Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nanotechnology ; 31(3): 035407, 2020 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-31569088

RESUMEN

Silicon nanowire (SiNW) arrays were coated with chromium nitride (CrN) for use as supercapacitor electrodes. The CrN layer of different thicknesses was deposited onto SiNWs using bipolar magnetron sputtering method. The areal capacitance of the SiNWs-CrN, as measured in 0.5 M H2SO4 electrolyte, was as high as 180 mF cm-2 at a scan rate of 5 mV s-1 (equivalent to 31.8 mF cm-2 at 1.6 mA cm-2) with an excellent electrochemical retention of 92% over 15 000 cycles. This work paves the way toward using CrN modified 3D SiNWs arrays for micro-supercapacitor application.

2.
Polymers (Basel) ; 14(17)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36080767

RESUMEN

Polycarbonate (PC) is susceptible to environmental stress cracking (ESC) when the conditions of pre-strain and presence of fluid with a compatible solubility index are both prevalent. One approach to counter this involves using nanoscale fillers to bridge the propagating microcracks, thus, effectively inhibiting impending failure. In this work, we report incorporation of titania (TiO2) with different nanoscale morphologies into polycarbonate matrix to assess its effect on ESC resistance against dioctyl phthalate (DOP). Using a hydrothermal process with a NaOH/Ti molar ratio of 72, TiO2 nanostructures were produced containing nanosheets with large surface area and nanotubes having typical diameter and length values of 15-20 nm and a few hundred nanometers, respectively. PC/TiO2 composites were fabricated with up to 0.5 weight percent of TiO2 nanoparticles (NPs), nanowires (NWs), or hybrid nanostructures (HNs). ESC tests were conducted by exposing test coupons to DOP oil at different temperatures and pre-strain conditions. The results showed that, under identical test conditions, while as-received PC grade exhibited complete fracture in ~3.1 h, PC/TiO2-0.05HN composite took ~70 h to fail via surface cracking. SEM examination of the fracture surface revealed that homogeneous dispersion and efficient load-bearing capability of TiO2 nanotubes and nanosheets impeded localized crack propagation by bridging the gap between the PC matrix segments. Liquid nitrogen fracture of the PC/TiO2 composite further confirmed the critical role of TiO2 hybrid nanostructures towards improvement in ESC resistance of PC matrix composites.

3.
Nanomaterials (Basel) ; 12(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36296882

RESUMEN

The impact of a titania (TiO2) support film surface on the catalytic activity of gold nanoparticles (Au NP) was investigated. Using the reactive dc-magnetron sputtering technique, TiO2 films with an amorphous, anatase, and nitrogen-doped anatase crystal structure were produced for a subsequent role as a support material for Au NP. Raman spectra of these TiO2 films revealed that both vacuum and NH3 annealing treatments promoted amorphous to anatase phase transformation through the presence of a peak in the 513-519 cm-1 spectral regime. Furthermore, annealing under NH3 flux had an associated blue shift and broadening of the Raman active mode at 1430 cm-1, characteristic of an increase in the oxygen vacancies (VO). For a 3 to 15 s sputter deposition time, the Au NP over TiO2 support films were in the 6.7-17.1 nm size range. From X-ray photoelectron spectroscope (XPS) analysis, the absence of any shift in the Au 4f core level peak implied that there was no change in the electronic properties of Au NP. On the other hand, spontaneous hydroxyl (-OH) group adsorption to anatase TiO2 support was instantly detected, the magnitude of which was found to be enhanced upon increasing the Au NP loading. Nitrogen-doped anatase TiO2 supporting Au NP with ~21.8 nm exhibited a greater extent of molecular oxygen adsorption. The adsorption of both -OH and O2 species is believed to take place at the perimeter sites of the Au NP interfacing with the TiO2 film. XPS analyses and discussions about the tentative roles of O2 and -OH adsorbent species toward Au/TiO2 systems corroborate very well with interpretations of density functional theory simulations.

4.
Microsc Res Tech ; 83(5): 457-463, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31912934

RESUMEN

This work describes an analysis of titanium dioxide (TiO2 ) thin films prepared on silicon substrates by direct current (DC) planar magnetron sputtering system in O2 /Ar atmosphere in correlation with three-dimensional (3D) surface characterization using atomic force microscopy (AFM). The samples were grown at temperatures 200, 300, and 400°C on silicon substrate using the same deposition time (30 min) and were distributed into four groups: Group I (as-deposited samples), Group II (samples annealed at 200°C), Group III (samples annealed at 300°C), and Group IV (samples annealed at 400°C). AFM images with a size of 0.95 µm × 0.95 µm were recorded with a scanning resolution of 256 × 256 pixels. Stereometric analysis was carried out on the basis of AFM data, and the surface topography was described according to ISO 25178-2:2012 and American Society of Mechanical Engineers (ASME) B46.1-2009 standards. The maximum and minimum root mean square roughnesses were observed in surfaces of Group II (Sq = 7.96 ± 0.1 nm) and Group IV (Sq = 3.87 ± 0.1 nm), respectively.

5.
Nanomaterials (Basel) ; 9(5)2019 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-31126109

RESUMEN

Although the origin and possible mechanisms for green and yellow emission from different zinc oxide (ZnO) forms have been extensively investigated, the same for red/orange PL emission from ZnO nanorods (nR) remains largely unaddressed. In this work, vertically aligned zinc oxide nanorods arrays (ZnO nR) were produced using hydrothermal process followed by plasma treatment in argon/sulfur hexafluoride (Ar/SF6) gas mixture for different time. The annealed samples were highly crystalline with ~45 nm crystallite size, (002) preferred orientation, and a relatively low strain value of 1.45 × 10-3, as determined from X-ray diffraction pattern. As compared to as-deposited ZnO nR, the plasma treatment under certain conditions demonstrated enhancement in the room temperature photoluminescence (PL) emission intensity, in the visible orange/red spectral regime, by a factor of 2. The PL intensity enhancement induced by SF6 plasma treatment may be attributed to surface chemistry modification as confirmed by X-ray photoelectron spectroscopy (XPS) studies. Several factors including presence of hydroxyl group on the ZnO surface, increased oxygen level in the ZnO lattice (OL), generation of F-OH and F-Zn bonds and passivation of surface states and bulk defects are considered to be active towards red/orange emission in the PL spectrum. The PL spectra were deconvoluted into component Gaussian sub-peaks representing transitions from conduction-band minimum (CBM) to oxygen interstitials (Oi) and CBM to oxygen vacancies (VO) with corresponding photon energies of 2.21 and 1.90 eV, respectively. The optimum plasma treatment route for ZnO nanostructures with resulting enhancement in the PL emission offers strong potential for photonic applications such as visible wavelength phosphors.

6.
Materials (Basel) ; 11(5)2018 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-29702583

RESUMEN

In this work, we report development of hybrid nanostructures of metal nanoparticles (NP) and carbon nanostructures with strong potential for catalysis, sensing, and energy applications. First, the etched silicon wafer substrates were passivated for subsequent electrochemical (EC) processing through grafting of nitro phenyl groups using para-nitrobenzene diazonium (PNBT). The X-ray photoelectron spectroscope (XPS) and atomic force microscope (AFM) studies confirmed presence of few layers. Cobalt-based nanoparticles were produced over dip or spin coated Nafion films under different EC reduction conditions, namely CoSO4 salt concentration (0.1 M, 1 mM), reduction time (5, 20 s), and indirect or direct EC reduction route. Extensive AFM examination revealed NP formation with different attributes (size, distribution) depending on electrochemistry conditions. While relatively large NP with >100 nm size and bimodal distribution were obtained after 20 s EC reduction in H3BO3 following Co2+ ion uptake, ultrafine NP (<10 nm) could be produced from EC reduction in CoSO4 and H3BO3 mixed solution with some tendency to form oxides. Different carbon nanostructures including few-walled or multiwalled carbon nanotubes (CNT) and carbon nanosheets were grown in a C2H2/NH3 plasma using the plasma-enhanced chemical vapor deposition technique. The devised processing routes enable size controlled synthesis of cobalt nanoparticles and metal/carbon hybrid nanostructures with unique microstructural features.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA