Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 21(3)2020 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-32041358

RESUMEN

An idiopathic myopathy characterized by central nuclei in muscle fibers, a hallmark of muscle regeneration, has been observed in cancer patients. In cancer cachexia skeletal muscle is incapable of regeneration, consequently, this observation remains unaccounted for. In C26-tumor bearing, cachectic mice, we observed muscle fibers with central nuclei in the absence of molecular markers of bona fide regeneration. These clustered, non-peripheral nuclei were present in NCAM-expressing muscle fibers. Since NCAM expression is upregulated in denervated myofibers, we searched for additional makers of denervation, including AchRs, MUSK, and HDAC. This last one being also consistently upregulated in cachectic muscles, correlated with an increase of central myonuclei. This held true in the musculature of patients suffering from gastrointestinal cancer, where a progressive increase in the number of central myonuclei was observed in weight stable and in cachectic patients, compared to healthy subjects. Based on all of the above, the presence of central myonuclei in cancer patients and animal models of cachexia is consistent with motor neuron loss or NMJ perturbation and could underlie a previously neglected phenomenon of denervation, rather than representing myofiber damage and regeneration in cachexia. Similarly to aging, denervation-dependent myofiber atrophy could contribute to muscle wasting in cancer cachexia.


Asunto(s)
Biomarcadores/metabolismo , Caquexia/patología , Neoplasias del Colon/complicaciones , Fibras Musculares Esqueléticas/metabolismo , Animales , Caquexia/etiología , Caquexia/metabolismo , Línea Celular Tumoral , Neoplasias del Colon/metabolismo , Modelos Animales de Enfermedad , Femenino , Histona Desacetilasas/metabolismo , Ratones , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/inervación , Trasplante de Neoplasias
2.
Int J Mol Sci ; 20(17)2019 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-31461843

RESUMEN

Arginine-vasopressin (AVP) promotes muscle differentiation, hypertrophy, and regeneration through the combined activation of the calcineurin and Calcium/Calmodulin-dependent Protein Kinase (CaMK) pathways. The AVP system is impaired in several neuromuscular diseases, suggesting that AVP may act as a physiological factor in skeletal muscle. Since the Phosphoinositide 3-kinases/Protein Kinase B/mammalian Target Of Rapamycin (PI3K/Akt/mTOR) signaling plays a significant role in regulating muscle mass, we evaluated its role in the AVP myogenic effect. In L6 cells AKT1 expression was knocked down, and the AVP-dependent expression of mTOR and Forkhead box O3 (FoxO) was analyzed by Western blotting. The effect of the PI3K inhibitor LY294002 was evaluated by cellular and molecular techniques. Akt knockdown hampered the AVP-dependent mTOR expression while increased the levels of FoxO transcription factor. LY294002 treatment inhibited the AVP-dependent expression of Myocyte Enhancer Factor-2 (MEF2) and myogenin and prevented the nuclear translocation of MEF2. LY294002 also repressed the AVP-dependent nuclear export of histone deacetylase 4 (HDAC4) interfering with the formation of multifactorial complexes on the myogenin promoter. We demonstrate that the PI3K/Akt pathway is essential for the full myogenic effect of AVP and that, by targeting this pathway, one may highlight novel strategies to counteract muscle wasting in aging or neuromuscular disorders.


Asunto(s)
Diferenciación Celular , Mioblastos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Vasopresinas/farmacología , Animales , Línea Celular , Cromonas/farmacología , Proteína Forkhead Box O3/metabolismo , Histona Desacetilasas/metabolismo , Factores de Transcripción MEF2/metabolismo , Morfolinas/farmacología , Mioblastos/citología , Mioblastos/efectos de los fármacos , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacocinética , Ratas , Serina-Treonina Quinasas TOR/metabolismo
3.
Int J Mol Sci ; 20(22)2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31731814

RESUMEN

Thyroid hormones regulate a wide range of cellular responses, via non-genomic and genomic actions, depending on cell-specific thyroid hormone transporters, co-repressors, or co-activators. Skeletal muscle has been identified as a direct target of thyroid hormone T3, where it regulates stem cell proliferation and differentiation, as well as myofiber metabolism. However, the effects of T3 in muscle-wasting conditions have not been yet addressed. Being T3 primarily responsible for the regulation of metabolism, we challenged mice with fasting and found that T3 counteracted starvation-induced muscle atrophy. Interestingly, T3 did not prevent the activation of the main catabolic pathways, i.e., the ubiquitin-proteasome or the autophagy-lysosomal systems, nor did it stimulate de novo muscle synthesis in starved muscles. Transcriptome analyses revealed that T3 mainly affected the metabolic processes in starved muscle. Further analyses of myofiber metabolism revealed that T3 prevented the starvation-mediated metabolic shift, thus preserving skeletal muscle mass. Our study elucidated new T3 functions in regulating skeletal muscle homeostasis and metabolism in pathological conditions, opening to new potential therapeutic approaches for the treatment of skeletal muscle atrophy.


Asunto(s)
Ayuno/efectos adversos , Músculo Esquelético/efectos de los fármacos , Atrofia Muscular/tratamiento farmacológico , Hormonas Tiroideas/uso terapéutico , Animales , Técnica del Anticuerpo Fluorescente , Ratones , Ratones Endogámicos BALB C , Atrofia Muscular/etiología , Análisis de Secuencia de ARN
4.
Int J Mol Sci ; 18(4)2017 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-28420141

RESUMEN

Epigenetics plays a pivotal role in regulating gene expression in development, in response to cellular stress or in disease states, in virtually all cell types. MicroRNAs (miRNAs) are short, non-coding RNA molecules that mediate RNA silencing and regulate gene expression. miRNAs were discovered in 1993 and have been extensively studied ever since. They can be expressed in a tissue-specific manner and play a crucial role in tissue development and many biological processes. miRNAs are responsible for changes in the cell epigenome because of their ability to modulate gene expression post-transcriptionally. Recently, numerous studies have shown that miRNAs and other epigenetic factors can regulate each other or cooperate in regulating several biological processes. On the one hand, the expression of some miRNAs is silenced by DNA methylation, and histone modifications have been demonstrated to modulate miRNA expression in many cell types or disease states. On the other hand, miRNAs can directly target epigenetic factors, such as DNA methyltransferases or histone deacetylases, thus regulating chromatin structure. Moreover, several studies have reported coordinated actions between miRNAs and other epigenetic mechanisms to reinforce the regulation of gene expression. This paper reviews multiple interactions between miRNAs and epigenetic factors in skeletal muscle development and in response to stimuli or disease.


Asunto(s)
Adaptación Biológica , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , MicroARNs/genética , Desarrollo de Músculos/genética , Músculo Esquelético/embriología , Músculo Esquelético/metabolismo , Acetilación , Animales , Metilación de ADN , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Humanos , Metilación
5.
Biochim Biophys Acta ; 1849(3): 309-16, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25598319

RESUMEN

Epigenetics is defined as heritable information other than the DNA sequence itself. The concept implies that the regulation of gene expression is a highly complex process in which epigenetics plays a major role that ranges from fine-tuning to permanent gene activation/deactivation. Skeletal muscle is the main tissue involved in locomotion and energy metabolism in the body, accounting for at least 40% of the body mass. Body mass and function vary according to age but also quickly adapt to both physiological and pathological cues. Besides transcriptional mechanisms that control muscle differentiation, postnatal growth and remodeling, there are numerous epigenetic mechanisms of regulation that modulate muscle gene expression. In this review, we describe and discuss only some of the mechanisms underlying epigenetic regulation, such as DNA methylation, histone modifications and microRNAs, which we believe are crucial to skeletal muscle development and disease.


Asunto(s)
Epigénesis Genética , Impresión Genómica , Desarrollo de Músculos/genética , Músculo Esquelético/crecimiento & desarrollo , Acetilación , Metilación de ADN , Histonas , Homeostasis/genética , Humanos , MicroARNs , Músculo Esquelético/metabolismo , Procesamiento Proteico-Postraduccional/genética
6.
Mol Ther ; 23(6): 1003-1021, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25762009

RESUMEN

The development of therapeutic strategies for skeletal muscle diseases, such as physical injuries and myopathies, depends on the knowledge of regulatory signals that control the myogenic process. The obestatin/GPR39 system operates as an autocrine signal in the regulation of skeletal myogenesis. Using a mouse model of skeletal muscle regeneration after injury and several cellular strategies, we explored the potential use of obestatin as a therapeutic agent for the treatment of trauma-induced muscle injuries. Our results evidenced that the overexpression of the preproghrelin, and thus obestatin, and GPR39 in skeletal muscle increased regeneration after muscle injury. More importantly, the intramuscular injection of obestatin significantly enhanced muscle regeneration by simulating satellite stem cell expansion as well as myofiber hypertrophy through a kinase hierarchy. Added to the myogenic action, the obestatin administration resulted in an increased expression of vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor 2 (VEGFR2) and the consequent microvascularization, with no effect on collagen deposition in skeletal muscle. Furthermore, the potential inhibition of myostatin during obestatin treatment might contribute to its myogenic action improving muscle growth and regeneration. Overall, our data demonstrate successful improvement of muscle regeneration, indicating obestatin is a potential therapeutic agent for skeletal muscle injury and would benefit other myopathies related to muscle regeneration.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Ghrelina/farmacología , Fibras Musculares Esqueléticas/efectos de los fármacos , Enfermedades Musculares/tratamiento farmacológico , Regeneración/efectos de los fármacos , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Inyecciones Intramusculares , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Ratones , Desarrollo de Músculos/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Células Satélite del Músculo Esquelético/efectos de los fármacos , Células Satélite del Músculo Esquelético/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Factores de Crecimiento Endotelial Vascular/genética , Factores de Crecimiento Endotelial Vascular/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
7.
Int J Med Sci ; 12(4): 336-40, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25897295

RESUMEN

The multipotency of scaffolds is a new concept. Skeletal muscle acellular scaffolds (MAS) implanted at the interface of Tibialis Anterior/tibial bone and masseter muscle/mandible bone in a murine model were colonized by muscle cells near the host muscle and by bone-cartilaginous tissues near the host bone, thus highlighting the importance of the environment in directing cell homing and differentiation. These results unveil the multipotency of MAS and point to the potential of this new technique as a valuable tool in musculo-skeletal tissue regeneration.


Asunto(s)
Matriz Extracelular/química , Músculo Esquelético/fisiología , Andamios del Tejido/química , Animales , Diferenciación Celular , Movimiento Celular , Femenino , Masculino , Ratones , Ratones Endogámicos , Modelos Animales , Células Madre Multipotentes/citología , Músculo Esquelético/citología , Mioblastos Esqueléticos/citología , Regeneración , Nicho de Células Madre , Ingeniería de Tejidos/métodos
8.
ScientificWorldJournal ; 2013: 237260, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23533342

RESUMEN

Recent studies strengthen the belief that physical activity as a behavior has a genetic basis. Screening wheel-running behavior in inbred mouse strains highlighted differences among strains, showing that even very limited genetic differences deeply affect mouse behavior. We extended this observation to substrains of the same inbred mouse strain, that is, BALB/c mice. We found that only a minority of the population of one of these substrains, the BALB/c J, performs spontaneous physical activity. In addition, the runners of this substrain cover a significantly smaller distance than the average runners of two other substrains, namely, the BALB/c ByJ and the BALB/c AnNCrl. The latter shows a striking level of voluntary activity, with the average distance run/day reaching up to about 12 kilometers. These runners are not outstanders, but they represent the majority of the population, with important scientific and economic fallouts to be taken into account during experimental planning. Spontaneous activity persists in pathological conditions, such as cancer-associated cachexia. This important amount of physical activity results in a minor muscle adaptation to endurance exercise over a three-week period; indeed, only a nonsignificant increase in NADH transferase+ fibers occurs in this time frame.


Asunto(s)
Conducta Animal/fisiología , Ratones Endogámicos BALB C , Actividad Motora , Resistencia Física/fisiología , Animales , Peso Corporal , Femenino , Inmunohistoquímica , Ratones , Mitocondrias/fisiología , Fibras Musculares Esqueléticas/enzimología , Fibras Musculares Esqueléticas/fisiología , Fuerza Muscular , NADH NADPH Oxidorreductasas/análisis , Oxidación-Reducción , Factores de Tiempo
9.
Cells ; 11(9)2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-35563712

RESUMEN

Currently, no commercially available drugs have the ability to reverse cachexia or counteract muscle wasting and the loss of lean mass. Here, we report the methodology used to develop Physiactisome-a conditioned medium released by heat shock protein 60 (Hsp60)-overexpressing C2C12 cell lines enriched with small and large extracellular vesicles. We also present evidence supporting its use in the treatment of cachexia. Briefly, we obtain a nanovesicle-based secretion by genetically modifying C2C12 cell lines with an Hsp60-overexpressing plasmid. The secretion is used to treat naïve C2C12 cell lines. Physiactisome activates the expression of PGC-1α isoform 1, which is directly involved in mitochondrial biogenesis and muscle atrophy suppression, in naïve C2C12 cell lines. Proteomic analyses show Hsp60 localisation inside isolated nanovesicles and the localisation of several apocrine and merocrine molecules, with potential benefits for severe forms of muscle atrophy. Considering that Physiactisome can be easily obtained following tissue biopsy and can be applied to autologous muscle stem cells, we propose a potential nanovesicle-based anti-cachexia drug that could mimic the beneficial effects of exercise. Thus, Physiactisome may improve patient survival and quality of life. Furthermore, the method used to add Hsp60 into nanovesicles can be used to deliver other drugs or active proteins to vesicles.


Asunto(s)
Caquexia , Chaperonina 60 , Caquexia/metabolismo , Chaperonina 60/metabolismo , Humanos , Músculo Esquelético/metabolismo , Atrofia Muscular/patología , Proteómica , Calidad de Vida
10.
J Cachexia Sarcopenia Muscle ; 13(2): 1339-1359, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35170869

RESUMEN

BACKGROUND: Histone deacetylase 4 (HDAC4) is a stress-responsive factor that mediates multiple cellular responses. As a member of class IIa HDACs, HDAC4 shuttles between the nucleus and the cytoplasm; however, HDAC4 cytoplasmic functions have never been fully investigated. Duchenne muscular dystrophy (DMD) is a genetic, progressive, incurable disorder, characterized by muscle wasting, which can be treated with the unspecific inhibition of HDACs, despite this approach being only partially effective. More efficient strategies may be proposed for DMD only after the different HDAC members will be characterized. METHODS: To fully understand HDAC4 functions, we generated dystrophic mice carrying a skeletal muscle-specific deletion of HDAC4 (mdx;KO mice). The progression of muscular dystrophy was characterized in mdx and age-matched mdx;KO mice by means of histological, molecular, and functional analyses. Satellite cells (SCs) from these mice were differentiated in vitro, to identify HDAC4 intrinsic functions influencing the myogenic potential of dystrophic SCs. Gain-of-function experiments revealed the cytoplasmic functions of HDAC4 in mdx;KO muscles. RESULTS: Histone deacetylase 4 increased in the skeletal muscles of mdx mice (~3-fold; P < 0.05) and of DMD patients (n = 3, males, mean age 13.3 ± 1.5 years), suggesting that HDAC4 has a role in DMD. Its deletion in skeletal muscles importantly worsens the pathological features of DMD, leading to greater muscle fragility and degeneration over time. Additionally, it impairs SC survival, myogenic potential, and muscle regeneration, ultimately compromising muscle function (P < 0.05-0.001). The impaired membrane repair mechanism in muscles and SCs accounts for the mdx;KO phenotype. Indeed, the ectopic expression of Trim72, a major player in the membrane repair mechanism, prevents SC death (~20%; P < 0.01) and increases myogenic fusion (~40%; P < 0.01) in vitro; in vivo it significantly reduces myofibre damage (~10%; P < 0.005) and improves mdx;KO muscle function (P < 0.05). The mdx;KO phenotype is also fully rescued by restoring cytoplasmic levels of HDAC4, both in vitro and in vivo. The protective role of HDAC4 in the cytoplasm of mdx;KO muscles is, in part, independent of its deacetylase activity. HDAC4 expression correlates with Trim72 mRNA levels; furthermore, Trim72 mRNA decays more rapidly (P < 0.01) in mdx;KO muscle cells, compared with mdx ones. CONCLUSIONS: Histone deacetylase 4 performs crucial functions in the cytoplasm of dystrophic muscles, by mediating the muscle repair response to damage, an important role in ensuring muscle homeostasis, probably by stabilizing Trim72 mRNA. Consequently, the cytoplasmic functions of HDAC4 should be stimulated rather than inhibited in muscular dystrophy treatments, a fact to be considered in future therapeutic approaches.


Asunto(s)
Histona Desacetilasas , Distrofia Muscular de Duchenne , Adolescente , Animales , Niño , Citoplasma/metabolismo , Citoplasma/patología , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/genética , Proteínas Represoras
11.
Diagnostics (Basel) ; 11(1)2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33445790

RESUMEN

Body weight loss, mostly due to the wasting of skeletal muscle and adipose tissue, is the hallmark of the so-called cachexia syndrome. Cachexia is associated with several acute and chronic disease states such as cancer, chronic obstructive pulmonary disease (COPD), heart and kidney failure, and acquired and autoimmune diseases and also pharmacological treatments such as chemotherapy. The clinical relevance of cachexia and its impact on patients' quality of life has been neglected for decades. Only recently did the international community agree upon a definition of the term cachexia, and we are still awaiting the standardization of markers and tests for the diagnosis and staging of cancer-related cachexia. In this review, we discuss cachexia, considering the evolving use of the term for diagnostic purposes and the implications it has for clinical biomarkers, to provide a comprehensive overview of its biology and clinical management. Advances and tools developed so far for the in vitro testing of cachexia and drug screening will be described. We will also evaluate the nomenclature of different forms of muscle wasting and degeneration and discuss features that distinguish cachexia from other forms of muscle wasting in the context of different conditions.

12.
BMC Cancer ; 10: 363, 2010 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-20615237

RESUMEN

BACKGROUND: The majority of cancer patients experience dramatic weight loss, due to cachexia and consisting of skeletal muscle and fat tissue wasting. Cachexia is a negative prognostic factor, interferes with therapy and worsens the patients' quality of life by affecting muscle function. Mice bearing ectopically-implanted C26 colon carcinoma are widely used as an experimental model of cancer cachexia. As part of the search for novel clinical and basic research applications for this experimental model, we characterized novel cellular and molecular features of C26-bearing mice. METHODS: A fragment of C26 tumor was subcutaneously grafted in isogenic BALB/c mice. The mass growth and proliferation rate of the tumor were analyzed. Histological and cytofluorometric analyses were used to assess cell death, ploidy and differentiation of the tumor cells. The main features of skeletal muscle atrophy, which were highlighted by immunohistochemical and electron microscopy analyses, correlated with biochemical alterations. Muscle force and resistance to fatigue were measured and analyzed as major functional deficits of the cachectic musculature. RESULTS: We found that the C26 tumor, ectopically implanted in mice, is an undifferentiated carcinoma, which should be referred to as such and not as adenocarcinoma, a common misconception. The C26 tumor displays aneuploidy and histological features typical of transformed cells, incorporates BrdU and induces severe weight loss in the host, which is largely caused by muscle wasting. The latter appears to be due to proteasome-mediated protein degradation, which disrupts the sarcomeric structure and muscle fiber-extracellular matrix interactions. A pivotal functional deficit of cachectic muscle consists in increased fatigability, while the reported loss of tetanic force is not statistically significant following normalization for decreased muscle fiber size. CONCLUSIONS: We conclude, on the basis of the definition of cachexia, that ectopically-implanted C26 carcinoma represents a well standardized experimental model for research on cancer cachexia. We wish to point out that scientists using the C26 model to study cancer and those using the same model to study cachexia may be unaware of each other's works because they use different keywords; we present strategies to eliminate this gap and discuss the benefits of such an exchange of knowledge.


Asunto(s)
Adenocarcinoma/complicaciones , Caquexia/etiología , Neoplasias del Colon/complicaciones , Neoplasias Pulmonares/complicaciones , Músculo Esquelético/patología , Atrofia Muscular/etiología , Adenocarcinoma/patología , Animales , Apoptosis , Western Blotting , Caquexia/patología , Proliferación Celular , Neoplasias del Colon/patología , Modelos Animales de Enfermedad , Citometría de Flujo , Técnicas para Inmunoenzimas , Neoplasias Pulmonares/secundario , Ratones , Ratones Endogámicos BALB C , Atrofia Muscular/patología , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
13.
Eur J Transl Myol ; 30(1): 8899, 2020 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-32499895

RESUMEN

The neurohypophyseal hormones vasopressin and oxytocin were invested, in recent years, with novel functions upon striated muscle, regulating its differentiation, trophism, and homeostasis. Recent studies highlight that these hormones not only target skeletal muscle but represent novel myokines. We discuss the possibility of exploiting the muscle hypertrophying activity of oxytocin to revert muscle atrophy, including cancer cachexia muscle wasting. Furthermore, the role of oxytocin in cardiac homeostasis and the possible role of cardiac atrophy as a concause of death in cachectic patients is discussed.

14.
Stem Cells ; 26(4): 997-1008, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18258721

RESUMEN

Skeletal muscle is susceptible to injury following trauma, neurological dysfunction, and genetic diseases. Skeletal muscle homeostasis is maintained by a pronounced regenerative capacity, which includes the recruitment of stem cells. Chronic exposure to tumor necrosis factor-alpha (TNF) triggers a muscle wasting reminiscent of cachexia. To better understand the effects of TNF upon muscle homeostasis and stem cells, we exposed injured muscle to TNF at specific time points during regeneration. TNF exposure delayed the appearance of regenerating fibers, without exacerbating fiber death following the initial trauma. We observed modest cellular caspase activation during regeneration, which was markedly increased in response to TNF exposure concomitant with an inhibition in regeneration. Caspase activation did not lead to apoptosis and did not involve caspase-3. Inhibition of caspase activity improved muscle regeneration in either the absence or the presence of TNF, revealing a nonapoptotic role for this pathway in the myogenic program. Caspase activity was localized to the interstitial cells, which also express Sca-1, CD34, and PW1. Perturbation of PW1 activity blocked caspase activation and improved regeneration. The restricted localization of Sca-1+, CD34+, PW1+ cells to a subset of interstitial cells with caspase activity reveals a critical regulatory role for this population during myogenesis, which may directly contribute to resident muscle stem cells or indirectly regulate stem cells through cell-cell interactions.


Asunto(s)
Caspasas/fisiología , Músculo Esquelético/fisiología , Regeneración/fisiología , Células Madre/fisiología , Factor de Necrosis Tumoral alfa/fisiología , Animales , Femenino , Ratones , Desarrollo de Músculos/fisiología , Músculo Esquelético/citología , Células Madre/citología
15.
Differentiation ; 76(4): 371-80, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18021262

RESUMEN

Neurohypophyseal peptides potently stimulate myogenic differentiation by acting through different receptors of the same family. Here, we show that L6C5 myogenic cells express, at a high density, a single class of V1a Arg8-vasopressin (AVP) receptor. The expression of the vasopressin receptor of type 1a (V1aR) is significantly higher in proliferating myoblasts than in differentiated myotubes. The differentiation-related decrease of V1aR expression was evident both at the mRNA and at the protein level as shown by the reduction of [(3)H]-AVP binding. However, in L6C5 cells transfected with a synthetic construct containing the luciferase gene driven by the 2 kb upstream region of V1aR, we observed a stimulation of the activity of the promoter when the cells were cultured in differentiative medium. The down-regulation of the V1aR correlated with a decreased half-life of its mRNA (half-life 5.86+/-0.74 hr in 10% fetal bovine serum [FBS] versus 3.53+/-0.72 hr in 1% FBS). Cyclosporine A and dexamethasone, but not 5'-azacytidine, treatments of cells in differentiation medium restored the V1aR level to that measured in proliferating L6C5 cells, thus confirming the role of post-transcriptional mechanisms in the modulation of V1aR expression. Taken together, these data show that mRNA stability plays a role in modulating protein expression during the myogenic differentiation process.


Asunto(s)
Diferenciación Celular , Músculos/citología , Receptores de Vasopresinas/metabolismo , Animales , Azacitidina/farmacología , Secuencia de Bases , Northern Blotting , Células Cultivadas , Ciclosporina/farmacología , Cartilla de ADN , Dexametasona/farmacología , Expresión Génica/efectos de los fármacos , Semivida , Inmunohistoquímica , Músculos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Receptores de Vasopresinas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
16.
Front Physiol ; 10: 500, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31114509

RESUMEN

The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway is a key intracellular mediator of a variety of metabolically relevant hormones and cytokines, including the interleukin-6 (IL-6) family of cytokines. The JAK/STAT pathway transmits extracellular signals to the nucleus, leading to the transcription of genes involved in multiple biological activities. The JAK/STAT pathway has been reported to be required for the homeostasis of different tissues and organs. Indeed, when deregulated, it promotes the initiation and progression of pathological conditions, including cancer, obesity, diabetes, and other metabolic diseases. In skeletal muscle, activation of the JAK/STAT pathway by the IL-6 cytokines accounts for opposite effects: on the one hand, it promotes muscle hypertrophy, by increasing the proliferation of satellite cells; on the other hand, it contributes to muscle wasting. The expression of IL-6 and of key members of the JAK/STAT pathway is regulated at the epigenetic level through histone methylation and histone acetylation mechanisms. Thus, manipulation of the JAK/STAT signaling pathway by specific inhibitors and/or drugs that modulate epigenetics is a promising therapeutic intervention for the treatment of numerous diseases. We focus this review on the JAK/STAT pathway functions in striated muscle pathophysiology and the potential role of IL-6 as an effector of the cross talk between skeletal muscle and other organs.

17.
Stem Cell Reports ; 13(4): 573-589, 2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31597110

RESUMEN

The environment surrounding stem cells has the ability to elicit profound, heritable epigenetic changes orchestrated by multiple epigenetic mechanisms, which can be modulated by the level of specific metabolites. In this review, we highlight the significance of metabolism in regulating stem cell homeostasis, cell state, and differentiation capacity, using metabolic regulation of embryonic and adult muscle stem cells as examples, and cast light on the interaction between cellular metabolism and epigenetics. These new regulatory networks, based on the dynamic interplay between metabolism and epigenetics in stem cell biology, are important, not only for understanding tissue homeostasis, but to determine in vitro culture conditions which accurately support normal cell physiology.


Asunto(s)
Células Madre Adultas/citología , Células Madre Adultas/metabolismo , Diferenciación Celular , Autorrenovación de las Células , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Metabolismo Energético , Epigénesis Genética , Animales , Biomarcadores , Diferenciación Celular/genética , Autorrenovación de las Células/genética , Modelos Animales de Enfermedad , Regulación del Desarrollo de la Expresión Génica , Humanos , Fenotipo , Trasplante de Células Madre
18.
Materials (Basel) ; 12(15)2019 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-31349716

RESUMEN

Millions of abdominal wall repair procedures are performed each year for primary and incisional hernias both in the European Union and in the United States with extremely high costs. Synthetic meshes approved for augmenting abdominal wall repair provide adequate mechanical support but have significant drawbacks (seroma formation, adhesion to viscera, stiffness of abdominal wall, and infection). Biologic scaffolds (i.e., derived from naturally occurring materials) represent an alternative to synthetic surgical meshes and are less sensitive to infection. Among biologic scaffolds, extracellular matrix scaffolds promote stem/progenitor cell recruitment in models of tissue remodeling and, in the specific application of abdominal wall repair, have enough mechanical strength to support the repair. However, many concerns remain about the use of these scaffolds in the clinic due to their higher cost of production compared with synthetic meshes, despite having the same recurrence rate. The present review aims to highlight the pros and cons of using biologic scaffolds as surgical devices for abdominal wall repair and present possible improvements to widen their use in clinical practice.

19.
Front Physiol ; 10: 401, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31068826

RESUMEN

Activin negatively affects muscle fibers and progenitor cells in aging (sarcopenia) and in chronic diseases characterized by severe muscle wasting (cachexia). High circulating activin levels predict poor survival in cancer patients. However, the relative impact of activin in mediating muscle atrophy and hampered homeostasis is still unknown. To directly assess the involvement of activin, and its physiological inhibitor follistatin, in cancer-induced muscle atrophy, we cultured C2C12 myotubes in the absence or in the presence of a mechanical stretching stimulus and in the absence or presence of C26 tumor-derived factors (CM), so as to mimic the mechanical stimulation of exercise and cancer cachexia, respectively. We found that CM induces activin release by myotubes, further exacerbating the negative effects of tumor-derived factors. In addition, mechanical stimulation is sufficient to counteract the adverse tumor-induced effects on muscle cells, in association with an increased follistatin/activin ratio in the cell culture medium, indicating that myotubes actively release follistatin upon stretching. Recombinant follistatin counteracts tumor effects on myotubes exclusively by rescuing fusion index, suggesting that it is only partially responsible for the stretch-mediated rescue. Therefore, besides activin, other tumor-derived factors may play a significant role in mediating muscle atrophy. In addition to increasing follistatin secretion mechanical stimulation induces additional beneficial responses in myotubes. We propose that in animal models of cancer cachexia and in cancer patients purely mechanical stimuli play an important role in mediating the rescue of the muscle homeostasis reported upon exercise.

20.
EBioMedicine ; 40: 717-732, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30713114

RESUMEN

BACKGROUND: Histone deacetylase 4 (HDAC4) has been proposed as a target for Amyotrophic Lateral Sclerosis (ALS) because it mediates nerve-skeletal muscle interaction and since its expression in skeletal muscle correlates with the severity of the disease. However, our recent studies on the skeletal muscle response upon long-term denervation highlighted the importance of HDAC4 in maintaining muscle integrity. METHODS: To fully identify the yet uncharacterized HDAC4 functions in ALS, we genetically deleted HDAC4 in skeletal muscles of a mouse model of ALS. Body weight, skeletal muscle, innervation and spinal cord were analyzed over time by morphological and molecular analyses. Transcriptome analysis was also performed to delineate the signaling modulated by HDAC4 in skeletal muscle of a mouse model of ALS. FINDINGS: HDAC4 deletion in skeletal muscle caused earlier ALS onset, characterized by body weight loss, muscle denervation and atrophy, and compromised muscle performance, although the main catabolic pathways were not activated. Transcriptome analysis identified the gene networks modulated by HDAC4 in ALS, revealing UCP1 as a top regulator that may be implicated in worsening ALS features. INTERPRETATION: HDAC4 plays an important role in preserving innervations and skeletal muscle in ALS, likely by modulating the UCP1 gene network. Our study highlights a possible risk in considering HDAC inhibitors for the treatment of ALS. FUND: This work was supported by FIRB grant (RBFR12BUMH) from Ministry of Education, Universities and Research, by Fondazione Veronesi, by Sapienza research project 2017 (RM11715C78539BD8) and Polish National Science Center grant (UMO-2016/21/B/NZ3/03638).


Asunto(s)
Esclerosis Amiotrófica Lateral/etiología , Histona Desacetilasas/genética , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/mortalidad , Animales , Supervivencia Celular , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Eliminación de Gen , Regulación de la Expresión Génica , Histona Desacetilasas/metabolismo , Redes y Vías Metabólicas , Ratones , Ratones Noqueados , Neuronas Motoras/metabolismo , Desnervación Muscular , Músculo Esquelético/inervación , Músculo Esquelético/patología , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Unión Neuromuscular/genética , Unión Neuromuscular/metabolismo , Fenotipo , Pérdida de Peso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA