Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 125(9): 096401, 2020 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-32915590

RESUMEN

Time-resolved soft-x-ray photoemission spectroscopy is used to simultaneously measure the ultrafast dynamics of core-level spectral functions and excited states upon excitation of excitons in WSe_{2}. We present a many-body approximation for the Green's function, which excellently describes the transient core-hole spectral function. The relative dynamics of excited-state signal and core levels clearly show a delayed core-hole renormalization due to screening by excited quasifree carriers resulting from an excitonic Mott transition. These findings establish time-resolved core-level photoelectron spectroscopy as a sensitive probe of subtle electronic many-body interactions and ultrafast electronic phase transitions.

2.
Phys Rev Lett ; 108(26): 267403, 2012 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-23005013

RESUMEN

We present the first single-shot images of ferromagnetic, nanoscale spin order taken with femtosecond x-ray pulses. X-ray-induced electron and spin dynamics can be outrun with pulses shorter than 80 fs in the investigated fluence regime, and no permanent aftereffects in the samples are observed below a fluence of 25 mJ/cm(2). Employing resonant spatially muliplexed x-ray holography results in a low imaging threshold of 5 mJ/cm(2). Our results open new ways to combine ultrafast laser spectroscopy with sequential snapshot imaging on a single sample, generating a movie of excited state dynamics.

3.
J Chem Phys ; 136(7): 074507, 2012 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-22360248

RESUMEN

We report small angle x-ray scattering data demonstrating the direct experimental microscopic observation of the small-to-large crossover behavior of hydrophobic effects in hydrophobic solvation. By increasing the side chain length of amphiphilic tetraalkyl-ammonium (C(n)H(2n+1))(4)N(+) (R(4)N(+)) cations in aqueous solution we observe diffraction peaks indicating association between cations at a solute size between 4.4 and 5 Å, which show temperature dependence dominated by hydrophobic attraction. Using O K-edge x-ray absorption we show that small solutes affect hydrogen bonding in water similar to a temperature decrease, while large solutes affect water similar to a temperature increase. Molecular dynamics simulations support, and provide further insight into, the origin of the experimental observations.


Asunto(s)
Interacciones Hidrofóbicas e Hidrofílicas , Solventes/química , Simulación de Dinámica Molecular , Compuestos de Amonio Cuaternario/química , Dispersión del Ángulo Pequeño , Solubilidad , Temperatura , Difracción de Rayos X
4.
Ultramicroscopy ; 233: 113392, 2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-35016129

RESUMEN

Progress towards analysing transitions between steady states demands improvements in time-resolved imaging, both for fundamental research and for applications in information technology. Transmission electron microscopy is a powerful technique for investigating the atomic structure, chemical composition and electromagnetic properties of materials with high spatial resolution and precision. However, the extraction of information about dynamic processes in the ps time regime is often not possible without extensive modification to the instrument while requiring careful control of the operation conditions to not compromise the beam quality. Here, we avoid these drawbacks by combining a delay line detector with continuous illumination in a transmission electron microscope. We visualize the gyration of a magnetic vortex core in real space and show that magnetization dynamics up to frequencies of 2.3 GHz can be resolved with down to ∼122ps temporal resolution by studying the interaction of an electron beam with a microwave magnetic field. In the future, this approach promises to provide access to resonant dynamics by combining high spatial resolution with sub-ns temporal resolution.

5.
Phys Rev Lett ; 105(4): 043901, 2010 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-20867843

RESUMEN

We demonstrate in the soft x-ray regime a novel technique for high-resolution lensless imaging based on differential holographic encoding. We have achieved superior resolution over x-ray Fourier transform holography while maintaining the signal-to-noise ratio and algorithmic simplicity. We obtain a resolution of 16 nm by synthesizing images in the Fourier domain from a single diffraction pattern, which allows resolution improvement beyond the reference fabrication limit. Direct comparisons with iterative phase retrieval and images from state-of-the-art zone-plate microscopes are presented.

6.
Sci Data ; 7(1): 442, 2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33335108

RESUMEN

Characterization of the electronic band structure of solid state materials is routinely performed using photoemission spectroscopy. Recent advancements in short-wavelength light sources and electron detectors give rise to multidimensional photoemission spectroscopy, allowing parallel measurements of the electron spectral function simultaneously in energy, two momentum components and additional physical parameters with single-event detection capability. Efficient processing of the photoelectron event streams at a rate of up to tens of megabytes per second will enable rapid band mapping for materials characterization. We describe an open-source workflow that allows user interaction with billion-count single-electron events in photoemission band mapping experiments, compatible with beamlines at 3rd and 4rd generation light sources and table-top laser-based setups. The workflow offers an end-to-end recipe from distributed operations on single-event data to structured formats for downstream scientific tasks and storage to materials science database integration. Both the workflow and processed data can be archived for reuse, providing the infrastructure for documenting the provenance and lineage of photoemission data for future high-throughput experiments.

7.
Struct Dyn ; 5(4): 044502, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30175157

RESUMEN

The laser-driven ultrafast demagnetization effect is one of the long-standing problems in solid-state physics. The time scale is given not only by the transfer of energy, but also by the transport of angular momentum away from the spin system. Through a double-pulse experiment resembling two-dimensional spectroscopy, we separate the different pathways by their nonlinear properties. We find (a) that the loss of magnetization within 400 fs is not affected by the previous excitations (linear process), and (b) we observe a picosecond demagnetization contribution that is strongly affected by the previous excitations. Our experimental approach is useful not only for studying femtosecond spin dynamics, but can also be adapted to other problems in solid-state dynamics.

8.
Nat Nanotechnol ; 12(10): 980-986, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28825713

RESUMEN

Current-induced spin-orbit torques are one of the most effective ways to manipulate the magnetization in spintronic devices, and hold promise for fast switching applications in non-volatile memory and logic units. Here, we report the direct observation of spin-orbit-torque-driven magnetization dynamics in Pt/Co/AlOx dots during current pulse injection. Time-resolved X-ray images with 25 nm spatial and 100 ps temporal resolution reveal that switching is achieved within the duration of a subnanosecond current pulse by the fast nucleation of an inverted domain at the edge of the dot and propagation of a tilted domain wall across the dot. The nucleation point is deterministic and alternates between the four dot quadrants depending on the sign of the magnetization, current and external field. Our measurements reveal how the magnetic symmetry is broken by the concerted action of the damping-like and field-like spin-orbit torques and the Dzyaloshinskii-Moriya interaction, and show that reproducible switching events can be obtained for over 1012 reversal cycles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA