Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Circ Res ; 90(1): E11-6, 2002 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-11786529

RESUMEN

Brugada syndrome is an inherited cardiac disorder caused by mutations in the cardiac sodium channel gene, SCN5A, that leads to ventricular fibrillation and sudden death. This study reports the changes in functional expression and cellular localization of an SCN5A double mutant (R1232W/T1620M) recently discovered in patients with Brugada syndrome. Mutant and wild-type (WT) human heart sodium channels (hNa(v)1.5) were expressed in tsA201 cells in the presence of the beta(1)-auxiliary subunit. Patch-clamp experiments in whole-cell configuration were conducted to assess functional expression. Immunohistochemistry and confocal microscopy were used to determine the spatial distribution of either WT or mutant cardiac sodium channels. The results show an abolition of functional sodium channel expression of the hNa(v)1.5/R1232W/T1620M mutant in the tsA201 cells. A conservative positively charged mutant, hNa(v)1.5/R1232K/T1620M, produced functional channels. Immunofluorescent staining showed that the FLAG-tagged hNa(v)1.5/WT transfected into tsA201 cells was localized on the cell surface, whereas the FLAG-tagged hNa(v)1.5/R1232W/T1620M mutant was colocalized with calnexin within the endoplasmic reticulum (ER). These results indicate that a positively charged arginine or lysine residue at position 1232 in the double mutant is required for the proper transport and functional expression of the hNa(v)1.5 protein. These results support the concept that loss of function of the cardiac Na(+) channel is responsible for the Brugada syndrome. The full text of this article is available at http://www.circresaha.org.


Asunto(s)
Canales de Sodio/fisiología , Fibrilación Ventricular/fisiopatología , Animales , Animales Recién Nacidos , Línea Celular , Expresión Génica , Genotipo , Ventrículos Cardíacos/citología , Humanos , Inmunohistoquímica , Potenciales de la Membrana/fisiología , Microscopía Confocal , Mutación Missense , Canal de Sodio Activado por Voltaje NAV1.5 , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Canales de Sodio/genética , Síndrome , Transfección , Fibrilación Ventricular/genética , Función Ventricular
2.
Cardiovasc Res ; 64(2): 268-78, 2004 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-15485686

RESUMEN

OBJECTIVE: Congenital long QT syndrome (LQTS) with in utero onset of the rhythm disturbances is associated with a poor prognosis. In this study we investigated a newborn patient with fetal bradycardia, 2:1 atrioventricular block and ventricular tachycardia soon after birth. METHODS: Mutational analysis and DNA sequencing were conducted in a newborn. The 2:1 atrioventricular block improved to 1:1 conduction only after intravenous lidocaine infusion or a high dose of mexiletine, which also controlled the ventricular tachycardia. RESULTS: A novel, spontaneous LQTS-3 mutation was identified in the transmembrane segment 6 of domain IV of the Na(v)1.5 cardiac sodium channel, with a G-->A substitution at codon 1763, which changed a valine (GTG) to a methionine (ATG). The proband was heterozygous but the mutation was absent in the parents and the sister. Expression of this mutant channel in tsA201 mammalian cells by site-directed mutagenesis revealed a persistent tetrodotoxin-sensitive but lidocaine-resistant current that was associated with a positive shift of the steady-state inactivation curve, steeper activation curve and faster recovery from inactivation. We also found a similar electrophysiological profile for the neighboring V1764M mutant. But, the other neighboring I1762A mutant had no persistent current and was still associated with a positive shift of inactivation. CONCLUSIONS: These findings suggest that the Na(v)1.5/V1763M channel dysfunction and possible neighboring mutants contribute to a persistent inward current due to altered inactivation kinetics and clinically congenital LQTS with perinatal onset of arrhythmias that responded to lidocaine and mexiletine.


Asunto(s)
Síndrome de QT Prolongado/genética , Mutación , Miocardio/metabolismo , Canales de Sodio/genética , Bradicardia/genética , Bradicardia/metabolismo , Línea Celular , Análisis Mutacional de ADN , Femenino , Humanos , Recién Nacido , Lidocaína/farmacología , Síndrome de QT Prolongado/metabolismo , Masculino , Canal de Sodio Activado por Voltaje NAV1.5 , Técnicas de Placa-Clamp , Análisis de Secuencia de ADN , Canales de Sodio/metabolismo , Taquicardia Ventricular/genética , Taquicardia Ventricular/metabolismo , Tetrodotoxina/farmacología , Transfección/métodos
3.
FEBS Lett ; 559(1-3): 39-44, 2004 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-14960304

RESUMEN

Mammalian cells poorly express rNa(v)1.8 channels. In contrast, rNa(v)1.7 dorsal root ganglion channels have 90-fold higher peak Na(+) current densities. We investigated the role of rNa(v)1.7 and rNa(v)1.8 carboxy-termini in modulating the expression of rNa(v)1.7 and rNa(v)1.8 channels in tsA201 cells. Mutations in the ubiquitination site of the C-terminus did not improve rNa(v)1.8 current levels. However, rNa(v)1.8 chimeras containing the entire or the proximal portion of the rNa(v)1.7 C-terminus expressed 3.2-fold and 4.8-fold higher peak current densities, respectively, than parent rNa(v)1.8 channels. We conclude that the two Na(+) channels may have different endoplasmic reticulum processing signals.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Canales de Sodio/metabolismo , Secuencia de Aminoácidos/fisiología , Animales , Línea Celular , Electrofisiología , Mutación , Canal de Sodio Activado por Voltaje NAV1.7 , Canal de Sodio Activado por Voltaje NAV1.8 , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Técnicas de Placa-Clamp , Transporte de Proteínas , Ratas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Canales de Sodio/genética , Canales de Sodio/fisiología , Transfección
4.
Can J Physiol Pharmacol ; 81(2): 129-34, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12710526

RESUMEN

The congenital long QT syndrome (LQTS) is a hereditary cardiac disease characterized by prolonged ventricular repolarization, syncope, and sudden death. Mutations causing LQTS have been identified in various genes that encode for ionic channels or their regulatory subunits. Several of these mutations have been reported on the KCNQ1 gene encoding for a potassium channel or its regulatory subunit (KCNE1). In this study, we report the biophysical characteristics of a new mutation (L251P) in the transmembrane segment 5 (S5) of the KCNQ1 potassium channel. Potassium currents were recorded from CHO cells transfected with either wild type or mutant KCNQ1 in the presence or in the absence of its regulatory subunit (KCNE1), using the whole-cell configuration of the patch clamp technique. Wild-type KCNQ1 current amplitudes are increased particularly by KCNE1 co-expression but no current is observed with the KCNQ1 (L251P) mutant either in the presence or in the absence of KCNE1. Coexpressing KCNE1 with equal amount of cDNAs encoding wild type and mutant KCNQ1 results in an 11-fold reduction in the amplitude of potassium currents. The kinetics of activation and inactivation and the activation curve are minimally affected by this mutation. Our results suggest that the dominant negative effect of the P251L mutation on KCNQ1 channel explains the prolonged repolarization in patients carrying this mutation.


Asunto(s)
Biofisica/métodos , Síndrome de QT Prolongado/genética , Mutación/efectos de los fármacos , Mutación/fisiología , Canales de Potasio con Entrada de Voltaje , Canales de Potasio/efectos de los fármacos , Canales de Potasio/genética , Adolescente , Animales , Células CHO/metabolismo , Cricetinae , Cricetulus , Canales de Potasio de Tipo Rectificador Tardío , Humanos , Canales de Potasio KCNQ , Canal de Potasio KCNQ1 , Síndrome de QT Prolongado/congénito , Masculino , Transfección
5.
J Mol Cell Cardiol ; 35(12): 1513-21, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14654377

RESUMEN

Inherited long QT syndrome (LQTS) is caused by mutations in six genes including SCN5A, encoding the alpha-subunit of the human cardiac voltage-dependent sodium channel hNa(v)1.5. In LQT3, various mutations in SCN5A were identified, which produce a gain of channel function. The aim of this study was to screen SCN5A for mutations in a family with the LQT3 phenotype and to analyze the consequences of the mutation on the channel function. By polymerase chain reaction-denaturating high performance liquid chromatography-sequencing, we identified a novel deletion in SCN5A, delQKP 1507-1509, in the DIII-DIV linker of the sodium channel. The hNa(v)1.5/delQKP1507-1509, hNa(v)1.5/delQ1507 and hNa(v)1.5/Q1507A mutants were constructed in vitro, mutant channels were expressed in the tsA201 human cell line and studied using the whole-cell configuration of the patch clamp technique. A persistent inward sodium current of 1-1.5% of maximum currents measured at -30 mV in all mutant sodium channels was recorded, which was nearly completely blocked by the sodium-channel blockers tetrodotoxin and lidocaine. The deletion mutants resulted in a significant shift of steady-state activation to more depolarized voltages. The delQ1507 showed a small shift of steady-state inactivation towards more negative potentials, whereas no significant shifts were observed in both steady-state activation and inactivation in Q1507A compared to the wild-type Na(v)1.5 sodium channels. The novel SCN5A mutation, delQKP, induces a residual current as previously shown for other SCN5A mutations causing LQTS. DelQKP shares the deletion of Q1507 with the formerly known delKPQ 1505-1507. Our data suggest that Q1507 plays an important role in fast sodium channel inactivation.


Asunto(s)
Síndrome de QT Prolongado/genética , Eliminación de Secuencia , Canales de Sodio/genética , Canales de Sodio/metabolismo , Adulto , Secuencia de Bases , Línea Celular , Niño , Cromatografía Líquida de Alta Presión , Análisis Mutacional de ADN , Femenino , Pruebas Genéticas , Heterocigoto , Humanos , Lidocaína/farmacología , Síndrome de QT Prolongado/fisiopatología , Masculino , Canal de Sodio Activado por Voltaje NAV1.5 , Técnicas de Placa-Clamp , Linaje , Reacción en Cadena de la Polimerasa , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/efectos de los fármacos , Tetrodotoxina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA