FYM input for various agro-climatic regions, is essential for large-scale sustainable rice production under changing climatic conditions.


Asunto(s)
Agricultura , Oryza , Femenino , Humanos , Agricultura/métodos , Estiércol , Suelo , Grano Comestible , India
3.
Environ Monit Assess ; 195(9): 1089, 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37615804

RESUMEN

The land use/land cover change is a local driver of environmental change having cascading impacts and implications at the global level, and therefore requires appreciable consideration when perceived from sustainability perspectives. Kerala, the southernmost state of India, has undergone a dramatic transition from a traditional agrarian economy to a modern thriving economy involving the irrational exploitation of natural resources, precisely, land and its components. The present study addresses how land is being changed along an urbanization gradient in the most agglomerative city in the state, Kochi, during the last one and half decades. High-resolution remote sensing data available from the Google Earth Pro pertaining to the four time periods, i.e., 2005, 2010, 2015, and 2020, representing urban, suburban, and rural areas, were analysed to estimate the changes in land use land cover. A semi-structured interview was conducted at the household level to identify the major drivers of land use change. The results indicated the presence of two major and divergent trends; the first one is the intensification of land use activities at the rate of 1.37% per annum, primarily driven by urbanization and infrastructure developments, and the second one is the fallowing and abandonment of land (at the rate of 0.21% per annum) driven by the increased cost of cultivation. The rates of change are more prominent in the rural areas while the urban grids are nearing saturation occupying nearly two-thirds of the area with urban features at the expense of greenery. Though the progression with respect to urbanization and infrastructure developments is expected, the fallowing and abandonment of land is unanticipated, raising serious questions in the developmental pathways to achieve Sustainable Development Goals in the State of Kerala.


Asunto(s)
Monitoreo del Ambiente , Lepidópteros , Animales , India , Recursos Naturales , Urbanización
4.
J Environ Manage ; 262: 110284, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32250780

RESUMEN

Sustainable agronomic practices are being implemented worldwide to promote the cleaner and planet friendly crop production. Therefore, in the present study, we investigated the effect of agro-waste derived biochar and vermicompost on soil quality and yield in Cicer arietinum L. Field experiment was carried out at three different agro-climatic regions (Varanasi, Sultanpur and Gorakhpur) of Uttar Pradesh, India and periodic soil and crop sampling were done accordingly. Experimental results proven that a significant increase (p < 0.01) in total organic carbon, available N, P and K content was observed under vermicompost followed by biochar amendment at each site. Similarly, irrespective of the experimental site, a significant increase (p < 0.01) in microbial biomass carbon was recorded under vermicompost amendment. Furthermore, the addition of vermicompost increased the grain yield (28-39%) than biochar (23-36%) addition whereas the higher microbial and soil respiration (2-6%) found in former field than the biochar added field (1-3%). Significant correlation (R2= 0.61-0.99) was found between the sustainable yield index and soil fertility factors at each site. Assessment of agricultural soil sustainability indicators (ASSI) suggests that the biochar was more effective in enhancing the soil carbon stock (21 ± 1.31 Mg C ha-1) and higher glomalin activity (62%). The study also confirmed the increased alkaline phosphatase (two fold) and ß-glucosidase activity (one fold) along with enhanced urease (45%), soil dehydrogenase activity (36%) under vermicompost amendment followed by biochar. Present study highlights the significance of sustainable agronomic practices for improving the soil quality and agricultural yield while reducing adverse impact.


Asunto(s)
Cicer , Suelo , Agricultura , Biomasa , Carbón Orgánico , India
5.
J Nanosci Nanotechnol ; 16(1): 1231-4, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27398594

RESUMEN

In recent years, many efforts have been made towards the application of nanotechnology in sustainable food production. In this context, the bio-encapsulation process has taken prominence in particular as an ecofriendly method for pest control while reducing the pesticide load in the environment considerably. By taking into consideration, here we are presenting an overview regarding the prospects for the development of nanoencapsulated pesticides in sustainable agriculture and highlight some challenges to be addressed in order to develop efficient nano-carrier systems that may arise as an alternative for conventional pesticide application. However, much research has to be done in this area in order to develop safe and promising pesticide delivery systems for increasing global food production by enhancing the selectivity, specificity and longevity of the encapsulated pesticides while reducing the negative environmental impacts to ecosystem and human beings.


Asunto(s)
Nanocápsulas/química , Nanotecnología/métodos , Plaguicidas/química , Humanos
6.
Ambio ; 51(6): 1569-1587, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34932186

RESUMEN

Anthropogenic activities targeting economic progress have triggered changes in the Earth system processes causing depletion of resources and degradation of ecosystems. Water is a critical natural resource which has been severely impacted through groundwater depletion, surface water contamination and ocean acidification resulting in repercussions on human health and biodiversity losses. Likewise, India, a mega biodiversity nation has been critically affected by degradation and drawdown of water resources with far-reaching consequences on environmental vitality and socio-economic development. In order to prevent extreme water scarcity in the near future, the country needs to promote sustainable utilisation of water resources by adhering to the targets of Goal 6 of the United Nations Sustainable Development Goals (UN-SDGs). The present work, therefore, has focussed on the development of a Water Sustainability Index (WSI) for India that would help attaining the targets of SDG 6. A total of 12 indicators categorized under biophysical and social development dimensions and synonymous with the targets of SDG 6 have been used for the formulation of WSI and thereby understanding how much water resources are used annually in a sustainable manner. The study also highlights the interrelationship between the diverse social development and health indicators (SDG 3) of Indian community. The research has the potential to provide guidance for efficient use of water resources in India. Acting as a yardstick and guiding star, the sustainability metric will help the nation to monitor whether it is on the right track and navigate its journey towards achieving water sustainability. It also calls for cautious course correction and restructuring of current Indian policy and operational instruments for effective green governance and sustainable water management.


Asunto(s)
Ecosistema , Desarrollo Sostenible , Humanos , Concentración de Iones de Hidrógeno , India , Agua de Mar , Naciones Unidas , Agua
7.
Glob Food Sec ; 29: 100537, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35155096

RESUMEN

The COVID-19 pandemic has severely impacted the development trajectories of several world economies with India being no exception. The country presently is the second worst affected in terms of total infections despite inducing a nationwide lockdown in the initial stages. In addition to curtailing infection spread, ensuring food security during and post pandemic is a major concern for the country owing to the high percentage of stunting and undernourishment already present and a relatively high proportion of vulnerable workforce with no regular source of income amidst the lockdown. The present article therefore ascertains the impact of the pandemic on the food systems which can potentially affect food security in the country as well as the government introduced reforms and policy measures to tackle them. Following the analysis, we suggest measures like digitally enhancing connectivity of neighbourhood retail or 'Kirana' stores in urban and rural areas, distribution of therapeutic foods and immune supplements among the impoverished societal sections through existing government schemes and promotion of 'planetary healthy diets' for overcoming food-insecurity while increasing nutrition security and ensuring long term food sector sustainability.

8.
Chemosphere ; 267: 129216, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33340884

RESUMEN

The present study has focused on the evaluation of the maximum amount of flyash (FA) utilization augmentation in the acidic soil (pH 6.1) with the manure during the growth performance and impact of toxic heavy metals under the pot experiment. The 15 days pre-incubated 40% FA treated combination (T16) significantly (P < 0.05) influenced growth performance of chickpea plant after 60 days. The dry weight as well as the contents of N, P, and K increased from 38.8 to 78.53%, 118 to 86%, 148 to 115%, and 95.8 to 95%, respectively, over control in T15 combination after 30 and 60 days. T15 and T16 both treatments induced a significant rise in IAA and GB from 76 to 75.5% and 50%-45%, respectively, after 60 days. The significant increase in the activities of SOD, APX, CAT, and GR with 47%, 56%, 42%, and 28%, respectively, over control was observed in T16 treated combination after 60 days. The significant (P < 0.05) influence in the antioxidant activities, levels of GB, Proline, TSS, and RS were observed across the treatments and durations. The levels of BCF and TF both were <1 in T16 treated plants for toxic heavy metals (Pb, Mo, Cd, and Al), which indicated a negligible extent of translocation from root to shoot and shoot to edible parts in the plants. The results demonstrated that 40% FA supplementation with manure could induce the growth of chickpea in slightly acidic soil and reduce the translocation of toxic metals in the edible parts of the plant.


Asunto(s)
Cicer , Metales Pesados , Contaminantes del Suelo , Antioxidantes , Ceniza del Carbón , Hormonas , Metales Pesados/análisis , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad
9.
Bioresour Technol ; 304: 123018, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32087547

RESUMEN

Adoption of circular practices within environmental management is gaining worldwide recognition owing to rapid resource depletion and detrimental effects of climate change. The present study therefore attempted to ascertain the linkages between circular economy (CE) and sustainable development (SD) by examining the role of renewable energy (RE) and waste management (WM) sectors in CE combined with policy setup and enabling frameworks boosting the influx of circularity principles in the Indian context. Results revealed that research dedicated towards energy recovery from waste in India lacks integration with SD. Findings also revealed that although India is extremely dedicated towards attainment of the SDGs, penetration of CE principles within administration requires considerable efforts especially since WM regulations for municipal, plastic and e-waste lack alignment with CE principles. Integration of WM and RE policies under an umbrella CE policy would provide further impetus to the attainment of circularity and SD within the Indian economy.


Asunto(s)
Administración de Residuos , Cambio Climático , India , Fenómenos Físicos , Energía Renovable , Residuos Sólidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA