Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Malar J ; 15: 364, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27421769

RESUMEN

BACKGROUND: Malaria continues to be one of the most devastating diseases in the world, killing more humans than any other infectious disease. Malaria parasites are entirely dependent on Anopheles mosquitoes for transmission. For this reason, vector population dynamics is a crucial determinant of malaria risk. Consequently, it is important to understand the biology of malaria vector mosquitoes in the study of malaria transmission. Temperature and precipitation also play a significant role in both aquatic and adult stages of the Anopheles. METHODS: In this study, a climate-based, ordinary-differential-equation model is developed to analyse how temperature and the availability of water affect mosquito population size. In the model, the influence of ambient temperature on the development and the mortality rate of Anopheles arabiensis is considered over a region in KwaZulu-Natal Province, South Africa. In particular, the model is used to examine the impact of climatic factors on the gonotrophic cycle and the dynamics of mosquito population over the study region. RESULTS: The results fairly accurately quantify the seasonality of the population of An. arabiensis over the region and also demonstrate the influence of climatic factors on the vector population dynamics. The model simulates the population dynamics of both immature and adult An. arabiensis. The simulated larval density produces a curve which is similar to observed data obtained from another study. CONCLUSION: The model is efficiently developed to predict An. arabiensis population dynamics, and to assess the efficiency of various control strategies. In addition, the model framework is built to accommodate human population dynamics with the ability to predict malaria incidence in future.


Asunto(s)
Anopheles/crecimiento & desarrollo , Modelos Estadísticos , Dinámica Poblacional , Lluvia , Temperatura , Animales , Femenino , Masculino , Sudáfrica
2.
J Epidemiol Glob Health ; 11(2): 200-207, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33876598

RESUMEN

The novel Coronavirus Disease 2019 (COVID-19) remains a worldwide threat to community health, social stability, and economic development. Since the first case was recorded on December 29, 2019, in Wuhan of China, the disease has rapidly extended to other nations of the world to claim many lives, especially in the USA, the United Kingdom, and Western Europe. To stay ahead of the curve consequent of the continued increase in case and mortality, predictive tools are needed to guide adequate response. Therefore, this study aims to determine the best predictive models and investigate the impact of lockdown policy on the USA' COVID-19 incidence and mortality. This study focuses on the statistical modelling of the USA daily COVID-19 incidence and mortality cases based on some intuitive properties of the data such as overdispersion and autoregressive conditional heteroscedasticity. The impact of the lockdown policy on cases and mortality was assessed by comparing the USA incidence case with that of Sweden where there is no strict lockdown. Stochastic models based on negative binomial autoregressive conditional heteroscedasticity [NB INGARCH (p,q)], the negative binomial regression, the autoregressive integrated moving average model with exogenous variables (ARIMAX) and without exogenous variables (ARIMA) models of several orders are presented, to identify the best fitting model for the USA daily incidence cases. The performance of the optimal NB INGARCH model on daily incidence cases was compared with the optimal ARIMA model in terms of their Akaike Information Criteria (AIC). Also, the NB model, ARIMA model and without exogenous variables are formulated for USA daily COVID-19 death cases. It was observed that the incidence and mortality cases show statistically significant increasing trends over the study period. The USA daily COVID-19 incidence is autocorrelated, linear and contains a structural break but exhibits autoregressive conditional heteroscedasticity. Observed data are compared with the fitted data from the optimal models. The results further indicate that the NB INGARCH fits the observed incidence better than ARIMA while the NB models perform better than the optimal ARIMA and ARIMAX models for death counts in terms of AIC and root mean square error (RMSE). The results show a statistically significant relationship between the lockdown policy in the USA and incidence and death counts. This suggests the efficacy of the lockdown policy in the USA.


Asunto(s)
COVID-19/epidemiología , Control de Enfermedades Transmisibles , Predicción , Modelos Teóricos , COVID-19/mortalidad , Humanos , Incidencia , SARS-CoV-2 , Estados Unidos/epidemiología
3.
Artículo en Inglés | MEDLINE | ID: mdl-31195637

RESUMEN

Recent studies have considered the connections between malaria incidence and climate variables using mathematical and statistical models. Some of the statistical models focused on time series approach based on Box-Jenkins methodology or on dynamic model. The latter approach allows for covariates different from its original lagged values, while the Box-Jenkins does not. In real situations, malaria incidence counts may turn up with many zero terms in the time series. Fitting time series model based on the Box-Jenkins approach and ARIMA may be spurious. In this study, a zero-inflated negative binomial regression model was formulated for fitting malaria incidence in Mopani and Vhembe-two of the epidemic district municipalities in Limpopo, South Africa. In particular, a zero-inflated negative binomial regression model was formulated for daily malaria counts as a function of some climate variables, with the aim of identifying the model that best predicts reported malaria cases. Results from this study show that daily rainfall amount and the average temperature at various lags have a significant influence on malaria incidence in the study areas. The significance of zero inflation on the malaria count was examined using the Vuong test and the result shows that zero-inflated negative binomial regression model fits the data better. A dynamical climate-based model was further used to investigate the population dynamics of mosquitoes over the two regions. Findings highlight the significant roles of Anopheles arabiensis on malaria transmission over the regions and suggest that vector control activities should be intense to eradicate malaria in Mopani and Vhembe districts. Although An. arabiensis has been identified as the major vector over these regions, our findings further suggest the presence of additional vectors transmitting malaria in the study regions. The findings from this study offer insight into climate-malaria incidence linkages over Limpopo province of South Africa.


Asunto(s)
Malaria/epidemiología , Animales , Anopheles , Humanos , Incidencia , Malaria/transmisión , Modelos Estadísticos , Mosquitos Vectores , Lluvia , Análisis de Regresión , Sudáfrica/epidemiología , Temperatura
4.
Open Infect Dis J ; 10: 88-100, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30906484

RESUMEN

INTRODUCTION: The reasons for malaria resurgence mostly in Africa are yet to be well understood. Although the causes are often linked to regional climate change, it is important to understand the impact of climate variability on the dynamics of the disease. However, this is almost impossible without adequate long-term malaria data over the study areas. METHODS: In this study, we develop a climate-based mosquito-human malaria model to study malaria dynamics in the human population over KwaZulu-Natal, one of the epidemic provinces in South Africa, from 1970-2005. We compare the model output with available observed monthly malaria cases over the province from September 1999 to December 2003. We further use the model outputs to explore the relationship between the climate variables (rainfall and temperature) and malaria incidence over the province using principal component analysis, wavelet power spectrum and wavelet coherence analysis. The model produces a reasonable fit with the observed data and in particular, it captures all the spikes in malaria prevalence. RESULTS: Our results highlight the importance of climate factors on malaria transmission and show the seasonality of malaria epidemics over the province. Results from the principal component analyses further suggest that, there are two principal factors associated with climates variables and the model outputs. One of the factors indicate high loadings on Susceptible, Exposed and Infected human, while the other is more correlated with Susceptible and Recovered humans. However, both factors reveal the inverse correlation between Susceptible-Infected and Susceptible-Recovered humans respectively. Through the spectrum analysis, we notice a strong annual cycle of malaria incidence over the province and ascertain a dominant of one year periodicity. Consequently, our findings indicate that an average of 0 to 120-day lag is generally noted over the study period, but the 120-day lag is more associated with temperature than rainfall. This is consistence with other results obtained from our analyses that malaria transmission is more tightly coupled with temperature than with rainfall in KwaZulu-Natal province.

5.
J Environ Public Health ; 2018: 3143950, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30584427

RESUMEN

The recent resurgence of malaria incidence across epidemic regions in South Africa has been linked to climatic and environmental factors. An in-depth investigation of the impact of climate variability and mosquito abundance on malaria parasite incidence may therefore offer useful insight towards the control of this life-threatening disease. In this study, we investigate the influence of climatic factors on malaria transmission over Nkomazi Municipality. The variability and interconnectedness between the variables were analyzed using wavelet coherence analysis. Time-series analyses revealed that malaria cases significantly declined after the outbreak in early 2000, but with a slight increase from 2015. Furthermore, the wavelet coherence and time-lagged correlation analyses identified rainfall and abundance of Anopheles arabiensis as the major variables responsible for malaria transmission over the study region. The analysis further highlights a high malaria intensity with the variables from 1998-2002, 2004-2006, and 2010-2013 and a noticeable periodicity value of 256-512 days. Also, malaria transmission shows a time lag between one month and three months with respect to mosquito abundance and the different climatic variables. The findings from this study offer a better understanding of the importance of climatic factors on the transmission of malaria. The study further highlights the significant roles of An. arabiensis on malaria occurrence over Nkomazi. Implementing the mosquito model to predict mosquito abundance could provide more insight into malaria elimination or control in Africa.


Asunto(s)
Anopheles/fisiología , Clima , Malaria/transmisión , Mosquitos Vectores/fisiología , Tiempo (Meteorología) , Animales , Densidad de Población , Sudáfrica
6.
PLoS One ; 12(11): e0188002, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29145452

RESUMEN

The burden of arboviruses in the Americas is high and may result in long-term sequelae with infants disabled by Zika virus infection (ZIKV) and arthritis caused by infection with Chikungunya virus (CHIKV). We aimed to identify environmental drivers of arbovirus epidemics to predict where the next epidemics will occur and prioritize municipalities for vector control and eventual vaccination. We screened sera and urine samples (n = 10,459) from residents of 48 municipalities in the state of Rio de Janeiro for CHIKV, dengue virus (DENV), and ZIKV by molecular PCR diagnostics. Further, we assessed the spatial pattern of arbovirus incidence at the municipal and neighborhood scales and the timing of epidemics and major rainfall events. Lab-confirmed cases included 1,717 infections with ZIKV (43.8%) and 2,170 with CHIKV (55.4%) and only 29 (<1%) with DENV. ZIKV incidence was greater in neighborhoods with little access to municipal water infrastructure (r = -0.47, p = 1.2x10-8). CHIKV incidence was weakly correlated with urbanization (r = 0.2, p = 0.02). Rains began in October 2015 and were followed one month later by the largest wave of ZIKV epidemic. ZIKV cases markedly declined in February 2016, which coincided with the start of a CHIKV outbreak. Rainfall predicted ZIKV and CHIKV with a lead time of 3 weeks each time. The association between rainfall and epidemics reflects vector ecology as the larval stages of Aedes aegypti require pools of water to develop. The temporal dynamics of ZIKV and CHIKV may be explained by the shorter incubation period of the viruses in the mosquito vector; 2 days for CHIKV versus 10 days for ZIKV.


Asunto(s)
Conducta , Fiebre Chikungunya/epidemiología , Clima , Infección por el Virus Zika/epidemiología , Adulto , Animales , Brasil/epidemiología , Virus Chikungunya/genética , Virus Chikungunya/aislamiento & purificación , Virus del Dengue/genética , Virus del Dengue/aislamiento & purificación , Brotes de Enfermedades , Femenino , Humanos , Incidencia , Masculino , Mosquitos Vectores , Embarazo , Lluvia , Factores de Riesgo , Adulto Joven , Virus Zika/genética , Virus Zika/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA