Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(7): 1157-1171.e22, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35259335

RESUMEN

Enterococci are a part of human microbiota and a leading cause of multidrug resistant infections. Here, we identify a family of Enterococcus pore-forming toxins (Epxs) in E. faecalis, E. faecium, and E. hirae strains isolated across the globe. Structural studies reveal that Epxs form a branch of ß-barrel pore-forming toxins with a ß-barrel protrusion (designated the top domain) sitting atop the cap domain. Through a genome-wide CRISPR-Cas9 screen, we identify human leukocyte antigen class I (HLA-I) complex as a receptor for two members (Epx2 and Epx3), which preferentially recognize human HLA-I and homologous MHC-I of equine, bovine, and porcine, but not murine, origin. Interferon exposure, which stimulates MHC-I expression, sensitizes human cells and intestinal organoids to Epx2 and Epx3 toxicity. Co-culture with Epx2-harboring E. faecium damages human peripheral blood mononuclear cells and intestinal organoids, and this toxicity is neutralized by an Epx2 antibody, demonstrating the toxin-mediated virulence of Epx-carrying Enterococcus.


Asunto(s)
Toxinas Bacterianas/metabolismo , Enterococcus , Leucocitos Mononucleares , Factores de Virulencia/metabolismo , Animales , Bovinos , Enterococcus/metabolismo , Enterococcus/patogenicidad , Caballos , Ratones , Pruebas de Sensibilidad Microbiana , Porcinos
2.
Cell ; 184(10): 2605-2617.e18, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33831372

RESUMEN

Many individuals mount nearly identical antibody responses to SARS-CoV-2. To gain insight into how the viral spike (S) protein receptor-binding domain (RBD) might evolve in response to common antibody responses, we studied mutations occurring during virus evolution in a persistently infected immunocompromised individual. We use antibody Fab/RBD structures to predict, and pseudotypes to confirm, that mutations found in late-stage evolved S variants confer resistance to a common class of SARS-CoV-2 neutralizing antibodies we isolated from a healthy COVID-19 convalescent donor. Resistance extends to the polyclonal serum immunoglobulins of four out of four healthy convalescent donors we tested and to monoclonal antibodies in clinical use. We further show that affinity maturation is unimportant for wild-type virus neutralization but is critical to neutralization breadth. Because the mutations we studied foreshadowed emerging variants that are now circulating across the globe, our results have implications to the long-term efficacy of S-directed countermeasures.


Asunto(s)
Anticuerpos Antivirales/inmunología , COVID-19 , Evolución Molecular , Evasión Inmune/inmunología , Huésped Inmunocomprometido , Fragmentos Fab de Inmunoglobulinas/inmunología , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Neutralizantes , COVID-19/genética , COVID-19/inmunología , Femenino , Células HEK293 , Humanos , Masculino , Dominios Proteicos , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología
3.
Mol Cell ; 81(11): 2261-2265, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-34087174

RESUMEN

COVID-19 altered our lives and pushed scientific research to operate at breakneck speed, leading to significant breakthroughs in record time. We asked experts in the field about the challenges they faced in transitioning, rapidly but safely, to working on the virus while navigating the shutdown. Their voices converge on the importance of teamwork, forging new collaborations, and working toward a shared goal.


Asunto(s)
Investigación Biomédica , COVID-19/epidemiología , COVID-19/prevención & control , Pandemias , Cuarentena , SARS-CoV-2 , Humanos , Poesía como Asunto
4.
Nature ; 602(7897): 475-480, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34929721

RESUMEN

Alphaviruses, like many other arthropod-borne viruses, infect vertebrate species and insect vectors separated by hundreds of millions of years of evolutionary history. Entry into evolutionarily divergent host cells can be accomplished by recognition of different cellular receptors in different species, or by binding to receptors that are highly conserved across species. Although multiple alphavirus receptors have been described1-3, most are not shared among vertebrate and invertebrate hosts. Here we identify the very low-density lipoprotein receptor (VLDLR) as a receptor for the prototypic alphavirus Semliki forest virus. We show that the E2 and E1 glycoproteins (E2-E1) of Semliki forest virus, eastern equine encephalitis virus and Sindbis virus interact with the ligand-binding domains (LBDs) of VLDLR and apolipoprotein E receptor 2 (ApoER2), two closely related receptors. Ectopic expression of either protein facilitates cellular attachment, and internalization of virus-like particles, a VLDLR LBD-Fc fusion protein or a ligand-binding antagonist block Semliki forest virus E2-E1-mediated infection of human and mouse neurons in culture. The administration of a VLDLR LBD-Fc fusion protein has protective activity against rapidly fatal Semliki forest virus infection in mouse neonates. We further show that invertebrate receptor orthologues from mosquitoes and worms can serve as functional alphavirus receptors. We propose that the ability of some alphaviruses to infect a wide range of hosts is a result of their engagement of evolutionarily conserved lipoprotein receptors and contributes to their pathogenesis.


Asunto(s)
Mosquitos Vectores , Virus de los Bosques Semliki , Animales , Proteínas Relacionadas con Receptor de LDL , Ligandos , Ratones , Receptores de LDL , Virus de los Bosques Semliki/metabolismo , Virus Sindbis/fisiología
5.
Nature ; 606(7914): 576-584, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35385861

RESUMEN

SARS-CoV-2 can cause acute respiratory distress and death in some patients1. Although severe COVID-19 is linked to substantial inflammation, how SARS-CoV-2 triggers inflammation is not clear2. Monocytes and macrophages are sentinel cells that sense invasive infection to form inflammasomes that activate caspase-1 and gasdermin D, leading to inflammatory death (pyroptosis) and the release of potent inflammatory mediators3. Here we show that about 6% of blood monocytes of patients with COVID-19 are infected with SARS-CoV-2. Monocyte infection depends on the uptake of antibody-opsonized virus by Fcγ receptors. The plasma of vaccine recipients does not promote antibody-dependent monocyte infection. SARS-CoV-2 begins to replicate in monocytes, but infection is aborted, and infectious virus is not detected in the supernatants of cultures of infected monocytes. Instead, infected cells undergo pyroptosis mediated by activation of NLRP3 and AIM2 inflammasomes, caspase-1 and gasdermin D. Moreover, tissue-resident macrophages, but not infected epithelial and endothelial cells, from lung autopsies from patients with COVID-19 have activated inflammasomes. Taken together, these findings suggest that antibody-mediated SARS-CoV-2 uptake by monocytes and macrophages triggers inflammatory cell death that aborts the production of infectious virus but causes systemic inflammation that contributes to COVID-19 pathogenesis.


Asunto(s)
COVID-19 , Inflamación , Monocitos , Receptores de IgG , SARS-CoV-2 , COVID-19/virología , Caspasa 1/metabolismo , Proteínas de Unión al ADN , Humanos , Inflamasomas/metabolismo , Inflamación/metabolismo , Inflamación/virología , Monocitos/metabolismo , Monocitos/virología , Proteína con Dominio Pirina 3 de la Familia NLR , Proteínas de Unión a Fosfato , Proteínas Citotóxicas Formadoras de Poros , Receptores de IgG/metabolismo
6.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33879614

RESUMEN

The de novo design of polar protein-protein interactions is challenging because of the thermodynamic cost of stripping water away from the polar groups. Here, we describe a general approach for designing proteins which complement exposed polar backbone groups at the edge of beta sheets with geometrically matched beta strands. We used this approach to computationally design small proteins that bind to an exposed beta sheet on the human transferrin receptor (hTfR), which shuttles interacting proteins across the blood-brain barrier (BBB), opening up avenues for drug delivery into the brain. We describe a design which binds hTfR with a 20 nM Kd, is hyperstable, and crosses an in vitro microfluidic organ-on-a-chip model of the human BBB. Our design approach provides a general strategy for creating binders to protein targets with exposed surface beta edge strands.


Asunto(s)
Ingeniería de Proteínas/métodos , Receptores de Transferrina/metabolismo , Receptores de Transferrina/fisiología , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Sistemas de Liberación de Medicamentos , Humanos , Proteínas/metabolismo , Transferrina/metabolismo
7.
PLoS Pathog ; 17(3): e1009356, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33647064

RESUMEN

Several arenaviruses cause hemorrhagic fevers in humans with high case fatality rates. A vaccine named Candid#1 is available only against Junin virus (JUNV) in Argentina. Specific N-linked glycans on the arenavirus surface glycoprotein (GP) mask important epitopes and help the virus evade antibody responses. However the role of GPC glycans in arenavirus pathogenicity is largely unclear. In a lethal animal model of hemorrhagic fever-causing Machupo virus (MACV) infection, we found that a chimeric MACV with the ectodomain of GPC from Candid#1 vaccine was partially attenuated. Interestingly, mutations resulting in acquisition of N-linked glycans at GPC N83 and N166 frequently occurred in late stages of the infection. These glycosylation sites are conserved in the GPC of wild-type MACV, indicating that this is a phenotypic reversion for the chimeric MACV to gain those glycans crucial for infection in vivo. Further studies indicated that the GPC mutant viruses with additional glycans became more resistant to neutralizing antibodies and more virulent in animals. On the other hand, disruption of these glycosylation sites on wild-type MACV GPC rendered the virus substantially attenuated in vivo and also more susceptible to antibody neutralization, while loss of these glycans did not affect virus growth in cultured cells. We also found that MACV lacking specific GPC glycans elicited higher levels of neutralizing antibodies against wild-type MACV. Our findings revealed the critical role of specific glycans on GPC in arenavirus pathogenicity and have important implications for rational design of vaccines against this group of hemorrhagic fever-causing viruses.


Asunto(s)
Anticuerpos Antivirales/inmunología , Arenavirus/inmunología , Fiebre Hemorrágica Americana/virología , Virus Junin/patogenicidad , Animales , Anticuerpos Neutralizantes/inmunología , Arenavirus del Nuevo Mundo/genética , Arenavirus del Nuevo Mundo/inmunología , Arenavirus del Nuevo Mundo/patogenicidad , Fiebre Hemorrágica Americana/inmunología , Fiebre Hemorrágica Americana/prevención & control , Humanos , Virus Junin/inmunología , Vacunas Virales/inmunología
8.
Nat Chem Biol ; 17(10): 1057-1064, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34168368

RESUMEN

The predominant approach for antibody generation remains animal immunization, which can yield exceptionally selective and potent antibody clones owing to the powerful evolutionary process of somatic hypermutation. However, animal immunization is inherently slow, not always accessible and poorly compatible with many antigens. Here, we describe 'autonomous hypermutation yeast surface display' (AHEAD), a synthetic recombinant antibody generation technology that imitates somatic hypermutation inside engineered yeast. By encoding antibody fragments on an error-prone orthogonal DNA replication system, surface-displayed antibody repertoires continuously mutate through simple cycles of yeast culturing and enrichment for antigen binding to produce high-affinity clones in as little as two weeks. We applied AHEAD to generate potent nanobodies against the SARS-CoV-2 S glycoprotein, a G-protein-coupled receptor and other targets, offering a template for streamlined antibody generation at large.


Asunto(s)
Formación de Anticuerpos/inmunología , Ingeniería de Proteínas/métodos , Proteínas Recombinantes/biosíntesis , Anticuerpos/inmunología , Antígenos , COVID-19/inmunología , Humanos , Biblioteca de Péptidos , Proteínas Recombinantes/metabolismo , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Saccharomyces cerevisiae/metabolismo , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/metabolismo , Glicoproteína de la Espiga del Coronavirus/inmunología
9.
BMC Bioinformatics ; 23(1): 547, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36536276

RESUMEN

As of June 2022, the GISAID database contains more than 11 million SARS-CoV-2 genomes, including several thousand nucleotide sequences for the most common variants such as delta or omicron. These SARS-CoV-2 strains have been collected from patients around the world since the beginning of the pandemic. We start by assessing the similarity of all pairs of nucleotide sequences using the Jaccard index and principal component analysis. As shown previously in the literature, an unsupervised cluster analysis applied to the SARS-CoV-2 genomes results in clusters of sequences according to certain characteristics such as their strain or their clade. Importantly, we observe that nucleotide sequences of common variants are often outliers in clusters of sequences stemming from variants identified earlier on during the pandemic. Motivated by this finding, we are interested in applying outlier detection to nucleotide sequences. We demonstrate that nucleotide sequences of common variants (such as alpha, delta, or omicron) can be identified solely based on a statistical outlier criterion. We argue that outlier detection might be a useful surveillance tool to identify emerging variants in real time as the pandemic progresses.


Asunto(s)
COVID-19 , Humanos , Secuencia de Bases , SARS-CoV-2 , Análisis por Conglomerados , Bases de Datos Factuales
10.
J Virol ; 95(17): e0186820, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34132574

RESUMEN

Pathogenic clade B New World mammarenaviruses (NWM) can cause Argentine, Venezuelan, Brazilian, and Bolivian hemorrhagic fevers. Sequence variability among NWM glycoproteins (GP) poses a challenge to the development of broadly neutralizing therapeutics against the entire clade of viruses. However, blockade of their shared binding site on the apical domain of human transferrin receptor 1 (hTfR1/CD71) presents an opportunity for the development of effective and broadly neutralizing therapeutics. Here, we demonstrate that the murine monoclonal antibody OKT9, which targets the apical domain of hTfR1, can sterically block cellular entry by viral particles presenting clade B NWM glycoproteins (GP1-GP2). OKT9 blockade is also effective against viral particles pseudotyped with glycoproteins of a recently identified pathogenic Sabia-like virus. With nanomolar affinity for hTfR1, the OKT9 antigen binding fragment (OKT9-Fab) sterically blocks clade B NWM-GP1s and reduces infectivity of an attenuated strain of Junin virus. Binding of OKT9 to the hTfR1 ectodomain in its soluble, dimeric state produces stable assemblies that are observable by negative-stain electron microscopy. A model of the OKT9-sTfR1 complex, informed by the known crystallographic structure of sTfR1 and a newly determined structure of the OKT9 antigen binding fragment (Fab), suggests that OKT9 and the Machupo virus GP1 share a binding site on the hTfR1 apical domain. The structural basis for this interaction presents a framework for the design and development of high-affinity, broadly acting agents targeting clade B NWMs. IMPORTANCE Pathogenic clade B NWMs cause grave infectious diseases, the South American hemorrhagic fevers. Their etiological agents are Junin (JUNV), Guanarito (GTOV), Sabiá (SABV), Machupo (MACV), Chapare (CHAV), and a new Sabiá-like (SABV-L) virus recently identified in Brazil. These are priority A pathogens due to their high infectivity and mortality, their potential for person-to-person transmission, and the limited availability of effective therapeutics and vaccines to curb their effects. While low homology between surface glycoproteins of NWMs foils efforts to develop broadly neutralizing therapies targeting NWMs, this work provides structural evidence that OKT9, a monoclonal antibody targeting a single NWM glycoprotein binding site on hTfR1, can efficiently prevent their entry into cells.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Neutralizantes/administración & dosificación , Anticuerpos Antivirales/administración & dosificación , Arenavirus del Nuevo Mundo/fisiología , Glicoproteínas/inmunología , Fiebre Hemorrágica Americana/prevención & control , Receptores de Transferrina/inmunología , Células A549 , Secuencia de Aminoácidos , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Fiebre Hemorrágica Americana/inmunología , Fiebre Hemorrágica Americana/virología , Humanos , Estructura Terciaria de Proteína , Receptores de Transferrina/química , Receptores de Transferrina/genética
14.
J Gen Intern Med ; 34(7): 1184-1191, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30963439

RESUMEN

BACKGROUND: Outpatient primary care experience is vital to internal medicine resident training but may impact quality and equity of care delivered in practices that include resident physicians. Understanding whether quality differences exist among resident and staff primary care physicians (PCPs) may present an opportunity to address health disparities within academic medical centers. OBJECTIVE: To determine whether there are differences in the quality of primary care provided by resident PCPs compared to staff PCPs. DESIGN: A retrospective cohort study with a propensity-matched analysis. PARTICIPANTS: 143,274 patients, including 10,870 patients managed by resident PCPs, seen in 16 primary care practices affiliated with an academic medical center. MAIN MEASURES: Guideline-concordant chronic disease management of diabetes (HbA1c, LDL) and coronary artery disease (LDL), preventive breast, cervical, and colorectal cancer screening, and resource utilization measures including emergency department (ED) visits, hospitalizations, high-cost imaging, and patient-reported health experience. KEY RESULTS: At baseline, there were significant differences in sociodemographic and clinical characteristics between resident and staff physician patients. Resident patients were less likely to achieve chronic disease and preventive cancer screening outcome measures including LDL at goal (adjusted OR [aOR] 0.77 [95% CI 0.65, 0.92]) for patients with coronary artery disease; HbA1c at goal (aOR 0.73 [95% CI 0.62, 0.85]) for patients with diabetes; breast (aOR 0.56 [95% CI 0.49, 0.63]), cervical (aOR 0.66 [95% CI 0.60, 0.74]), and colorectal (aOR 0.72 [95% CI 0.65, 0.79] cancer screening. Additionally, resident patients had higher rates of ED visits and hospitalizations but lower rates of high-cost imaging. Resident patients reported lower rates of satisfaction with certain access to care and communication measures. Similar outcomes were noted in propensity-matched sensitivity analyses. CONCLUSION: After controlling for differences in sociodemographic and clinical factors, resident patients were less likely to achieve chronic disease and preventive cancer screening outcomes compared to staff patients. Further efforts to address ambulatory trainee education and primary care quality along with novel approaches to the management of the disproportionately disadvantaged resident patient panels are needed.


Asunto(s)
Equidad en Salud/normas , Internado y Residencia/normas , Medición de Resultados Informados por el Paciente , Médicos de Atención Primaria/normas , Atención Primaria de Salud/normas , Calidad de la Atención de Salud/normas , Adulto , Estudios de Cohortes , Femenino , Humanos , Internado y Residencia/métodos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Atención Primaria de Salud/métodos , Estudios Retrospectivos
16.
PLoS Biol ; 11(5): e1001571, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23723737

RESUMEN

Transferrin Receptor (TfR1) is the cell-surface receptor that regulates iron uptake into cells, a process that is fundamental to life. However, TfR1 also facilitates the cellular entry of multiple mammalian viruses. We use evolutionary and functional analyses of TfR1 in the rodent clade, where two families of viruses bind this receptor, to mechanistically dissect how essential housekeeping genes like TFR1 successfully balance the opposing selective pressures exerted by host and virus. We find that while the sequence of rodent TfR1 is generally conserved, a small set of TfR1 residue positions has evolved rapidly over the speciation of rodents. Remarkably, all of these residues correspond to the two virus binding surfaces of TfR1. We show that naturally occurring mutations at these positions block virus entry while simultaneously preserving iron-uptake functionalities, both in rodent and human TfR1. Thus, by constantly replacing the amino acids encoded at just a few residue positions, TFR1 divorces adaptation to ever-changing viruses from preservation of key cellular functions. These dynamics have driven genetic divergence at the TFR1 locus that now enforces species-specific barriers to virus transmission, limiting both the cross-species and zoonotic transmission of these viruses.


Asunto(s)
Genes Esenciales , Receptores de Transferrina/metabolismo , Secuencia de Aminoácidos , Animales , Arenavirus del Nuevo Mundo/genética , Arenavirus del Nuevo Mundo/patogenicidad , Línea Celular , Perros , Humanos , Hierro/metabolismo , Ratones , Datos de Secuencia Molecular , Mutación , Polimorfismo de Nucleótido Simple , Receptores de Transferrina/genética , Receptores Virales/química , Receptores Virales/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo , Internalización del Virus , Zoonosis
17.
Expert Rev Endocrinol Metab ; 19(4): 385-391, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38567714

RESUMEN

BACKGROUND: We investigated how a personalized care-planning software and linked mobile-app may aid people to self-manage their type 2 diabetes (T2D) more effectively. RESEARCH DESIGN AND METHODS: People with T2D and glycated hemoglobin (HbA1c) greater than 58 mmol/mol (7.5%) were randomized to either an intervention group receiving a personalized care plan, or the control group receiving usual care. Quality of life (QoL) was measured for both groups using validated questionnaires and one-on-one interviews with a subset of 12 participants from each group. RESULTS: QoL for the active treatment group increased, by their EQ -5D-5 L score increasing on average by 0.046, whereas it decreased for the control group on average by 0.009. The EQ Visual Analogue Score (VAS) of the intervention group also increased by 8.2%, whereas the control group had a reduction in EQ VAS score of 2.8% (p = 0.008 for difference). CONCLUSION: In this prospective RCT, the findings point to how the provision of personalized care plans can result in an improvement in individuals' self-rated QoL. This may lead to longer term health benefits.


Asunto(s)
Diabetes Mellitus Tipo 2 , Medición de Resultados Informados por el Paciente , Calidad de Vida , Humanos , Diabetes Mellitus Tipo 2/terapia , Masculino , Femenino , Persona de Mediana Edad , Anciano , Hemoglobina Glucada/análisis , Aplicaciones Móviles , Estudios Prospectivos , Adulto , Encuestas y Cuestionarios , Automanejo/métodos
18.
J Virol ; 86(7): 4024-8, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22278244

RESUMEN

Five New World (NW) arenaviruses cause human hemorrhagic fevers. Four of these arenaviruses are known to enter cells by binding human transferrin receptor 1 (hTfR1). Here we show that the fifth arenavirus, Chapare virus, similarly uses hTfR1. We also identify an anti-hTfR1 antibody, ch128.1, which efficiently inhibits entry mediated by the glycoproteins of all five viruses, as well as replication of infectious Junín virus. Our data indicate that all NW hemorrhagic fever arenaviruses utilize a common hTfR1 apical-domain epitope and suggest that therapeutic agents targeting this epitope, including ch128.1 itself, can be broadly effective in treating South American hemorrhagic fevers.


Asunto(s)
Anticuerpos/inmunología , Antígenos CD/química , Antígenos CD/inmunología , Arenavirus del Nuevo Mundo/fisiología , Regulación hacia Abajo , Fiebres Hemorrágicas Virales/virología , Receptores de Transferrina/química , Receptores de Transferrina/inmunología , Internalización del Virus , Secuencia de Aminoácidos , Animales , Antígenos CD/genética , Línea Celular , Fiebres Hemorrágicas Virales/genética , Fiebres Hemorrágicas Virales/inmunología , Humanos , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Receptores de Transferrina/genética , Receptores Virales/química , Receptores Virales/genética , Receptores Virales/inmunología , Alineación de Secuencia
19.
Nature ; 446(7131): 92-6, 2007 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-17287727

RESUMEN

At least five arenaviruses cause viral haemorrhagic fevers in humans. Lassa virus, an Old World arenavirus, uses the cellular receptor alpha-dystroglycan to infect cells. Machupo, Guanarito, Junin and Sabia viruses are New World haemorrhagic fever viruses that do not use alpha-dystroglycan. Here we show a specific, high-affinity association between transferrin receptor 1 (TfR1) and the entry glycoprotein (GP) of Machupo virus. Expression of human TfR1, but not human transferrin receptor 2, in hamster cell lines markedly enhanced the infection of viruses pseudotyped with the GP of Machupo, Guanarito and Junin viruses, but not with those of Lassa or lymphocytic choriomeningitis viruses. An anti-TfR1 antibody efficiently inhibited the replication of Machupo, Guanarito, Junin and Sabia viruses, but not that of Lassa virus. Iron depletion of culture medium enhanced, and iron supplementation decreased, the efficiency of infection by Junin and Machupo but not Lassa pseudoviruses. These data indicate that TfR1 is a cellular receptor for New World haemorrhagic fever arenaviruses.


Asunto(s)
Antígenos CD/metabolismo , Arenavirus del Nuevo Mundo/metabolismo , Receptores de Transferrina/metabolismo , Receptores Virales/metabolismo , Anticuerpos/inmunología , Anticuerpos/farmacología , Antígenos CD/genética , Antígenos CD/inmunología , Arenavirus del Nuevo Mundo/efectos de los fármacos , Arenavirus del Nuevo Mundo/fisiología , Medios de Cultivo/química , Glicoproteínas/metabolismo , Humanos , Hierro/análisis , Hierro/farmacología , Receptores de Transferrina/antagonistas & inhibidores , Receptores de Transferrina/genética , Receptores de Transferrina/inmunología , Proteínas del Envoltorio Viral/metabolismo , Replicación Viral/efectos de los fármacos
20.
Diabetes Ther ; 14(6): 977-988, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37079268

RESUMEN

INTRODUCTION: Effective and scalable solutions to support management of Type 2 Diabetes (T2D) at a distance are a priority for health systems worldwide. The use of personalised care planning has been shown to be effective at improving the health outcomes and the experience of care amongst people with T2D and other long-term health conditions. Here we describe a specific example of such an intervention. METHODS: The sample comprised 197 participants with T2D randomised to either the active intervention group with digital health planning (App + usual care), with 115 participants, or the control group (usual care), with 82 participants. We analysed data in relation to changes in body mass index (BMI) and glycated haemoglobin (HbA1c) over a 6-month follow-up period. We also analysed responses to questionnaires sent out and held interviews with participants that were in the active treatment group and therefore had a care plan created and access to an app. RESULTS: The active treatment group had significant reductions in HbA1c (p < 0.01) and BMI (p < 0.037) vs the control group (no significant change). The average percentage change in HbA1c for the treatment group over 6 months was - 7.4% (± SE 1.4%), compared with 1.8% (± SE 2.1%) for the control group. The average percentage change in BMI for the treatment group was - 0.7% (± SE 0.4%) and it was - 0.2% (± SE 0.5%) for the control group. A higher percentage of the active treatment group reduced their HbA1c and BMI than the control group. For HbA1c, 72.4% of the active treatment group reduced their HbA1c, compared to 41.5% of the control group. For BMI, 52.7% of the active treatment group experienced a reduction, compared to 42.9% for the control group. Self-measured quality of life (QoL) improved for patients in the active treatment group, shown by an increase in their pre-trial to post-trial EQ-5D-5L rating by an average of 0.0464 (± SE 0.0625), compared to a decrease of 0.0086 (± SE 0.0530) for the control group. The average EQ VAS score also increased pre- to post-trial for the active treatment group, on average by 8.2%, whereas it decreased by an  average of - 2.8% for the control group. CONCLUSION: These findings point to how the provision of personalised plans of care, support and education linked to a mobile app, can result in HbA1c and BMI reduction for many individuals with T2D. The use of a patient management app as well as a personalised care plan also led to an improvement in patient self-rated QoL and engagement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA