Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Cent Eur J Immunol ; 42(3): 231-238, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29204086

RESUMEN

This study was conducted to assess the in vivo and ex vivo immunomodulatory effect of the ethanol leaves extract of Moringa peregrina in Balb/c mice. For this study, five groups of 5 Balb/c mice were given a single acute subtoxic oral dose of the ethanolic extract at 1.13, 11.30, 23.40 and 113.4 mg/kg and the immunomodulatory effect was assessed on the 6th day following the ingestion. In the (non-functional) assessment, the effect of the extract on the body weight, relative lymphoid organ weight, splenic cellularity and peripheral blood hematologic parameters were evaluated. While in the immunomodulation assessment (functional), we investigated the effect of the extract on the proliferative capacity of splenic lymphocytes and peripheral T and B lymphocytes using mitogen blastogenesis, mixed allogeneic MLR and IgM-Plaque forming cells assays. The ingestion of M. peregrina extract caused a significant increase in the body weight, weight and number of cells of spleen and lymph nodes of the treated mice. Furthermore, the count of RBCs, WBCs, platelets, hemoglobin concentration and PCV % were increased by the extract treatment in a dose-dependent manner. M. peregrina enhanced the proliferative responses of splenic lymphocytes for both T cell and B-cell mitogens. Likewise, the mixed lymphocyte reaction MLR assay has revealed a T-cell dependent proliferation enhancement in the extract treated mice. Moreover, the oral administration of M. peregrina leaves extracts significantly increased PFCs/106 splenocytes in a dose-dependent manner. In conclusion, subtoxic acute doses of M. peregrina extract demonstrated significant potential as an immunomodulatory agent even at the lowest dose of 1.13 mg/kg.

2.
ACS Omega ; 9(10): 12015-12026, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38496995

RESUMEN

In this study, phenol formaldehyde-montmorillonite (PF-MMT) was prepared and used for lead ion (Pb2+) adsorption. Batch adsorption experiments were conducted to determine the optimal conditions. The calculated adsorption equilibrium (q) revealed that pseudo-second-order (PSO) and Langmuir isotherm models best fit the experimental data, suggesting chemisorption as the main mechanism. An adsorption capacity (qmax) of 243.9 mg/g was achieved. Fourier transform infrared (FTIR) analysis showed new peaks in PF-MMT-Pb, indicating metal complexation. Scanning electron microscopy (SEM) imaging displayed distinct Pb2+ clusters on the adsorbent surface. Adsorption was rapid, attaining equilibrium within 90 min. Effects of time, dose, concentration, and pH were systematically investigated to optimize the process. Lead ion removal efficiency reached 98.33% under optimum conditions after 90 min. The adsorption process was chemisorption based on the Dubinin-Kaganer-Radushkevich model with a free energy of 14,850 J/mol. The substantial adsorption capacity, rapid kinetics, and high removal efficiency highlight PF-MMT's potential for effective Pb2+ removal from aqueous solution.

3.
ACS Omega ; 9(9): 10090-10098, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38463304

RESUMEN

In this study, we report the successful synthesis of a phenol-formaldehyde-pyrazole (PF-PYZ) compound through the surface functionalization of phenol-formaldehyde (PF) with pyrazole (PYZ). The resulting mixture was subjected to comprehensive characterization using a range of analytical techniques, including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The newly synthesized PF-PYZ material effectively removes Cr(VI) ions. Notably, a substantial elimination efficiency of 96% was achieved after just 60 min of contact time. The strategic incorporation of pyrazole (PYZ) as the principal functionalizing agent contributed to this exceptional performance. Notably, the functionalized PYZ sites were strategically positioned on the surface of PF, rendering them readily accessible to metal ions. Through rigorous testing, the optimal sorption capacity of PF-PYZ for Cr(VI) ions was quantified at 0.872 mmol Cr(VI)/g, highlighting the material's superior adsorption capabilities. The practical utility of PF-PYZ was further established through a reusability test, which demonstrated that the chromate capacity remained remarkably stable at 0.724 mequiv Cr(VI)/g over 20 consecutive cycles. This resilience underscores the robustness of the resin, indicating its potential for repeated regeneration and reuse without a significant capacity loss. Our work presents a novel approach to functionalizing phenol-formaldehyde with pyrazole, creating PF-PYZ, a highly efficient material for removing Cr(VI) ions. The compound's facile synthesis, exceptional removal performance, and excellent reusability collectively underscore its promising potential for various water treatments, especially oil field and environmental remediation applications.

4.
Int J Biol Macromol ; 235: 123704, 2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-36801282

RESUMEN

Different physical and chemical techniques could be used to prepare chitosan/Silver nanoparticle (CHS/AgNPs) nanocomposite. The microwave heating reactor was rationally adopted as a benign tool for preparing CHS/AgNPs owing to less energy consumption and shorter time required for completing the nucleation and growth particles. UV-Vis, FTIR, and XRD, provided conclusive evidence of the AgNPs creation, while TEM micrographs elucidated that the size was spherical (20 nm). CHS/AgNPs were embedded in polyethylene oxide (PEO) nanofiber via electrospinning, and their biological properties, cytotoxicity evaluation, antioxidant, and antibacterial activity assays were investigated. The generated nanofibers have mean diameters of 130.9 ± 9.5, 168.7 ± 18.8, and 186.8 ± 8.19 nm for PEO, PEO/ CHS, and PEO/ CHS (AgNPs), respectively. Because of the tiny AgNPs particle size loaded in PEO/CHS (AgNPs) fabricated nanofiber, good antibacterial activity with ZOI against E. coli was 51.2 ± 3.2, and S. aureus was 47.2 ± 2.1 for PEO/ CHS (AgNPs) nanofibers. Non-toxicity was observed against Human Skin Fibroblast and Keratinocytes cell lines (>93.5 %), which justifies its great antibacterial potential to remove or prevent infection in wounds with fewer adverse effects.


Asunto(s)
Quitosano , Nanopartículas del Metal , Nanofibras , Humanos , Antioxidantes/farmacología , Staphylococcus aureus , Quitosano/química , Nanofibras/química , Nanopartículas del Metal/química , Plata/química , Polietilenglicoles/química , Escherichia coli , Microondas , Antibacterianos/farmacología , Antibacterianos/química , Cicatrización de Heridas
5.
ACS Omega ; 8(33): 30068-30080, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37636913

RESUMEN

The inhibitory impact of the two synthesized pyrazole derivatives (3 and 4) toward metallic and microbial corrosion was investigated. Using open circuit potential, potentiodynamic polarization, and electrochemical impedance spectroscopy, it was possible to determine their ability to prevent the corrosion of C-steel in 1 M HCl, which was significantly enhanced with increasing concentration (ex. 93%). They act as mixed-type inhibitors, according to polarization curves. The compounds under investigation were adsorbed on a C-steel surface in 1 M HCl following the Langmuir isotherm model. The double-layer capacitance was decreased, and the charge transfer resistance (Rct) was raised due to the examined inhibitors' adsorption. Investigating changes in the surface morphology and confirming the corrosion inhibition mechanism are done using scanning electron microscopy. Density functional theory calculations and Monte Carlo simulations were also conducted to show the adsorption affinity of the understudied compounds over the steel substrate in neutral and protonated forms. Furthermore, the antimicrobial performance of the two synthesized pyrazoles against sulfate-reducing bacteria was evaluated, and the recorded inhibition efficiency was 100%. The current research shows important developments in producing highly effective anticorrosion and antimicrobial pyrazole derivatives.

6.
ACS Omega ; 8(17): 14859-14872, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37151539

RESUMEN

Formaldehyde has become a prominent topic of interest because of its simple molecular structure, release from various compounds in the near vicinity of humans, and associated hazards. Thus, several researchers designed sophisticated instrumentations for formaldehyde detection that exhibit real-time sensing properties and are cost-effective and portable with high detection limits. On these grounds, this review is centered on an analysis of optical chemosensors for formaldehyde that specifically fall under the broad spectrum of organic probes. In this case, this review discusses different organic functionalities, including amines, imines, aromatic pillar arenes, ß-ketoesters, and ß-diketones, taking part in various reaction mechanisms ranging from aza-Cope rearrangement and Schiff base and Hanztch reactions to aldimine condensation. In addition, this review distinguishes reaction mechanisms according to photophysical phenomena, that is, aggregation-induced emission, photoinduced electron transfer, and intramolecular charge transfer. Furthermore, it addresses the instrumentation involved in gas-based and liquid formaldehyde detection. Finally, it discusses the gaps in existing technologies followed by a succinct set of recommendations for future research.

7.
ACS Omega ; 7(27): 23673-23684, 2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35847248

RESUMEN

The benign preparation of cobalt oxide nanoparticles (Co3O4-NPs) was performed using marine red algae extract (Grateloupia sparsa) as a simple, cost-effective, scalable, and one-pot hydrothermal technique. The nominated extract was employed as an environmental reductant and stabilizing agent. The resultant product showed the typical peak of Co3O4-NPs around 400 nm wavelength as ascertained by UV-vis spectroscopy. Size and morphological techniques combined with X-ray diffraction (XRD) showed the small size of Co3O4-NPs deformed in a spherical shape. The activated carbon (AC) electrode and Co3O4-NP electrode delivered a specific capacitance (C sp) of 125 and 182 F g-1 at 1 A g-1, respectively. The energy density of the AC and AC/Co3O4 electrodes with a power density of 543.44 and 585 W kg-1 was equal to 17.36 and 25.27 Wh kg-1, respectively. The capacitance retention of designed electrodes was 99.2 and 99.5% after 3000 cycles. Additionally, a symmetric AC/Co3O4//AC/Co3O4 supercapacitor device had a specific capacitance (C sp) of 125 F g-1 and a high energy density of 55 Wh kg-1 at a power density of 650 W kg-1. Meanwhile, the symmetric device exhibited superior cyclic stability after 8000 cycles, with a capacitance retention of 93.75%. Overall, the adopted circular criteria, employed to use green technology to avoid noxious chemicals, make the AC/Co3O4 nanocomposite an easily accessible electrode for energy storage applications.

8.
Int J Biol Macromol ; 217: 606-614, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-35843402

RESUMEN

Vanadium pentoxide has the most exciting oxidation states, but, Vanadium pentoxide (V2O5) has low capacitance due to poor electrical conductivity and ionic diffusivity. So, encapsulating pentoxide in carbonaceous materials or metals, shrinking it to the nanoscale, or changing its morphology can improve capacitance performance. Herein, we describe a green synthesis of V2O5NPs with carboxymethyl cellulose (CMC) that typically acts as a reducing and stabilizing agent using the -COOH and -OH group. The physicochemical characterization of prepared samples reveals the prominent peak in UV-vis spectra at 265 nm confirming the formation of V2O5NPs with particle sizes between 200 and 220 nm. The theoretical surface area for the nanocomposite was 76.5 m2/g. The calcination temperature is essential to determine a material's specific capacitance. Due to decreased oxide agglomeration, the V2O5-green modified electrode exhibits superior electrochemical performance around 223 F g-1 than Ac alone (160 F g-1). The finding demonstrated excellent cyclic stability with reduced fluctuation in capacitance. Because of its exceptional electrochemical performance and simplicity of access, this AC/V2O5 nanocomposite can be helpful as an electrode for energy storage applications.


Asunto(s)
Carboximetilcelulosa de Sodio , Nanotubos , Capacidad Eléctrica , Electrodos , Iones/química
9.
Nanomaterials (Basel) ; 12(20)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36296875

RESUMEN

The objective of this research was to explore the impact of corrosion inhibition of some synthetic acrylamide derivatives 2-cyano-N-(4-hydroxyphenyl)-3-(4-methoxyphenyl)acrylamide (ACR-2) and 2-cyano-N-(4-hydroxyphenyl)-3-phenylacrylamide (ACR-3) on copper in 1.0 M nitric acid solution using chemical and electrochemical methods, including mass loss as a chemical method and electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PP) as electrochemical methods. By Fourier-transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (1HNMR), and mass spectroscopy (MS) methods, the two compounds were verified and characterized. There is evidence that both compounds were effective corrosion inhibitors for copper in 1.0 M nitric acid (HNO3) solutions, as indicated by the PP curves, which show that these compounds may be considered mixed-type inhibitors. With the two compounds added, the value of the double-layer capacitance was reduced. In the case of 20 × 10-5 M, they reached maximum efficiencies of 84.5% and 86.1%, respectively. Having studied its behavior during adsorption on copper, it was concluded that it follows chemical adsorption and Langmuir isotherm. The theoretical computations and the experimental findings were compared using density functional theory (DFT) and Monte Carlo simulations (MC).

10.
RSC Adv ; 11(61): 38391-38433, 2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-35493203

RESUMEN

This review emphasizes recent developments in synthetic routes of 3-(bromoacetyl)coumarin derivatives. Also, chemical reactions of 3-(bromoacetyl)coumarins as versatile building blocks in the preparation of critical polyfunctionalized heterocyclic systems and other industrially significant scaffolds are described. Recent advances of 3-(bromoacetyl)coumarins as attractive starting points towards a wide scale of five and six-membered heterocyclic systems such as thiophenes, imidazoles, pyrazoles, thiazoles, triazoles, pyrans, pyridines, thiadiazins as well as fused heterocyclic systems have been reported. Additionally, this review covers a wide range of analytical chemistry, fluorescent sensors, and biological applications of these moieties, covering the literature till May 2021.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA