Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Pharmaceutics ; 16(5)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38794342

RESUMEN

Lung diseases have received great attention in the past years because they contribute approximately one-third of the total global mortality. Pulmonary drug delivery is regarded as one of the most appealing routes to treat lung diseases. It addresses numerous drawbacks linked to traditional dosage forms. It presents notable features, such as, for example, a non-invasive route, localized lung drug delivery, low enzymatic activity, low drug degradation, higher patient compliance, and avoiding first-pass metabolism. Therefore, the pulmonary route is commonly explored for delivering drugs both locally and systemically. Inhalable nanocarrier powders, especially, lipid nanoparticle formulations, including solid-lipid and nanostructured-lipid nanocarriers, are attracting considerable interest in addressing respiratory diseases thanks to their significant advantages, including deep lung deposition, biocompatibility, biodegradability, mucoadhesion, and controlled drug released. Spray drying is a scalable, fast, and commercially viable technique to produce nanolipid powders. This review highlights the ideal criteria for inhalable spray-dried SLN and NLC powders for the pulmonary administration route. Additionally, the most promising inhalation devices, known as dry powder inhalers (DPIs) for the pulmonary delivery of nanolipid powder-based medications, and pulmonary applications of SLN and NLC powders for treating chronic lung conditions, are considered.

2.
Sci Rep ; 14(1): 1228, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216651

RESUMEN

Shortage of drinking water has gained potential interest over the last few decades. Discharged industrial effluent, including various toxic pollutants, to water surfaces is one of the most serious environmental issues. The adsorption technique has become a widely studied method for the removal of toxic pollutants, specifically synthetic dyes, from wastewater due to its cost-effectiveness, high selectivity, and ease of operation. In this study, a novel gelatin-crosslinked-poly(acrylamide-co-itaconic acid)/montmorillonite (MMT) nanoclay nanocomposites-based adsorbent has been prepared for removing malachite green (MG) dye from an aqueous solution. Modified gelatin nanocomposites were synthesized using a free-radical polymerization technique in the presence and absence of MMT. Various analytical instrumentation: including FTIR, FESEM, XRD, and TEM techniques were used to elucidate the chemical structure and surface morphology of the prepared samples. Using a batch adsorption experiment, Langmuir isotherm model showed that the prepared modified gelatin nanocomposite had a maximum adsorption capacity of 950.5 mg/g using 350 mg/L of MG dye at pH 9 within 45 min. Furthermore, the regeneration study showed good recyclability for the obtained nanocomposite through four consecutive reusable cycles. Therefore, the fabricated gelatin nanocomposite is an attractive adsorbent for MG dye elimination from aqueous solutions.

3.
Int J Biol Macromol ; 273(Pt 2): 132895, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38848850

RESUMEN

Developing eco-friendly, cost-effective, and efficient methods for treating water pollutants has become paramount in recent years. Biopolyelectrolytes (BPEs), comprising natural polymers like chitosan, alginate, and cellulose, have emerged as versatile tools in this pursuit. This review offers a comprehensive exploration of the diverse roles of BPEs in combating water contamination, spanning coagulation-flocculation, adsorption, and filtration membrane techniques. With ionizable functional groups, BPEs exhibit promise in removing heavy metals, dyes, and various pollutants. Studies showcase the efficacy of chitosan, alginate, and pectin in achieving notable removal rates. BPEs efficiently adsorb heavy metal ions, dyes, and pesticides, leveraging robust adsorption capacity and exceptional mechanical properties. Furthermore, BPEs play a pivotal role in filtration membrane techniques, offering efficient separation systems with high removal rates and low energy consumption. Despite challenges related to production costs and property variability, their environmentally friendly, biodegradable, renewable, and recyclable nature positions BPEs as compelling candidates for sustainable water treatment technologies. This review delves deeper into BPEs' modification and integration with other materials; these natural polymers hold substantial promise in revolutionizing the landscape of water treatment technologies, offering eco-conscious solutions to address the pressing global issue of water pollution.


Asunto(s)
Aguas Residuales , Purificación del Agua , Purificación del Agua/métodos , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Quitosano/química , Adsorción , Metales Pesados/química , Metales Pesados/aislamiento & purificación , Filtración/métodos
4.
Int J Biol Macromol ; 232: 123394, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-36702228

RESUMEN

Tuberculosis (TB) is considered as one of the most fatal infectious diseases nowadays. Several traditional anti-tuberculosis drugs like isoniazid have been largely applied; however, they are associated with toxicity and poor anti-TB treatment. So, the fabrication of new alternative anti-TB drugs containing natural biopolymers for TB treatment has attracted great attention in recent years because of their remarkable features: biodegradability, biocompatibility and non-toxicity. Therefore, their medicine is very effective with low side effects compared with synthetic drugs. Our current work intends to engineer chitosan biguanidine (ChBG) nanoparticles as a new safe and high-efficient anti-TB drug using one-pot, green, cost-effective ionic gelation method. The chemical structure of as-formed materials was chemically confirmed using various analysis techniques: H-NMR, FTIR, SEM, and TEM. TEM results have proved the formation of uniformly well-distributed ChBG nanoparticles with a small particle size of ~38 nm. The inhibitory activity of these prepared nanoparticles was investigated against the growth of three different M. tuberculosis pathogens such as sensitive, MDR, and XDR, and in a comparison with the isoniazid drug as a standard anti-tuberculosis drug. The antituberculosis assay results showed that ChBG NPs attained MIC values of 0.48, 3.9, 7.81 µg/mL for inhibiting the growth of sensitive, MDR, and XDR M. tuberculosis pathogens compared to bare Ch NPs (15.63, 62.5 > 125 µg/mL) and the isoniazid drug (0.24, 0, 0 µg/mL), respectively. Moreover, cytotoxicity of the ChBG NPs was examined against normal lung cell lines (Wi38) and was found to have cell viability of 100 % with the concentration range of 0.48-7.81 µg/mL.


Asunto(s)
Quitosano , Mycobacterium tuberculosis , Nanopartículas , Isoniazida/farmacología , Quitosano/química , Antituberculosos/química , Nanopartículas/química
5.
Carbohydr Polym ; 303: 120443, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36657855

RESUMEN

Our current work intends to primarily engineer a new type of antibacterial composite by preparing a highly biocompatible graphene sheet decorated with TMC-CMS IPNs nanoparticles utilizing one-pot, green, cost-effective ultrasonication approach. The microstructure of as-formed materials was chemically confirmed using various analytical techniques such as 1H-NMR, FTIR, UV/vis, SEM, and TEM. TEM data has proved the formation of uniformly distributed TCNPs on graphene surfaces with a small particle size of ~22 nm compared with that of pure nanoparticles (~30 nm). The inhibitory activity of these developed materials was examined against the growth of three different M. tuberculosis pathogens and in a comparison with the isoniazid drug as a standard anti-tuberculosis drug. The TCNPs@GRP composite attained MIC values of 0.98, 3.9, and 7.81 µg/mL for inhibiting the growth of sensitive, MDR, and XDR M. tuberculosis pathogens compared to the bare TCNPs (7.81, 31.25, >125 µg/mL) and the isoniazid drug (0.24, 0, 0 µg/mL), respectively. This reveals a considerable synergism in the antituberculosis activity between TCNPs and graphene nanosheets. Cytotoxicity of the TCNPs@GRP was examined against normal lung cell lines (WI38) and was found to have cell viability of 100% with the concentration range of 0.98-7.81 µg/mL.


Asunto(s)
Quitosano , Grafito , Nanopartículas del Metal , Mycobacterium tuberculosis , Nanopartículas , Estados Unidos , Grafito/química , Isoniazida/farmacología , Centers for Medicare and Medicaid Services, U.S. , Antituberculosos/farmacología , Nanopartículas del Metal/química , Quitosano/química
6.
J Colloid Interface Sci ; 651: 334-345, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37544222

RESUMEN

HYPOTHESIS: Submicron oil droplets stabilized using aldehyde-functionalized nanoparticles should adhere to the primary amine groups present at the surface of sheep nasal mucosal tissue via Schiff base chemistry. EXPERIMENTS: Well-defined sterically-stabilized diblock copolymer nanoparticles of 20 nm diameter were prepared in the form of concentrated aqueous dispersions via reversible addition-fragmentation chain transfer (RAFT) aqueous emulsion polymerization of 2,2,2-trifluoroethyl methacrylate (TFEMA) using a water-soluble methacrylic precursor bearing cis-diol groups. Some of these hydroxyl-functional nanoparticles were then selectively oxidized using an aqueous solution of sodium periodate to form a second batch of nanoparticles bearing pendent aldehyde groups within the steric stabilizer chains. Subjecting either hydroxyl- or aldehyde-functional nanoparticles to high-shear homogenization with a model oil (squalane) produced oil-in-water Pickering macroemulsions of 20-30 µm diameter. High-pressure microfluidization of such macroemulsions led to formation of the corresponding Pickering nanoemulsions with a mean droplet diameter of around 200 nm. Quartz crystal microbalance (QCM) experiments were used to examine adsorption of both nanoparticles and oil droplets onto a model planar substrate bearing primary amine groups, while a fluorescence microscopy-based mucoadhesion assay was developed to assess adsorption of the oil droplets onto sheep nasal mucosal tissue. FINDINGS: Squalane droplets coated with aldehyde-functional nanoparticles adhered significantly more strongly to sheep nasal mucosal tissue than those coated with the corresponding hydroxyl-functional nanoparticles. This difference was attributed to the formation of surface imine bonds via Schiff base chemistry and was also observed for the two types of nanoparticles alone in QCM studies. Preliminary biocompatibility studies using planaria indicated only mild toxicity for these new mucoadhesive Pickering nanoemulsions, suggesting potential applications for the localized delivery of hydrophobic drugs.

7.
Int J Biol Macromol ; 242(Pt 4): 124980, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37236558

RESUMEN

Mucoadhesive polymers and their nanoparticles have attracted a lot of attention in pharmaceutical applications, especially transmucosal drug delivery (TDD). Mucoadhesive polysaccharide-based nanoparticles, particularly chitosan, and its derivatives, are widely used for TDD owing to their outstanding features such as biocompatibility, mucoadhesive, and absorption-enhancing properties. Herein, this study aimed to design potential mucoadhesive nanoparticles for the delivery of ciprofloxacin based on methacrylated chitosan (MeCHI) using the ionic gelation method in the presence of sodium tripolyphosphate (TPP) and compared them with the unmodified chitosan nanoparticles. In this study, different experimental conditions including the polymer to TPP mass ratios, NaCl, and TPP concentration were changed to achieve unmodified and MeCHI nanoparticles with the smallest particle size and lowest polydispersity index. At 4:1 polymer /TPP mass ratio, both chitosan and MeCHI nanoparticles had the smallest size (133 ± 5 nm and 206 ± 9 nm, respectively). MeCHI nanoparticles were generally larger and slightly more polydisperse than the unmodified chitosan nanoparticles. Ciprofloxacin-loaded MeCHI nanoparticles had the highest encapsulation efficiency (69 ± 13 %) at 4:1 MeCHI /TPP mass ratio and 0.5 mg/mL TPP, but similar encapsulation efficiency to that of their chitosan counterpart at 1 mg/mL TPP. They also provided a more sustained and slower drug release compared to their chitosan counterpart. Additionally, the mucoadhesion (retention) study on sheep abomasum mucosa showed that ciprofloxacin-loaded MeCHI nanoparticles with optimized TPP concentration had better retention than the unmodified chitosan counterpart. The percentage of the remained ciprofloxacin-loaded MeCHI and chitosan nanoparticles on the mucosal surface was 96 % and 88 %, respectively. Therefore, MeCHI nanoparticles have an excellent potential for applications in drug delivery.


Asunto(s)
Quitosano , Nanopartículas , Animales , Ovinos , Ciprofloxacina , Sistemas de Liberación de Medicamentos , Membrana Mucosa
8.
Chemosphere ; 294: 133644, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35065181

RESUMEN

The industrial revolution has led to different types of environmental pollution, including frequent leakage of crude oil to marine waters and the contamination of wastewater with immiscible or emulsified oils and organic liquids from various industrial residues. Hence, developing multifunctional materials for oil/water separation is a field of high significance for the remediation of oil-polluted water. Recently, advanced superwetting materials have been employed for oily wastewater treatment. This review summarizes the recent development in fabricating superhydrophobic/superoleophilic nanohybrid polyurethane, melamine, and cellulose sponges for oil/water separation. The use of organic and/or inorganic nanohybrid materials opens the horizon for designing a diverse and wide range of superhydrophobic sponges due to the synergistic effect between the surface roughness and chemical composition. The discussion is organized based on different classes of low surface energy materials including thermoplastics, thermosets, elastomers, fluorinated polymers, conductive polymers, organosilanes, long alkyl chain compounds, and hydrophobic carbon-based materials. Recent examples for the separation of both immiscible and emulsified oil/water mixtures are presented, with a focus on fabrication strategies, separation efficiency, recyclability, mechanical performance, and durability. Currently, most studies did not focus on the mechanical/chemical stability of the fabricated sponges, and hence, future research directions shall address the fabrication of robust and long-term durable superhydrophobic sponges with proper guidelines. Similarly, more research focus is required to design superhydrophobic sponges for the separation of emulsified oil/water mixtures and heavy crude oil samples. Superhydrophobic sponges can be employed for treatment of oily wastewater, emulsion separation, and cleanup of crude oil spills.


Asunto(s)
Contaminación por Petróleo , Petróleo , Purificación del Agua , Interacciones Hidrofóbicas e Hidrofílicas , Aceites/química , Contaminación por Petróleo/análisis
9.
RSC Adv ; 12(2): 1095-1104, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-35425120

RESUMEN

Food contamination by foodborne pathogens is considered a serious problem worldwide. This study aimed to show the efficacy of the one-pot green biosynthesis of nanocomposites as effective antimicrobial agents based on a water-soluble biodegradable polysaccharide and silver nitrate (AgNO3). Silver (Ag) nanoparticles were synthesized using different concentrations of AgNO3 solution (1, 2, and 3 mM) in the presence of N-quaternized chitosan and N,N,N-trimethyl chitosan chloride (TMC) as both a reducing and stabilizing agent. In addition, the structure of TMC/Ag nanocomposites was confirmed using different analytical tools including FTIR, UV-Vis, XRD, HR-TEM, FE-SEM, and EDX techniques. The FTIR spectra and UV-Vis spectra showed the main characteristic absorption peaks of Ag nanoparticles. In addition, FE-SEM images showed the formation of spherical bead-like particles on the surface of TMC. Correspondingly, the EDX spectrum showed a peak for silver, indicating the successful synthesis of Ag nanoparticles inside the TMC chains. Moreover, HR-TEM images exhibited the good distribution of Ag nanoparticles, which appeared as nano-spherical shapes. The antimicrobial activity of TMC/Ag nanocomposites was examined against three foodborne pathogens, including Salmonella Typhimurium as a Gram-negative bacterium, Bacillus subtilis as a Gram-positive bacterium and Aspergillus fumigatus as a fungus. The results showed that TMC/Ag nanocomposites had better antimicrobial activity compared with TMC alone and their antimicrobial activity increased with an increase in the concentration of Ag. The results confirmed that the TMC/Ag nanocomposites can be potentially used as an effective antimicrobial agent in food preservation.

10.
Int J Biol Macromol ; 191: 385-395, 2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34537301

RESUMEN

Recently, removal of synthetic dyes, especially cationic dye of malachite green (MG), and inhibition of the growth of pathogenic microorganism from drinking water have gained much interest due to their high toxic potency for aquatic biosystems. Herein, a new dye adsorbent with outstanding antibacterial activity was fabricated based on xanthan gum (XG) and SiO2 nanoparticles through ultrasonication followed by the crosslinking polymerization with vinyl imidazole monomer. The nano adsorbents were characterized with various techniques such as FTIR, XRD, SEM, EDX, and TEM. The nanocomposites were applied as a filter for discarding MG dye and killing the growth of bacterial strains such as E.coli and S.aureus which are considered as the common impurities for drinking water. The data revealed that a maximum adsorption capacity was recorded as 99.5% (Qmax = 588.2 mg/g) at optimum conditions including 10 mg nanocomposite, 10 mL of MG dye (450 ppm), pH = 7, the temperature of 30 °C, and the adsorption time was adjusted within 6 h. The process of dye adsorption was applied to the common isotherm models of Langmuir, Temkin, and Freundlich, and the findings showed that the adsorption behavior was well fitted with the Langmuir one (R2 = 0.9983). Moreover, different adsorption kinetic models such as pseudo-first order, pseudo-second order, and intra-particle diffusion were studied for understanding the mechanism of MG adsorption onto nanocomposite surface. It was found that both intraparticle diffusion and pseudo-first-order have participated evenly in the adsorption mechanism of MG dye. Ultimately, the as-prepared nanocomposites were tested against the growth of S. aureus, and E.coli manifesting a superior inhibition diameter as 23.5 ± 0.50, and 25.33 ± 0.47 mm against E.coli, and S. aureus, respectively. Therefore, our new XG-g-PVI/SiO2 adsorbent is a very promising adsorbent for the fast and efficient capture of dyes from aqueous solutions.


Asunto(s)
Antiinfecciosos/química , Colorantes/química , Nanocompuestos/química , Polisacáridos Bacterianos/química , Colorantes de Rosanilina/química , Dióxido de Silicio/química , Adsorción , Antiinfecciosos/farmacología , Staphylococcus aureus/efectos de los fármacos
11.
Int J Biol Macromol ; 167: 1113-1125, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33197479

RESUMEN

Herein, we reported the preparation of novel antibacterial nanocomposites based on biodegradable polymers. The nanocomposites were applied as capable adsorbent for removing of malachite green (MG) dye, as well as inhibiting of E. coli and S. aureus growth as the most common pollutants for water. The grafted xanthan gum with poly(vinylimidazole) (XG-g-PVI) nanocomposites were synthesized in the presence of different Montmorillonite (MMT) nanoclays concentrations (1%, 3% and 5%). The prepared modified XG nanocomposites were detected through XRD, SEM-EDX, FTIR and TEM. The maximum adsorption MG capacity was determined as 99.99% (909.1 mg/g) in basic medium at 30 °C for 90 min. The adsorption isotherm for removal of MG dye was studied against different models like Langmuir, Freundlich, Temkin, FloryHuggins isotherm models, however, the adsorption results were good fitted with Langmuir isotherm model (R2 = 0.9942). Additionally, various adsorption kinetic models: pseudo-first order, second order, pseudo-second order, and intra-particle diffusion models were studied for adsorption mechanism of MG dye on top of prepared nanocomposite surface. Finally, the antibacterial activity outcomes displayed that the prepared XG-g-PVI/MMT nanocomposites had excellent inhibition growth for bacteria and the antibacterial activity increased abruptly with the increased of MMT nanoclay concentrations.


Asunto(s)
Antibacterianos/química , Bentonita/química , Nanocompuestos/química , Polisacáridos Bacterianos/química , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Adsorción , Antibacterianos/análisis , Técnicas de Química Sintética , Concentración de Iones de Hidrógeno , Cinética , Pruebas de Sensibilidad Microbiana , Nanocompuestos/ultraestructura , Espectroscopía Infrarroja por Transformada de Fourier , Factores de Tiempo , Purificación del Agua/métodos , Difracción de Rayos X
12.
Int J Biol Macromol ; 182: 680-688, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33838196

RESUMEN

A green and scalable approach for the preparation of few-layered graphene utilizing the biowaste of potato peels has been developed. The potato peels have been dried and carbonized to obtain a new graphite structure that has been exfoliated in N-methylene phosphonic acid chitosan (MPC). The exfoliation process assisted the formation of graphene sheets with a high size diameter and quality of 50% based on the weight of graphite structure. The graphene sheets were green decorated with silver nanoparticles using microwave power to obtain new nanocomposites. The mass ratio between the graphite and silver nitrate was optimized and observed to change the morphology and size diameter of silver nanoparticles. The as-prepared MPC structure, graphene, and silver decorated graphene nanocomposites were characterized using 1HNMR, FTIR, XRD, UV/Vis spectrophotometer, SEM, and TEM besides tested as antimicrobial agents. The bacterial performance was also controlled by changing the number of AgNPs distributed on graphene sheets based on the mass ratios of graphite/AgNO3. The inhibition diameter of silver decorated graphene was considerably increased to 24.8, and 20.1 mm as in the case of MPC-GRP-Ag30 composite compared to the pure graphene (11.2, 13.5 mm) for E. coli and S. aureus, consecutively proposing that the blade edge of graphene sheets can destroy the bacteria membrane and release silver cations promptly that are directed for the interaction with the cytoplasmic parts of the bacteria cell. Such findings offer green and biocompatible antibacterial agents based on the graphene derived from the biowaste products.


Asunto(s)
Antiinfecciosos/síntesis química , Quitosano/análogos & derivados , Grafito/química , Nanopartículas del Metal/química , Ácidos Fosforosos/química , Antiinfecciosos/farmacología , Tecnología Química Verde/métodos , Plata/química , Staphylococcus aureus/efectos de los fármacos
13.
Int J Biol Macromol ; 137: 1086-1101, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31279059

RESUMEN

As water is the most important source for survival for all individuals around the world, water pollution via synthetic toxic dyes and microorganisms is considered as a serious worldwide environmental problem. The present work aimed to synthesize crosslinked grafted xanthan gum (XG) films with poly (N-vinyl imidazole), PVI, for both removing crystal violet (CV) dye and inhibiting Escherichia coli (E. coli) growth. XG-grafted-PVI was prepared using potassium persulfate as an initiator to give different percentage of graft yield and using N, N'-methylene bisacrylamide (MBA) as a crosslinking agent. The structure of grafted XG films was elucidated via various analysis tools including FTIR, XRD, FE-SEM and EDX. Results of CV adsorption studies showed that maximum CV removal was 99.7% (625 mgg-1) which was achieved at: 95% GY, 2.5% MBA, 40 mg of adsorbent into 50 mL of 500 mgL-1 CV dye solution, pH 7, temperature (30 °C) and adsorption time (7 h). Also, results fitted well with Langmuir isotherm model. Moreover, pseudo-first order and intraparticle diffusion model participated in the mechanism of CV adsorption on grafted XG surface, in addition to its efficient recycling ability. Furthermore, antibacterial activities results of crosslinked grafted XG revealed their high inhibiting effect for E.coli growth.


Asunto(s)
Colorantes/química , Colorantes/aislamiento & purificación , Violeta de Genciana/química , Violeta de Genciana/aislamiento & purificación , Polisacáridos Bacterianos/química , Descoloración del Agua/métodos , Adsorción , Escherichia coli/efectos de los fármacos , Hidrogeles/química , Concentración de Iones de Hidrógeno , Imidazoles/química , Cinética , Concentración Osmolar , Polisacáridos Bacterianos/farmacología , Polivinilos/química , Temperatura , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación
14.
Mater Sci Eng C Mater Biol Appl ; 94: 1044-1055, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30423685

RESUMEN

Aim of the present study is to investigate synthesis of novel hydrogel as a potential protein carrier, intended for controlled release formulation. The hydrophilic bovine serum albumin (BSA) was chosen as a model protein to be encapsulated within xanthan gum (XG)/poly (N­vinyl imidazole (PVI) hydrogel. Both XG/PVI hydrogel and XG/PVI/BSA matrix structures were elucidated via different analysis tools such as FTIR, XRD, FE-SEM and EDX. Both BSA loading and release profiles were determined. Cytotoxicity of XG/PVI hydrogel was investigated against normal cell line (VERO cells). The obtained results revealed that % Drug (BSA) loading (% DL) and Encapsulation Efficiency (% EE) increased with increasing both gelation time and loaded BSA concentration, while %DL and %EE decreased with increasing the polymer concentration. The maximum value of %DL and %EE was 59.50% and 99.17%, respectively. Results of in-vitro BSA release in PBS showed that increase in the polymer (XG and PVI) concentrations led to increase in BSA release. Kinetic studies of the in-vitro release of BSA from XG/PVI/BSA matrix followed non-Fickian and case II transport mechanism. Moreover, Cytotoxicity results showed good biocompatibility of this novel hydrogel. SDS-PAGE analysis confirmed that the structural integrity of BSA was not affected by the encapsulation or release conditions. Consequently, this novel hydrogel can be used as an efficient BSA carrier for protein delivery.


Asunto(s)
Composición de Medicamentos , Sistemas de Liberación de Medicamentos , Hidrogeles/química , Polisacáridos Bacterianos/química , Albúmina Sérica Bovina/administración & dosificación , Animales , Bovinos , Muerte Celular , Supervivencia Celular , Chlorocebus aethiops , Liberación de Fármacos , Imidazoles/química , Cinética , Polivinilos/química , Espectrometría por Rayos X , Espectroscopía Infrarroja por Transformada de Fourier , Factores de Tiempo , Células Vero , Difracción de Rayos X
15.
Carbohydr Polym ; 189: 107-114, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29580387

RESUMEN

In our study, we aimed to synthesize novel grafted hyaluronic acid with cationic biodegradable polymer, poly (N-vinyl imidazole) (PVI), through free radical polymerization using potassium persulfate as initiator. The effect of various grafting factors including initiator and monomer concentrations, reaction time and temperature was studied on the percentage of grafting parameters such as; graft yield (% GY), grafting efficiency (% GE) and amount of homopolymer formation (% H). Maximum grafted HA was% GY = 235% and%GE = 83% obtained on optimum conditions at [In] = 17.5 mmol L-1, [M] = 1.25 mol L-1, Temp. = 50 °C, time = 1.5 h and [HA] = 0.025 mol L-1. The structure of grafted HA (HA-g-PVI) was elucidated via various analysis tools such as; elemental analyses, FTIR, 1H NMR, XRD, TGA and Field emission scanning electron microscopy (FE-SEM). Hepatic and breast cancers are two common cancer types threatening people worldwide, so, the antitumor activity of two grafted HA samples (% GY = 155% and 235%) was studied against hepatic cancer (HepG-2) and breast cancer cell lines (MCF-7) compared to unmodified HA and PVI. The results showed that antitumor activity of grafted samples was more than unmodified HA and increased with increasing the grafting percentage of PVI onto HA chains, also, the antitumor activity of tested samples against HepG-2 cell lines was higher than MCF-7 cell lines.


Asunto(s)
Ácido Hialurónico/química , Imidazoles/química , Polímeros/química , Línea Celular Tumoral , Células Hep G2 , Humanos , Cinética , Espectroscopía de Resonancia Magnética , Difracción de Rayos X
16.
Int J Biol Macromol ; 111: 706-716, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29339279

RESUMEN

The present study is imported to solve two critical problems we face in our daily life which are microbial pollution and colon cancer. One pot green synthesis of a water soluble polyelectrolyte complex (PEC) between cationic polysaccharide as N,N,N-trimethyl chitosan chloride (TMC) and anionic polymer as poly (acrylic acid) (PAA) in presence of silver nanoparticles to yield (TMC/PAA/Ag) nanocomposites with different Ag weight ratios. Structure of TMC, PAA and TMC/PAA (PEC) were proved via different analysis tools. TMC/PAA and its Ag nanocomposites are used as antimicrobial agents against different pathogenic bacteria and fungi to solve microbial pollution. TMC/PAA-Silver nanocomposites had the highest antimicrobial activity which increases with increasing Ag %. Cytotoxicity data confirmed also that TMC/PAA/Ag (3%) had the most cytotoxic effect (the less cell viability %) towards colon cancer. TMC/PAA (PEC) was formed through electrostatic interactions between N-quaternized (-N+R3) groups in TMC and carboxylate (-COO-) groups in PAA.


Asunto(s)
Antiinfecciosos/síntesis química , Quitosano/síntesis química , Nanopartículas del Metal/química , Nanocompuestos/química , Antiinfecciosos/química , Antiinfecciosos/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Quitosano/química , Quitosano/farmacología , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Tecnología Química Verde , Humanos , Nanopartículas del Metal/uso terapéutico , Pruebas de Sensibilidad Microbiana , Nanocompuestos/uso terapéutico , Plata/química , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/patogenicidad
17.
Int J Biol Macromol ; 80: 149-61, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26116385

RESUMEN

Hydrogels composed of N-quaternized chitosan (NQC) and poly(vinyl alcohol) (PVA) in different weight ratios (1:3), (1:1) and (3:1) chemically crosslinked by glutaraldehyde in different weight ratios ­ 1.0 and 5.0% ­ have been prepared. The prepared hydrogels were characterized via several analysis tools such as: Fourier transform IR (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM) and thermogravimetric analysis (TGA). Different applications have been done on NQC/PVA hydrogels including; metal ions uptake, swellability in different buffer solutions (pH: 4, 7 and 9), swellability and degradation studies in simulated body fluid (SBF) solutions and antimicrobial activity towards bacteria and fungi. The results indicated that crosslinked NQC/PVA hydrogels with glutaraldehyde (GA) are more thermallystable than non crosslinked hydrogels, NQC/PVA hydrogels swell highly in different buffer solutions as PVA content increases and the antimicrobial activity of NQC/PVA hydrogels is higher than NQC itself.


Asunto(s)
Antibacterianos/síntesis química , Quitosano/química , Hidrogeles/síntesis química , Alcohol Polivinílico/química , Compuestos de Amonio Cuaternario/química , Antibacterianos/farmacología , Antifúngicos/síntesis química , Antifúngicos/farmacología , Aspergillus fumigatus/efectos de los fármacos , Bacillus subtilis/efectos de los fármacos , Cadmio/química , Cobalto/química , Cobre/química , Escherichia coli/efectos de los fármacos , Etanol/química , Geotrichum/efectos de los fármacos , Glutaral/química , Hidrogeles/farmacología , Concentración de Iones de Hidrógeno , Klebsiella pneumoniae/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Níquel/química , Compuestos de Amonio Cuaternario/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Staphylococcus aureus/efectos de los fármacos , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA