Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Genet Genomics ; 299(1): 73, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39066857

RESUMEN

Exploring the intricate relationships between plants and their resident microorganisms is crucial not only for developing new methods to improve disease resistance and crop yields but also for understanding their co-evolutionary dynamics. Our research delves into the role of the phyllosphere-associated microbiome, especially Actinomycetota species, in enhancing pathogen resistance in Theobroma grandiflorum, or cupuassu, an agriculturally valuable Amazonian fruit tree vulnerable to witches' broom disease caused by Moniliophthora perniciosa. While breeding resistant cupuassu genotypes is a possible solution, the capacity of the Actinomycetota phylum to produce beneficial metabolites offers an alternative approach yet to be explored in this context. Utilizing advanced long-read sequencing and metagenomic analysis, we examined Actinomycetota from the phyllosphere of a disease-resistant cupuassu genotype, identifying 11 Metagenome-Assembled Genomes across eight genera. Our comparative genomic analysis uncovered 54 Biosynthetic Gene Clusters related to antitumor, antimicrobial, and plant growth-promoting activities, alongside cutinases and type VII secretion system-associated genes. These results indicate the potential of phyllosphere-associated Actinomycetota in cupuassu for inducing resistance or antagonism against pathogens. By integrating our genomic discoveries with the existing knowledge of cupuassu's defense mechanisms, we developed a model hypothesizing the synergistic or antagonistic interactions between plant and identified Actinomycetota during plant-pathogen interactions. This model offers a framework for understanding the intricate dynamics of microbial influence on plant health. In conclusion, this study underscores the significance of the phyllosphere microbiome, particularly Actinomycetota, in the broader context of harnessing microbial interactions for plant health. These findings offer valuable insights for enhancing agricultural productivity and sustainability.


Asunto(s)
Enfermedades de las Plantas , Hojas de la Planta , Hojas de la Planta/microbiología , Hojas de la Planta/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Microbiota/genética , Ecosistema , Actinobacteria/genética , Actinobacteria/aislamiento & purificación , Metagenómica/métodos , Metagenoma/genética , Filogenia , Brassicaceae/microbiología , Brassicaceae/genética
2.
BMC Vet Res ; 13(1): 290, 2017 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-28946887

RESUMEN

BACKGROUND: Corynebacterium pseudotuberculosis is classified into two biovars, nitrate-negative biovar Ovis which is the etiologic agent of caseous lymphadenitis in small ruminants and nitrate-positive biovar Equi, which causes abscesses and ulcerative lymphangitis in equines. The aim of this study was to develop a quadruplex PCR assay that would allow simultaneous detection and biovar-typing of C. pseudotuberculosis. METHODS: In the present study, genomes of C. pseudotuberculosis strains were used to identify the genes involved in the nitrate reduction pathway to improve a species identification three-primer multiplex PCR assay. The nitrate reductase gene (narG) was included in the PCR assay along with the 16S, rpoB and pld genes to enhance the diagnosis of the multiplex PCR at biovar level. RESULTS: A novel quadruplex PCR assay for C. pseudotuberculosis species and biovar identification was developed. The results of the quadruplex PCR of 348 strains, 346 previously well-characterized clinical isolates of C. pseudotuberculosis from different hosts (goats, sheep, horse, cattle, buffalo, llamas and humans), the vaccine strain 1002 and the type strain ATCC 19410T, were compared to the results of nitrate reductase identification by biochemical test. The McNemar's Chi-squared test used to compare the two methods used for C. pseudotuberculosis biovar identification showed no significant difference (P = 0.75) [95% CI for odds ratio (0.16-6.14)] between the quadruplex PCR and the nitrate biochemical test. Concordant results were observed for 97.13% (338 / 348) of the tested strains and the kappa value was 0.94 [95% CI (0.90-0.98)]. CONCLUSIONS: The ability of the quadruplex assay to discriminate between C. pseudotuberculosis biovar Ovis and Equi strains enhances its usefulness in the clinical microbiology laboratory.


Asunto(s)
Corynebacterium pseudotuberculosis/genética , Corynebacterium pseudotuberculosis/aislamiento & purificación , Reacción en Cadena de la Polimerasa/métodos , Corynebacterium pseudotuberculosis/clasificación , ADN Bacteriano/genética , Genoma Bacteriano , Especificidad de la Especie
3.
BMC Genomics ; 16: 452, 2015 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-26062809

RESUMEN

BACKGROUND: Organisms utilize a multitude of mechanisms for responding to changing environmental conditions, maintaining their functional homeostasis and to overcome stress situations. One of the most important mechanisms is transcriptional gene regulation. In-depth study of the transcriptional gene regulatory network can lead to various practical applications, creating a greater understanding of how organisms control their cellular behavior. DESCRIPTION: In this work, we present a new database, CMRegNet for the gene regulatory networks of Corynebacterium glutamicum ATCC 13032 and Mycobacterium tuberculosis H37Rv. We furthermore transferred the known networks of these model organisms to 18 other non-model but phylogenetically close species (target organisms) of the CMNR group. In comparison to other network transfers, for the first time we utilized two model organisms resulting into a more diverse and complete network of the target organisms. CONCLUSION: CMRegNet provides easy access to a total of 3,103 known regulations in C. glutamicum ATCC 13032 and M. tuberculosis H37Rv and to 38,940 evolutionary conserved interactions for 18 non-model species of the CMNR group. This makes CMRegNet to date the most comprehensive database of regulatory interactions of CMNR bacteria. The content of CMRegNet is publicly available online via a web interface found at http://lgcm.icb.ufmg.br/cmregnet .


Asunto(s)
Corynebacterium glutamicum/genética , Bases de Datos Genéticas , Redes Reguladoras de Genes , Mycobacterium tuberculosis/genética , Biología Computacional , Corynebacterium glutamicum/clasificación , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Internet , Mycobacterium tuberculosis/clasificación , Filogenia
4.
BMC Genomics ; 15 Suppl 7: S3, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25573232

RESUMEN

Corynebacterium pseudotuberculosis (Cp) is a pathogenic bacterium that causes caseous lymphadenitis (CLA), ulcerative lymphangitis, mastitis, and edematous to a broad spectrum of hosts, including ruminants, thereby threatening economic and dairy industries worldwide. Currently there is no effective drug or vaccine available against Cp. To identify new targets, we adopted a novel integrative strategy, which began with the prediction of the modelome (tridimensional protein structures for the proteome of an organism, generated through comparative modeling) for 15 previously sequenced C. pseudotuberculosis strains. This pan-modelomics approach identified a set of 331 conserved proteins having 95-100% intra-species sequence similarity. Next, we combined subtractive proteomics and modelomics to reveal a set of 10 Cp proteins, which may be essential for the bacteria. Of these, 4 proteins (tcsR, mtrA, nrdI, and ispH) were essential and non-host homologs (considering man, horse, cow and sheep as hosts) and satisfied all criteria of being putative targets. Additionally, we subjected these 4 proteins to virtual screening of a drug-like compound library. In all cases, molecules predicted to form favorable interactions and which showed high complementarity to the target were found among the top ranking compounds. The remaining 6 essential proteins (adk, gapA, glyA, fumC, gnd, and aspA) have homologs in the host proteomes. Their active site cavities were compared to the respective cavities in host proteins. We propose that some of these proteins can be selectively targeted using structure-based drug design approaches (SBDD). Our results facilitate the selection of C. pseudotuberculosis putative proteins for developing broad-spectrum novel drugs and vaccines. A few of the targets identified here have been validated in other microorganisms, suggesting that our modelome strategy is effective and can also be applicable to other pathogens.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/efectos de los fármacos , Vacunas Bacterianas , Biología Computacional , Corynebacterium pseudotuberculosis/efectos de los fármacos , Corynebacterium pseudotuberculosis/genética , Sistemas de Liberación de Medicamentos , Proteoma/genética , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Simulación por Computador , Secuencia Conservada , Corynebacterium pseudotuberculosis/metabolismo , Diseño de Fármacos , Genes Esenciales , Humanos , Programas Informáticos , Relación Estructura-Actividad
5.
Gigascience ; 132024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38837946

RESUMEN

BACKGROUND: Theobroma grandiflorum (Malvaceae), known as cupuassu, is a tree indigenous to the Amazon basin, valued for its large fruits and seed pulp, contributing notably to the Amazonian bioeconomy. The seed pulp is utilized in desserts and beverages, and its seed butter is used in cosmetics. Here, we present the sequenced telomere-to-telomere genome of cupuassu, disclosing its genomic structure, evolutionary features, and phylogenetic relationships within the Malvaceae family. FINDINGS: The cupuassu genome spans 423 Mb, encodes 31,381 genes distributed in 10 chromosomes, and exhibits approximately 65% gene synteny with the Theobroma cacao genome, reflecting a conserved evolutionary history, albeit punctuated with unique genomic variations. The main changes are pronounced by bursts of long-terminal repeat retrotransposons at postspecies divergence, retrocopied and singleton genes, and gene families displaying distinctive patterns of expansion and contraction. Furthermore, positively selected genes are evident, particularly among retained and dispersed tandem and proximal duplicated genes associated with general fruit and seed traits and defense mechanisms, supporting the hypothesis of potential episodes of subfunctionalization and neofunctionalization following duplication, as well as impact from distinct domestication process. These genomic variations may underpin the differences observed in fruit and seed morphology, ripening, and disease resistance between cupuassu and the other Malvaceae species. CONCLUSIONS: The cupuassu genome offers a foundational resource for both breeding improvement and conservation biology, yielding insights into the evolution and diversity within the genus Theobroma.


Asunto(s)
Evolución Molecular , Genoma de Planta , Filogenia , Cromosomas de las Plantas , Genómica/métodos , Malvaceae/genética
6.
Gene ; 849: 146904, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36150535

RESUMEN

Unlike the chloroplast genomes (ptDNA), the plant mitochondrial genomes (mtDNA) are much more plastic in structure and size but maintain a conserved and essential gene set related to oxidative phosphorylation. Moreover, the plant mitochondrial genes and mtDNA are good markers for phylogenetic, evolutive, and comparative analyses. The two most known species in Theobroma L. (Malvaceae s.l.) genus are T. cacao, and T. grandiflorum. Besides the economic value, both species also show considerable biotechnology potential due to their other derived products, thus, aggregating additional economic value for the agroindustry. Here, we assembled and compared the mtDNA of Theobroma cacao and T. grandiflorum to generate a new genomics resource and unravel evolutionary trends. Graph-based analyses revealed that both mtDNA exhibit multiple alternative arrangements, confirming the dynamism commonly observed in plant mtDNA. The disentangled assembly graph revealed potential predominant circular molecules. The master circle molecules span 543,794 bp for T. cacao and 501,598 bp for T. grandiflorum, showing 98.9% of average sequence identity. Both mtDNA contains the same set of 39 plant mitochondrial genes, commonly found in other rosid mitogenomes. The main features are a duplicated copy of atp4, the absence of rpl6, rps2, rps8, and rps11, and the presence of two chimeric open-reading frames. Moreover, we detected few ptDNA integrations mainly represented by tRNAs, and no viral sequences were detected. Phylogenomics analyses indicate Theobroma spp. are nested in Malvaceae family. The main mtDNA differences are related to distinct structural rearrangements and exclusive regions associated with relics of Transposable Elements, supporting the hypothesis of dynamic mitochondrial genome maintenance and divergent evolutionary paths and pressures after species differentiation.


Asunto(s)
Cacao , Genoma Mitocondrial , Cacao/genética , Genoma Mitocondrial/genética , Filogenia , Elementos Transponibles de ADN , Plásticos , ADN Mitocondrial
7.
PLoS Negl Trop Dis ; 17(4): e0010862, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37043542

RESUMEN

Phlebotomine sand flies are of global significance as important vectors of human disease, transmitting bacterial, viral, and protozoan pathogens, including the kinetoplastid parasites of the genus Leishmania, the causative agents of devastating diseases collectively termed leishmaniasis. More than 40 pathogenic Leishmania species are transmitted to humans by approximately 35 sand fly species in 98 countries with hundreds of millions of people at risk around the world. No approved efficacious vaccine exists for leishmaniasis and available therapeutic drugs are either toxic and/or expensive, or the parasites are becoming resistant to the more recently developed drugs. Therefore, sand fly and/or reservoir control are currently the most effective strategies to break transmission. To better understand the biology of sand flies, including the mechanisms involved in their vectorial capacity, insecticide resistance, and population structures we sequenced the genomes of two geographically widespread and important sand fly vector species: Phlebotomus papatasi, a vector of Leishmania parasites that cause cutaneous leishmaniasis, (distributed in Europe, the Middle East and North Africa) and Lutzomyia longipalpis, a vector of Leishmania parasites that cause visceral leishmaniasis (distributed across Central and South America). We categorized and curated genes involved in processes important to their roles as disease vectors, including chemosensation, blood feeding, circadian rhythm, immunity, and detoxification, as well as mobile genetic elements. We also defined gene orthology and observed micro-synteny among the genomes. Finally, we present the genetic diversity and population structure of these species in their respective geographical areas. These genomes will be a foundation on which to base future efforts to prevent vector-borne transmission of Leishmania parasites.


Asunto(s)
Leishmania , Leishmaniasis Cutánea , Phlebotomus , Psychodidae , Animales , Humanos , Phlebotomus/parasitología , Psychodidae/parasitología , Leishmania/genética , Genómica
8.
J Bacteriol ; 194(20): 5718-9, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23012291

RESUMEN

Corynebacterium pseudotuberculosis is a pathogen of great veterinary and economic importance, since it affects livestock, mainly sheep and goats, worldwide, together with reports of its presence in camels in several Arabic, Asiatic, and East and West African countries, as well as Australia. In this article, we report the genome sequence of Corynebacterium pseudotuberculosis strain Cp162, collected from the external neck abscess of a camel in the United Kingdom.


Asunto(s)
Corynebacterium pseudotuberculosis/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Genoma Bacteriano , Análisis de Secuencia de ADN , Absceso/microbiología , Absceso/veterinaria , Animales , Camelus , Infecciones por Corynebacterium/microbiología , Infecciones por Corynebacterium/veterinaria , Corynebacterium pseudotuberculosis/aislamiento & purificación , Datos de Secuencia Molecular , Reino Unido
10.
J Bacteriol ; 194(17): 4736-7, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22887652

RESUMEN

Here, we report the whole-genome sequences of two ovine-pathogenic Corynebacterium pseudotuberculosis isolates: strain 3/99-5, which represents the first C. pseudotuberculosis genome originating from the United Kingdom, and 42/02-A, the second from Australia. These genome sequences will contribute to the objective of determining the global pan-genome of this bacterium.


Asunto(s)
Infecciones por Corynebacterium/veterinaria , Corynebacterium pseudotuberculosis/genética , Genoma Bacteriano , Enfermedades de las Ovejas/microbiología , Animales , Australia , Secuencia de Bases , Mapeo Cromosómico , Infecciones por Corynebacterium/microbiología , Corynebacterium pseudotuberculosis/clasificación , Corynebacterium pseudotuberculosis/aislamiento & purificación , Linfadenitis/microbiología , Linfadenitis/veterinaria , Datos de Secuencia Molecular , Escocia , Análisis de Secuencia de ADN , Ovinos/microbiología
11.
J Bacteriol ; 194(16): 4476, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22843601

RESUMEN

Corynebacterium pseudotuberculosis causes disease in several animal species, although distinct biovars exist that appear to be restricted to specific hosts. In order to facilitate a better understanding of the differences between biovars, we report here the complete genome sequence of the equine pathogen Corynebacterium pseudotuberculosis strain 1/06-A.


Asunto(s)
Corynebacterium pseudotuberculosis/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Genoma Bacteriano , Análisis de Secuencia de ADN , Animales , Infecciones por Corynebacterium/veterinaria , Corynebacterium pseudotuberculosis/aislamiento & purificación , Enfermedades de los Caballos/microbiología , Caballos , Datos de Secuencia Molecular , América del Norte
12.
BMC Genomics ; 13 Suppl 5: S6, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23095951

RESUMEN

BACKGROUND: Pan-genomic studies aim, for instance, at defining the core, dispensable and unique genes within a species. A pan-genomics study for vaccine design tries to assess the best candidates for a vaccine against a specific pathogen. In this context, rather than studying genes predicted to be exported in a single genome, with pan-genomics it is possible to study genes present in different strains within the same species, such as virulence factors. The target organism of this pan-genomic work here presented is Corynebacterium pseudotuberculosis, the etiologic agent of caseous lymphadenitis (CLA) in goat and sheep, which causes significant economic losses in those herds around the world. Currently, only a few antigens against CLA are known as being the basis of commercial and still ineffective vaccines. In this regard, the here presented work analyses, in silico, five C. pseudotuberculosis genomes and gathers data to predict common exported proteins in all five genomes. These candidates were also compared to two recent C. pseudotuberculosis in vitro exoproteome results. RESULTS: The complete genome of five C. pseudotuberculosis strains (1002, C231, I19, FRC41 and PAT10) were submitted to pan-genomics analysis, yielding 306, 59 and 12 gene sets, respectively, representing the core, dispensable and unique in silico predicted exported pan-genomes. These sets bear 150 genes classified as secreted (SEC) and 227 as potentially surface exposed (PSE). Our findings suggest that the main C. pseudotuberculosis in vitro exoproteome could be greater, appended by a fraction of the 35 proteins formerly predicted as making part of the variant in vitro exoproteome. These genomes were manually curated for correct methionine initiation and redeposited with a total of 1885 homogenized genes. CONCLUSIONS: The in silico prediction of exported proteins has allowed to define a list of putative vaccine candidate genes present in all five complete C. pseudotuberculosis genomes. Moreover, it has also been possible to define the in silico predicted dispensable and unique C. pseudotuberculosis exported proteins. These results provide in silico evidence to further guide experiments in the areas of vaccines, diagnosis and drugs. The work here presented is the first whole C. pseudotuberculosis in silico predicted pan-exoproteome completed till today.


Asunto(s)
Corynebacterium pseudotuberculosis/genética , Genes/genética , Genoma Bacteriano/genética , Genómica/métodos , Proteoma/genética , Vacunas Bacterianas/genética , Proteínas de la Membrana/genética , Programas Informáticos
13.
J Bacteriol ; 193(1): 323-4, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21037006

RESUMEN

This work reports the completion and annotation of the genome sequence of Corynebacterium pseudotuberculosis I19, isolated from an Israeli dairy cow with severe clinical mastitis. To present the whole-genome sequence, a de novo assembly approach using 33 million short (25-bp) mate-paired SOLiD reads only was applied. Furthermore, the automatic, functional, and manual annotations were attained with the use of several algorithms in a multistep process.


Asunto(s)
Corynebacterium pseudotuberculosis/genética , Genoma Bacteriano , Mastitis Bovina/microbiología , Animales , Bovinos , Corynebacterium pseudotuberculosis/clasificación , Corynebacterium pseudotuberculosis/aislamiento & purificación , Femenino , Israel/epidemiología , Mastitis Bovina/epidemiología , Datos de Secuencia Molecular
14.
J Bacteriol ; 193(22): 6420-1, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22038974

RESUMEN

In this work, we report the complete genome sequence of a Corynebacterium pseudotuberculosis PAT10 isolate, collected from a lung abscess in an Argentine sheep in Patagonia, whose pathogen also required an investigation of its pathogenesis. Thus, the analysis of the genome sequence offers a means to better understanding of the molecular and genetic basis of virulence of this bacterium.


Asunto(s)
Infecciones por Corynebacterium/veterinaria , Corynebacterium pseudotuberculosis/genética , Genoma Bacteriano , Absceso Pulmonar/microbiología , Enfermedades de las Ovejas/microbiología , Animales , Argentina , Secuencia de Bases , Corynebacterium pseudotuberculosis/aislamiento & purificación , Corynebacterium pseudotuberculosis/patogenicidad , Datos de Secuencia Molecular , Ovinos , Virulencia
15.
J Bacteriol ; 193(20): 5871-2, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21952544

RESUMEN

Campylobacter fetus subsp. venerealis is the etiologic agent of bovine genital campylobacteriosis, a sexually transmitted disease of cattle that is of worldwide importance. The complete sequencing and annotation of the genome of the type strain C. fetus subsp. venerealis NCTC 10354(T) are reported.


Asunto(s)
Infecciones por Campylobacter/veterinaria , Campylobacter fetus/genética , Enfermedades de los Bovinos/microbiología , Genoma Bacteriano , Animales , Secuencia de Bases , Infecciones por Campylobacter/microbiología , Campylobacter fetus/aislamiento & purificación , Bovinos , Femenino , Masculino , Datos de Secuencia Molecular
16.
J Bacteriol ; 193(24): 7025-6, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22123771

RESUMEN

In this work, we report the whole-genome sequence of Corynebacterium pseudotuberculosis bv. equi strain CIP 52.97 (Collection Institut Pasteur), isolated in 1952 from a case of ulcerative lymphangitis in a Kenyan horse, which has evidently caused significant losses to agribusiness. Therefore, obtaining this genome will allow the detection of important targets for postgenomic studies, with the aim of minimizing problems caused by this microorganism.


Asunto(s)
Infecciones por Corynebacterium/veterinaria , Corynebacterium pseudotuberculosis/genética , Genoma Bacteriano , Enfermedades de los Caballos/microbiología , Animales , Secuencia de Bases , Infecciones por Corynebacterium/microbiología , Corynebacterium pseudotuberculosis/aislamiento & purificación , Caballos , Kenia , Datos de Secuencia Molecular
17.
BMC Genomics ; 12 Suppl 4: S15, 2011 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-22369043

RESUMEN

BACKGROUND: A research area that has greatly benefited from the development of new and improved analysis technologies is Proteomics and large amounts of data have been generated by proteomic analysis as a consequence. Previously, the storage, management and analysis of these data have been done manually. This is, however, incompatible with the volume of data generated by modern proteomic analysis. Several attempts have been made to automate the tasks of data analysis and management. In this work we propose PRODIS (Proteomics Database Integrated System), a system for proteomic experimental data management. The proposed system enables an efficient management of the proteomic experimentation workflow, simplifies controlling experiments and associated data and establishes links between similar experiments through the experiment tracking function. RESULTS: PRODIS is fully web based which simplifies data upload and gives the system the flexibility necessary for use in complex projects. Data from Liquid Chromatography, 2D-PAGE and Mass Spectrometry experiments can be stored in the system. Moreover, it is simple to use, researchers can insert experimental data directly as experiments are performed, without the need to configure the system or change their experiment routine. PRODIS has a number of important features, including a password protected system in which each screen for data upload and retrieval is validated; users have different levels of clearance, which allow the execution of tasks according to the user clearance level. The system allows the upload, parsing of files, storage and display of experiment results and images in the main formats used in proteomics laboratories: for chromatographies the chromatograms and lists of peaks resulting from separation are stored; For 2D-PAGE images of gels and the files resulting from the analysis are stored, containing information on positions of spots as well as its values of intensity, volume, etc; For Mass Spectrometry, PRODIS presents a function for completion of the mapping plate that allows the user to correlate the positions in plates to the samples separated by 2D-PAGE. Furthermore PRODIS allows the tracking of experiments from the first stage until the final step of identification, enabling an efficient management of the complete experimental process. CONCLUSIONS: The construction of data management systems for Proteomics data importing and storing is a relevant subject. PRODIS is a system complementary to other proteomics tools that combines a powerful storage engine (the relational database) and a friendly access interface, aiming to assist Proteomics research directly at data handling and storage.


Asunto(s)
Sistemas de Administración de Bases de Datos , Proteómica , Bases de Datos de Proteínas , Electroforesis en Gel Bidimensional , Internet , Interfaz Usuario-Computador
18.
BMC Genomics ; 11 Suppl 5: S8, 2010 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-21210974

RESUMEN

BACKGROUND: The need to manage large amounts of data is a clear demand for laboratories nowadays. The use of Laboratory Information Management Systems (LIMS) to achieve this is growing each day. A LIMS is a complex computational system used to manage laboratory data with emphasis in quality assurance. Several LIMS are available currently. However, most of them have proprietary code and are commercialized with a high cost. Moreover, due to its complexity, LIMS are usually designed to comply with the needs of one kind of laboratory, making it very difficult to reuse a LIMS. In this work we describe the Sistema Integrado de Gerência de Laboratórios (SIGLa), an open source LIMS with a new approach designed to allow it to adapt its activities and processes to various types of laboratories. RESULTS: SIGLa incorporates a workflow management system, making it possible to create and manage customized workflows. For each new laboratory a workflow is defined with its activities, rules and procedures. During the execution, for each workflow created, the values of attributes defined in a XPDL file (which describe the workflow) are stored in SIGLa's database, allowing then to be managed and retrieved upon request. These characteristics increase system's flexibility and extend its usability to include the needs of multiple types of laboratories. To construct the main functionalities of SIGLa a workflow of a proteomic laboratory was first defined. To validate the SIGLa capability of adapting to multiples laboratories, on this paper we study the process and the needs of a microarray laboratory and define its workflow. This workflow has been defined in a period of about two weeks, showing the efficiency and flexibility of the tool. CONCLUSIONS: Using SIGLa it has been possible to construct a microarray LIMS in a few days illustrating the flexibility and power of the method proposed. With SIGLa's development we hope to contribute positively to the area of management of complex data in laboratory by managing its large amounts of data, guaranteeing the consistency of the data and increasing the laboratory productivity. We also hope to make possible to laboratories with little resources to afford a high level system for complex data management.


Asunto(s)
Sistemas de Información en Laboratorio Clínico , Programas Informáticos , Análisis por Micromatrices/métodos , Garantía de la Calidad de Atención de Salud , Flujo de Trabajo
19.
Front Genet ; 11: 575592, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33537056

RESUMEN

Antimicrobial resistance is a major global public health problem, which develops when pathogens acquire antimicrobial resistance genes (ARGs), primarily through genetic recombination between commensal and pathogenic microbes. The resistome is a collection of all ARGs. In microorganisms, the primary method of ARG acquisition is horizontal gene transfer (HGT). Thus, understanding and identifying HGTs, can provide insight into the mechanisms of antimicrobial resistance transmission and dissemination. The use of high-throughput sequencing technologies has made the analysis of ARG sequences feasible and accessible. In particular, the metagenomic approach has facilitated the identification of community-based antimicrobial resistance. This approach is useful, as it allows access to the genomic data in an environmental sample without the need to isolate and culture microorganisms prior to analysis. Here, we aimed to reflect on the challenges of analyzing metagenomic data in the three main approaches for studying antimicrobial resistance: (i) analysis of microbial diversity, (ii) functional gene analysis, and (iii) searching the most complete and pertinent resistome databases.

20.
Toxins (Basel) ; 12(3)2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32106513

RESUMEN

The bloom-forming cyanobacterium Nodularia spumigena CENA596 encodes the biosynthetic gene clusters (BGCs) of the known natural products nodularins, spumigins, anabaenopeptins/namalides, aeruginosins, mycosporin-like amino acids, and scytonemin, along with the terpenoid geosmin. Targeted metabolomics confirmed the production of these metabolic compounds, except for the alkaloid scytonemin. Genome mining of N. spumigena CENA596 and its three closely related Nodularia strains-two planktonic strains from the Baltic Sea and one benthic strain from Japanese marine sediment-revealed that the number of BGCs in planktonic strains was higher than in benthic one. Geosmin-a volatile compound with unpleasant taste and odor-was unique to the Brazilian strain CENA596. Automatic annotation of the genomes using subsystems technology revealed a related number of coding sequences and functional roles. Orthologs from the Nodularia genomes are involved in the primary and secondary metabolisms. Phylogenomic analysis of N. spumigena CENA596 based on 120 conserved protein sequences positioned this strain close to the Baltic Nodularia. Phylogeny of the 16S rRNA genes separated the Brazilian CENA596 strain from those of the Baltic Sea, despite their high sequence identities (99% identity, 100% coverage). The comparative analysis among planktic Nodularia strains showed that their genomes were considerably similar despite their geographically distant origin.


Asunto(s)
Productos Biológicos/análisis , Nodularia/genética , Nodularia/metabolismo , Animales , Acuicultura , Genoma Bacteriano , Genómica , Metabolómica , Penaeidae , Filogenia , Estanques
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA