Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nat Chem Biol ; 17(2): 146-151, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33199911

RESUMEN

Untargeted mass spectrometry is employed to detect small molecules in complex biospecimens, generating data that are difficult to interpret. We developed Qemistree, a data exploration strategy based on the hierarchical organization of molecular fingerprints predicted from fragmentation spectra. Qemistree allows mass spectrometry data to be represented in the context of sample metadata and chemical ontologies. By expressing molecular relationships as a tree, we can apply ecological tools that are designed to analyze and visualize the relatedness of DNA sequences to metabolomics data. Here we demonstrate the use of tree-guided data exploration tools to compare metabolomics samples across different experimental conditions such as chromatographic shifts. Additionally, we leverage a tree representation to visualize chemical diversity in a heterogeneous collection of samples. The Qemistree software pipeline is freely available to the microbiome and metabolomics communities in the form of a QIIME2 plugin, and a global natural products social molecular networking workflow.


Asunto(s)
Espectrometría de Masas/métodos , Metabolómica , Algoritmos , Análisis por Conglomerados , ADN/química , Dermatoglifia del ADN , Bases de Datos Factuales , Ecología , Análisis de los Alimentos , Microbiota , Análisis Multivariante , Programas Informáticos , Espectrometría de Masas en Tándem , Flujo de Trabajo
3.
J Am Soc Mass Spectrom ; 35(9): 2165-2175, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39133821

RESUMEN

Untargeted tandem mass spectrometry (MS/MS) is an essential technique in modern analytical chemistry, providing a comprehensive snapshot of chemical entities in complex samples and identifying unknowns through their fragmentation patterns. This high-throughput approach generates large data sets that can be challenging to interpret. Molecular Networks (MNs) have been developed as a computational tool to aid in the organization and visualization of complex chemical space in untargeted mass spectrometry data, thereby supporting comprehensive data analysis and interpretation. MNs group related compounds with potentially similar structures from MS/MS data by calculating all pairwise MS/MS similarities and filtering these connections to produce a MN. Such networks are instrumental in metabolomics for identifying novel metabolites, elucidating metabolic pathways, and even discovering biomarkers for disease. While MS/MS similarity metrics have been explored in the literature, the influence of network topology approaches on MN construction remains unexplored. This manuscript introduces metrics for evaluating MN construction, benchmarks state-of-the-art approaches, and proposes the Transitive Alignments approach to improve MN construction. The Transitive Alignment technique leverages the MN topology to realign MS/MS spectra of related compounds that differ by multiple structural modifications. Combining this Transitive Alignments approach with pseudoclique finding, a method for identifying highly connected groups of nodes in a network, resulted in more complete and higher-quality molecular families. Finally, we also introduce a targeted network construction technique called induced transitive alignments where we demonstrate effectiveness on a real world natural product discovery application. We release this transitive alignment technique as a high-throughput workflow that can be used by the wider research community.


Asunto(s)
Metabolómica , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Metabolómica/métodos , Algoritmos , Redes y Vías Metabólicas
4.
mBio ; 12(1)2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33593964

RESUMEN

The world faces two seemingly unrelated challenges-a shortfall in the STEM workforce and increasing antibiotic resistance among bacterial pathogens. We address these two challenges with Tiny Earth, an undergraduate research course that excites students about science and creates a pipeline for antibiotic discovery.


Asunto(s)
Antibacterianos , Descubrimiento de Drogas/educación , Ciencia/educación , Estudiantes , Bacterias/efectos de los fármacos , Descubrimiento de Drogas/métodos , Humanos
5.
Genome Announc ; 6(8)2018 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-29472337

RESUMEN

Micromonospora sp. strain WMMA1996 was isolated in 2013 off the coast of the Florida Keys, United States, from a marine sponge as part of bacterial coculture-based drug discovery initiatives. Analysis of the ∼6.44-Mb genome reveals this microbe's potential role in the discovery of new drugs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA