Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Genes (Basel) ; 15(3)2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38540401

RESUMEN

Chromosome analysis (CA) and chromosomal microarray analysis (CMA) have been successfully used to diagnose genetic disorders. However, many conditions remain undiagnosed due to limitations in resolution (CA) and detection of only unbalanced events (CMA). Optical genome mapping (OGM) has the potential to address these limitations by capturing both structural variants (SVs) resulting in copy number changes and balanced rearrangements with high resolution. In this study, we investigated OGM's concordance using 87 SVs previously identified by CA, CMA, or Southern blot. Overall, OGM was 98% concordant with only three discordant cases: (1) uncalled translocation with one breakpoint in a centromere; (2) uncalled duplication with breakpoints in the pseudoautosomal region 1; and (3) uncalled mosaic triplication originating from a marker chromosome. OGM provided diagnosis for three previously unsolved cases: (1) disruption of the SON gene due to a balanced reciprocal translocation; (2) disruption of the NBEA gene due to an inverted insertion; (3) disruption of the TSC2 gene due to a mosaic deletion. We show that OGM is a valid method for the detection of many types of SVs in a single assay and is highly concordant with legacy cytogenomic methods; however, it has limited SV detection capabilities in centromeric and pseudoautosomal regions.


Asunto(s)
Centrómero , Translocación Genética , Humanos , Translocación Genética/genética , Análisis por Micromatrices , Marcadores Genéticos , Mapeo Cromosómico , Proteínas Portadoras , Proteínas del Tejido Nervioso
2.
J Neurol ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38916676

RESUMEN

Biallelic pathogenic repeat expansions in RFC1 were recently identified as molecular origin of cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS) as well as of one of the most common causes of adult-onset ataxia. In the meantime, the phenotypic spectrum has expanded massively and now includes mimics of multiple system atrophy or parkinsonism. After identifying a patient with a clinical diagnosis of amyotrophic lateral sclerosis (ALS) as a carrier of biallelic pathogenic repeat expansions in RFC1, we studied a cohort of 106 additional patients with a clinical main phenotype of motor neuron disease (MND) to analyze whether such repeat expansions are more common in MND patients. Indeed, two additional MND patients (one also with ALS and one with primary lateral sclerosis/PLS) have been identified as carrier of biallelic pathogenic repeat expansions in RFC1 in the absence of another genetic alteration explaining the phenotype, suggesting motor neuron disease as another extreme phenotype of RFC1 spectrum disorder. Therefore, MND might belong to the expanding phenotypic spectrum of pathogenic RFC1 repeat expansions, particularly in those MND patients with additional features such as sensory and/or autonomic neuropathy, vestibular deficits, or cerebellar signs. By systematically analyzing the RFC1 repeat array using Oxford nanopore technology long-read sequencing, our study highlights the high intra- and interallelic heterogeneity of this locus and allows the identification of the novel repeat motif 'ACAAG'.

3.
J Neuromuscul Dis ; 11(2): 485-491, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38217609

RESUMEN

Background: The NADH dehydrogenase [ubiquinone] iron-sulfur protein 6 (NDUFS6) gene encodes for an accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (complex I). Bi-allelic NDUFS6 variants have been linked with a severe disorder mostly reported as a lethal infantile mitochondrial disease (LMID) or Leigh syndrome (LS). Objective: Here, we identified a homozygous variant (c.309 + 5 G > A) in NDUFS6 in one male patient with axonal neuropathy accompanied by loss of small fibers in skin biopsy and further complicated by optic atrophy and borderline intellectual disability. Methods: To address the pathogenicity of the variant, biochemical studies (mtDNA copy number quantification, ELISA, Proteomic profiling) of patient-derived leukocytes were performed. Results: The analyses revealed loss of NDUFS6 protein associated with a decrease of three further mitochondrial NADH dehydrogenase subunit/assembly proteins (NDUFA12, NDUFS4 and NDUFV1). Mitochondrial copy number is not altered in leukocytes and the mitochondrial biomarker GDF15 is not significantly changed in serum. Conclusions: Hence, our combined clinical and biochemical data strengthen the concept of NDUFS6 being causative for a very rare form of axonal neuropathy associated with optic atrophy and borderline intellectual disability, and thus expand (i) the molecular genetic landscape of neuropathies and (ii) the clinical spectrum of NDUFS6-associated phenotypes.


Asunto(s)
Discapacidad Intelectual , Atrofia Óptica , Humanos , Masculino , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , NADH Deshidrogenasa/genética , NADH Deshidrogenasa/metabolismo , NADPH Deshidrogenasa/metabolismo , Atrofia Óptica/genética , Proteómica
4.
J Neuromuscul Dis ; 11(3): 625-645, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38578900

RESUMEN

Background: NEFL encodes for the neurofilament light chain protein. Pathogenic variants in NEFL cause demyelinating, axonal and intermediate forms of Charcot-Marie-Tooth disease (CMT) which present with a varying degree of severity and somatic mutations have not been described yet. Currently, 34 different CMT-causing pathogenic variants in NEFL in 174 patients have been reported. Muscular involvement was also described in CMT2E patients mostly as a secondary effect. Also, there are a few descriptions of a primary muscle vulnerability upon pathogenic NEFL variants. Objectives: To expand the current knowledge on the genetic landscape, clinical presentation and muscle involvement in NEFL-related neurological diseases by retrospective case study and literature review. Methods: We applied in-depth phenotyping of new and already reported cases, molecular genetic testing, light-, electron- and Coherent Anti-Stokes Raman Scattering-microscopic studies and proteomic profiling in addition to in silico modelling of NEFL-variants. Results: We report on a boy with a muscular phenotype (weakness, myalgia and cramps, Z-band alterations and mini-cores in some myofibers) associated with the heterozygous p.(Phe104Val) NEFL-variant, which was previously described in a neuropathy case. Skeletal muscle proteomics findings indicated affection of cytoskeletal proteins. Moreover, we report on two further neuropathic patients (16 years old girl and her father) both carrying the heterozygous p.(Pro8Ser) variant, which has been identified as 15% somatic mosaic in the father. While the daughter presented with altered neurophysiology,neurogenic clump feet and gait disturbances, the father showed clinically only feet deformities. As missense variants affecting proline at amino acid position 8 are leading to neuropathic manifestations of different severities, in silico modelling of these different amino acid substitutions indicated variable pathogenic impact correlating with disease onset. Conclusions: Our findings provide new morphological and biochemical insights into the vulnerability of denervated muscle (upon NEFL-associated neuropathy) as well as novel genetic findings expanding the current knowledge on NEFL-related neuromuscular phenotypes and their clinical manifestations. Along this line, our data show that even subtle expression of somatic NEFL variants can lead to neuromuscular symptoms.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Proteínas de Neurofilamentos , Fenotipo , Humanos , Masculino , Proteínas de Neurofilamentos/genética , Enfermedad de Charcot-Marie-Tooth/genética , Músculo Esquelético/patología , Músculo Esquelético/metabolismo , Estudios Retrospectivos , Niño , Adolescente , Femenino , Mutación
5.
Genes (Basel) ; 15(1)2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38275596

RESUMEN

Fatty acid hydroxylase-associated neurodegeneration (FAHN/SPG35) is caused by pathogenic variants in FA2H and has been linked to a continuum of specific motor and non-motor neurological symptoms, leading to progressive disability. As an ultra-rare disease, its mutational spectrum has not been fully elucidated. Here, we present the prototypical workup of a novel FA2H variant, including clinical and in silico validation. An 18-year-old male patient presented with a history of childhood-onset progressive cognitive impairment, as well as progressive gait disturbance and lower extremity muscle cramps from the age of 15. Additional symptoms included exotropia, dystonia, and limb ataxia. Trio exome sequencing revealed a novel homozygous c.75C>G (p.Cys25Trp) missense variant in the FA2H gene, which was located in the cytochrome b5 heme-binding domain. Evolutionary conservation, prediction models, and structural protein modeling indicated a pathogenic loss of function. Brain imaging showed characteristic features, thus fulfilling the complete multisystem neurodegenerative phenotype of FAHN/SPG35. In summary, we here present a novel FA2H variant and provide prototypical clinical findings and structural analyses underpinning its pathogenicity.


Asunto(s)
Trastornos Heredodegenerativos del Sistema Nervioso , Oxigenasas de Función Mixta , Paraplejía Espástica Hereditaria , Masculino , Humanos , Adolescente , Oxigenasas de Función Mixta/genética , Imagen por Resonancia Magnética , Mutación , Trastornos Heredodegenerativos del Sistema Nervioso/genética
6.
Front Neurol ; 14: 1276238, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38125836

RESUMEN

Background: Epilepsy is one of the most common and disabling neurological disorders. It is highly prevalent in children with neurodevelopmental delay and syndromic diseases. However, epilepsy can also be the only disease-determining symptom. The exact molecular diagnosis is essential to determine prognosis, comorbidity, and probability of recurrence, and to inform therapeutic decisions. Methods and materials: Here, we describe a prospective cohort study of patients with epilepsy evaluated in seven diagnostic outpatient centers in Germany. Over a period of 2 months, 07/2022 through 08/2022, 304 patients (317 returned result) with seizure-related human phenotype ontology (HPO) were analyzed. Evaluated data included molecular results, phenotype (syndromic and non-syndromic), and sequencing methods. Results: Single exome sequencing (SE) was applied in half of all patients, followed by panel (P) testing (36%) and trio exome sequencing (TE) (14%). Overall, a pathogenic variant (PV) (ACMG cl. 4/5) was identified in 22%; furthermore, a significant number of patients (12%) carried a reported clinically meaningful variant of unknown significance (VUS). The average diagnostic yield in patients ≤ 12 y was higher compared to patients >12 y cf. Figure 2B vs. Figure 3B. This effect was more pronounced in cases, where TE was applied in patients ≤ 12 vs. >12 y [PV (PV + VUS): patients ≤ 12 y: 35% (47%), patients > 12 y: 20% (40%)]. The highest diagnostic yield was achieved by TE in syndromic patients within the age group ≤ 12 y (ACMG classes 4/5 40%). In addition, TE vs. SE had a tendency to result in less VUS in patients ≤ 12 y [SE: 19% (22/117) VUS; TE: 17% (6/36) VUS] but not in patients >12 y [SE: 19% (8/42) VUS; TE: 20% (2/10) VUS]. Finally, diagnostic findings in patients with syndromic vs. non-syndromic symptoms revealed a significant overlap of frequent causes of monogenic epilepsies, including SCN1A, CACNA1A, and SETD1B, confirming the heterogeneity of the associated conditions. Conclusion: In patients with seizures-regardless of the detailed phenotype-a monogenic cause can be frequently identified, often implying a possible change in therapeutic action (36.7% (37/109) of PV/VUS variants); this justifies early and broad application of genetic testing. Our data suggest that the diagnostic yield is highest in exome or trio-exome-based testing, resulting in a molecular diagnosis within 3 weeks, with profound implications for therapeutic strategies and for counseling families and patients regarding prognosis and recurrence risk.

7.
Ther Adv Neurol Disord ; 16: 17562864231213240, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38152089

RESUMEN

Myasthenia gravis (MG), Lambert-Eaton myasthenic syndrome (LEMS), and congenital myasthenic syndromes (CMS) represent an etiologically heterogeneous group of (very) rare chronic diseases. MG and LEMS have an autoimmune-mediated etiology, while CMS are genetic disorders. A (strain dependent) muscle weakness due to neuromuscular transmission disorder is a common feature. Generalized MG requires increasingly differentiated therapeutic strategies that consider the enormous therapeutic developments of recent years. To include the newest therapy recommendations, a comprehensive update of the available German-language guideline 'Diagnostics and therapy of myasthenic syndromes' has been published by the German Neurological society with the aid of an interdisciplinary expert panel. This paper is an adapted translation of the updated and partly newly developed treatment guideline. It defines the rapid achievement of complete disease control in myasthenic patients as a central treatment goal. The use of standard therapies, as well as modern immunotherapeutics, is subject to a staged regimen that takes into account autoantibody status and disease activity. With the advent of modern, fast-acting immunomodulators, disease activity assessment has become pivotal and requires evaluation of the clinical course, including severity and required therapies. Applying MG-specific scores and classifications such as Myasthenia Gravis Activities of Daily Living, Quantitative Myasthenia Gravis, and Myasthenia Gravis Foundation of America allows differentiation between mild/moderate and (highly) active (including refractory) disease. Therapy decisions must consider age, thymic pathology, antibody status, and disease activity. Glucocorticosteroids and the classical immunosuppressants (primarily azathioprine) are the basic immunotherapeutics to treat mild/moderate to (highly) active generalized MG/young MG and ocular MG. Thymectomy is indicated as a treatment for thymoma-associated MG and generalized MG with acetylcholine receptor antibody (AChR-Ab)-positive status. In (highly) active generalized MG, complement inhibitors (currently eculizumab and ravulizumab) or neonatal Fc receptor modulators (currently efgartigimod) are recommended for AChR-Ab-positive status and rituximab for muscle-specific receptor tyrosine kinase (MuSK)-Ab-positive status. Specific treatment for myasthenic crises requires plasmapheresis, immunoadsorption, or IVIG. Specific aspects of ocular, juvenile, and congenital myasthenia are highlighted. The guideline will be further developed based on new study results for other immunomodulators and biomarkers that aid the accurate measurement of disease activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA